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Abstract. In the Directed Feedback Vertex Set (DFVS) problem,
given a digraph D and k ∈ N, the goal is to check if there exists a set of
at most k vertices whose deletion from D leaves a directed acyclic graph.
Resolving the existence of a polynomial kernel for DFVS parameterized by
the solution size k is a central open problem in Kernelization. In this paper,
we give a polynomial kernel for DFVS parameterized by k plus the size of
a treewidth-η modulator (of the underlying undirected graph), where η is
any fixed positive integer. Our choice of parameter strictly encompasses
previous positive kernelization results on DFVS. Our main result is based
on a novel application of the tool of important separators embedded in
state-of-the-art machinery such as protrusion decompositions.
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1 Introduction

Feedback Set problems are fundamental combinatorial optimization problems.
Typically, in these problems, we are given a (directed or undirected) graph G and
an integer k, and the objective is to select at most k vertices, edges or arcs to hit
all cycles of the input graph. Feedback Set problems are among Karp’s 21 NP-
complete problems and have been a subject of active research from algorithmic [3,
5, 6, 11–13, 15, 16, 18, 19, 25, 32, 35, 33, 37, 45, 49] as well as structural point of
view [24, 34, 36, 44, 46–48]. In particular, such problems constitute one of the
most important topics of research in parameterized algorithms [11, 13, 15, 16, 18,
19, 35, 33, 37, 45, 49], spearheading the development of several new techniques.

In this paper, we study the Directed Feedback Vertex Set (DFVS)
problem, whose input consists of a digraph D on n vertices and m arcs, and
an integer k that is the parameter. The goal is to check whether there exists
a vertex subset of size at most k that intersects every directed cycle in D. In
other words, we ask whether there exists a set of vertices S of size at most k
such that F = D − S is a directed acyclic graph (DAG). For over a decade,
resolving the parameterized complexity of DFVS was considered one of the most
important open problems in parameterized complexity. In fact, this question was
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posed as an open problem in the first few papers on fixed-parameter tractability
(FPT) [21, 22]. In a breakthrough paper, DFVS was shown to be fixed-parameter
tractable by Chen et al. [15] in 2008, who gave an algorithm that runs in time
O(4k · k! · k4 · n4). Subsequently, it was observed that, in fact, the running time
of this algorithm is O(4k · k! · k4 · nm) (see, e.g., [17]). Since this breakthrough,
the techniques used to solve DFVS have found numerous applications. However,
apart from the design of a parameterized algorithm for DFVS with a linear
dependency on m+ n [41], the question of the existence of a polynomial kernel
for the same problem has seen close to no progress. To be specific, the following
fundamental question about the problem remains open:

Does DFVS admit a polynomial kernel?

That is, does there exist a polynomial-time algorithm (called a kernelization
algorithm) that, given an instance (D, k) of DFVS, returns an equivalent instance
(D′, k′) (called a kernel) of DFVS whose size is bounded by a polynomial function
of k? We refer the reader to the surveys [29, 31, 38, 40], as well as the books [28,
17, 23, 26, 43], for a detailed treatment of the area of kernelization.

The lack of progress on the kernelization complexity of DFVS has led to
the study of this problem on restrictive input instances. In particular, we know
of polynomial kernels for DFVS when the input digraph is a tournament or
even various other generalizations of it [1, 4, 20, 39]. However, the existence of a
polynomial kernel for DFVS is open even when the input digraph is a planar
digraph. Recently, in order to shed some light on the kernelization complexity of
DFVS, the following two directions have been proposed.

1. Study the kernelization complexity of DFVS where, in addition to the solution
size, we parameterize by a structural parameter (such as the size of a modulator
to a graph of constant treewidth). Throughout the paper, by treewidth of a
digraph we refer to the treewidth of its underlying undirected graph.

2. Study the kernelization complexity of DFVS with an additional restriction
on the resulting DAG F = D − S.

In this paper, we aim to significantly broaden the scope of both directions
as much as possible—our efforts are mostly aimed at the first approach, but we
also deal with the second one. Towards our contribution for the first direction,
we give a polynomial kernel for DFVS parameterized by the solution size plus
the size of a treewidth-η modulator. Formally, for a directed graph D, a subset
M ⊆ V (D) is called a treewidth η-modulator if D −M has treewidth at most η.
We consider the following parameterized problem parameterized by k + `.

DFVS/DFVS+Treewidth-η Modulator (Tw-η Mod)
Input: A digraph D, k ∈ N, M ⊆ V (D) where |M | = ` and D−M ∈ Fη.
Output: Is there S ⊆ V (D) where |S| ≤ k and D − S is a DAG?

Observe that DFVS/DFVS+Tw-η Mod is the same problem as DFVS
with just a different parameter. Our main contribution is the following theorem.

Theorem 1.1. DFVS/DFVS+Tw-η Mod admits a kernel of size (k · `)O(η2).
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Notably, our result can be viewed as a proof that DFVS parameterized only
by k, admits a polynomial kernel on the class of all graphs whose treewidth can
be made constant by the removal of kO(1) vertices. Yet another justification for
our choice of parameter is the following. Parameterized by k alone, the problem
has been open for a very long time. On the other hand, parameterized by `
alone, it can be easily seen that the problem does not exhibit a polynomial kernel
(by a reduction from Vertex Cover parameterized by the size of a treewidth-2
modulator) unless NP ⊆ coNP/poly. Thus, k+` is a natural parameter to explore.

We also remark that the proof of Theorem 1.1 required the development of a
novel use of important separators, among other ideas for finding protrusions and
using the state-of-the-art protrusion machinery. Thus, as a side reward, the ideas
developed in this article may be insightful, helping to design reduction rules for
a polynomial kernel of DFVS. Lastly, our result encompasses the recent result of
Bergougnoux et al. [7], where they studied DFVS parameterized by the feedback
vertex set number of the underlying undirected graph, and gave a polynomial
kernel for this problem. Specifically, they gave a kernel of size O(fvs4), where
fvs is the feedback vertex set number of the underlying undirected graph of D.
Note that our parameter k + ` is not only upper bounded by O(fvs), but it can
be arbitrarily smaller than fvs. We also remark that DFVS has already been
parameterized by treewidth in the literature (not for kernelization purposes)—
recently, Bonamy et al. [10] showed that DFVS parameterized by the treewidth
of the input graph, t, can be solved in time 2O(t log t)nO(1), and that unless the
Exponential Time Hypothesis fails, it cannot be solved in time 2o(t log t)nO(1).

We now consider our contribution towards the second direction viz. under-
standing the kernelization complexity of DFVS with an additional restriction on
the resulting DAG F = D − S. This direction was proposed by Mnich and van
Leeuwen [42]. Essentially, the basic philosophy of their program is the following:
What happens to the kernelization complexity of DFVS when we consider dele-
tion to subclasses of DAGs? Specifically, Mnich and van Leeuwen [42] obtained
polynomial kernels for the classes of out-forests, out-trees and directed pumpkins.
Note that for all these families, the treewidth of the graph obtained after deleting
the solution is constant. In a follow-up paper [2], the kernel sizes given by Mnich
and van Leeuwen [42] were reduced. Towards our contribution, we begin by
considering a broad family of graphs: for a fixed positive integer η, let Fη be the
family of digraphs of treewidth at most η. The corresponding problem, named
Fη-Vertex Deletion Set, is defined as follows. Given a digraph D and an
integer k, determine whether there exists a set S of size at most k such that
F − S is a DAG in Fη. Observe that this problem is different from DFVS as the
deletion set is required to bring in more structure to the resulting graph. Towards
resolving the existence of a polynomial kernel for this problem (parameterized by
k), we observe that the existing machinery can already be harnessed to resolve
this question affirmatively. Nevertheless, as this finding already generalizes several
results in the literature, we give an outline of this result in Appendix F.

Given a choice of which amongst the two directions may bring us closer to
the resolution of the kernelization complexity of DFVS, we believe that studying
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DFVS parameterized by a non-trivial structural parameter larger than k has a
major advantage over studying the DFVS problem by restricting the resulting
DAG—the study of a larger parameter does not alter the problem at hand, that
is, the focus is still aimed at DFVS itself rather than at a variant of it. In fact,
the second approach may derail us from the track of resolving the kernelization
complexity of DFVS as each restriction of the output DAG results in its own
definition of a variant of DFVS that may have its own properties. Thus, if the
ultimate goal is to design a polynomial kernel for DFVS itself (or prove that such
a kernel does not exist), we find the first approach more suitable. Nevertheless,
it is also important to note that the questions raised by the second approach,
namely, the study of the variants of DFVS, may be interesting in their own right.

Proof Idea of Theorem 1.1. Our kernelization algorithm can be divided into
three main phases. We give a brief summary of each phase here.

1. Computing a zone decomposition of the directed graph: We first com-
pute a decomposition of D into three components: the vertex set M (modulator),
a collection of O(k`2) vertex sets Z (zones), and a vertex set R (remainder) of
size O(k`2). All of these sets are pairwise disjoint and form a partition of V (D).
The aim of this decomposition is to achieve a few properties with respect to each
zone Z ∈ Z, which we will later exploit to design reduction rules to bound the
size of each zone. Since the number of zones in the decomposition and the size of
R is O(k`2), in order to get the desired kernel, it would be enough to bound the
size of each zone Z ∈ Z by k`O(1), after such a decomposition is constructed.

Let us mention three important properties of a zone Z ∈ Z that this decom-
position achieves, and which play a critical role in helping us bound the size
of Z. The first property is that if D has a directed feedback vertex set of size
at most k, then there exists a directed feedback vertex set, say S, in D of size
at most k, whose intersection with Z is of constant size. The second property
is that the neighborhood of Z is entirely contained in M ∪ R and the size of
the neighborhood of Z in R is bounded by some constant. Finally, for any two
vertices in the neighborhood of Z in M , the maximum value of a directed flow
from one to the other is either extremely high or zero. We will exploit the first
property to mark a “small” set of vertices in Z that in some sense “represents”
all partial solutions in Z. Such a set, which is called ΓDFVS, is then used to design
reduction rules that eliminate arcs between Z \ΓDFVS and M . The third property
is critically used in these reduction rules. Then, from the second property, all the
vertices in Z \ ΓDFVS have a constant-sized neighborhood outside Z. Having this
information at hand, we further partition Z into small slices, each of which is
then replaced by constant sized sets by using protrusion machinery.

Though at first glance this decomposition of the graph may look very similar
to the near-protrusion decomposition of [27], it is not a near-protrusion decompo-
sition. In fact, for this problem we cannot find a near-protrusion decomposition.

2. Computing a k-DFVS Representative Set in Z: A k-DFVS represen-
tative in a zone Z is a subset of vertices of Z (say, ΓDFVS) with the following
property: If D has a directed feedback vertex set of size at most k, then there is
a directed feedback vertex set S in D of size at most k and S ∩ Z ⊆ ΓDFVS. We
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aim to compute such a set whose size is bounded by some polynomial in k and `.
For this purpose, we first revisit the relation between our problem and Skew
Multicut. In particular, we see that for any directed feedback vertex setS D,
S∩Z is a solution to an “appropriate” instance of the Skew Multicut problem.
Thus, if we can compute solutions to all possible appropriate instances of Skew
Multicut, then we can set ΓDFVS to be the union of all these solutions. In this
overview, we prefer to keep the notion of an appropriate instance abstract.

Unfortunately, a single instance of our problem gives rise to a huge number of
appropriate instances. In particular, if we naively construct ΓDFVS by individually
computing a solution for each possible choice for an appropriate instance, we
do not obtain a set whose size is bounded by a polynomial function in k and `.
So, in the second step, we invest significant efforts to construct a set ΓDFVS of
the desired small size, which contains a solution for each possible choice of an
appropriate instance. To this end, we observe that if such a set of the desired size
exists, then solutions of “many” possible appropriate instances intersect a lot.
Very roughly speaking, we aim to identify a small set of vertices that is guaranteed
to be contained in solutions of “many” instances. If we can identify such a set,
then we delete it from all appropriate instances in which it is guaranteed to be
present in some solution, and recurse on the resulting instances. (Here, only one
recursive call is performed.) From the properties of a zone decomposition, we are
able to derive that there is a solution to our original problem whose intersection
with Z is small, which in turn leads us to the observation that we can only focus
on small solutions for each appropriate instance. Hence, we can bound the depth
of the recursion. Though this description roughly conveys the broad picture, the
implementation of these ideas is significantly more complex. For example, we
are unable to find a small set of vertices that is contained in some solution for
“many” instances. Instead, we find a collection of small sets such that at least one
among them is the set that we want, though we do not know which one.

These abstract ideas are materialized with the help of important separators
(defined in Section 2), the Pushing Lemma for Skew Multicut and a new
(simple) lemma, which we call the Important Separator Preservation (via Small
Sink Set) Lemma. This lemma says that if S is an important (X,Y )-separator
of size α in some digraph, then S is also an important (X,Y ′)-separator for
some subset Y ′ of Y of size at most α+ 1, where Y \ Y ′ is removed from that
digraph. We mainly use this lemma in situations (that arise when we try to
compute the collection of sets mentioned above) that require guessing the set
Y when X is given, so that we can compute important (X,Y )-separators. In
these situations, since it is enough to guess Y ′ to compute all important (X,Y )-
separators (from the Important Separator Preservation Lemma), the fact that
Y ′ is small significantly reduces the search space for Y ′ compared to that for Y .

3. Reduction Rules for bounding the size of each zone Z: After computing
a small set that is a k-DFVS representative in a zone in our zone decomposition,
our final objective is to bound its size. To this end, we design reduction rules that
decompose a zone Z into a “small” number of protrusions. (Roughly speaking, a
protrusion in a graph G is an induced subgraph G[U ] of G for a subset U ⊆ V (G)
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that has constant treewidth and only a constant number of vertices with neighbors
in G−U .) More precisely, we first design a set of reduction rules that only bounds
the size of the neighborhood of every zone Z (with ΓDFVS removed) outside
Z by a constant. Then, by computing a nice tree decomposition of D[Z] and
relying on properties of an LCA-closure in that tree, we decompose the set Z as
Z = Γ̃DFVS ]

⊎
U∈U U such that ΓDFVS⊆ Γ̃DFVS, the size of U is “small”, and

each set U ∈ U induces a protrusion. We then replace each protrusion D[U ] by
a “small” digraph such that the resulting digraph is a “minor” of the original
digraph, and the input modulator M is also a treewidth-η modulator in the
resulting digraph. This concludes our kernelization algorithm.

We remark that the operations of the last step of our kernelization algorithm
ensure that the input modulator M remains a modulator in the final returned
kernel. If we allow the modulator in the returned instance to be of size larger
than |M |, then we can bypass all of these reduction rules and the protrusion
machinery, and directly create the kernelized instance by taking the torso of the
set S that is the union of M , R and a k-DFVS representative set in each Z. Here,
by torso we mean that for every two vertices u, v ∈ S with a directed path from u
to v whose internal vertices do not belong to S, we add an arc from u to v. Since
the set S is of small size (polynomial in k and `), we directly obtain a kernel by
omitting the vertices outside S. However, when we perform the torso operation,
we lose the property that M is a modulator for the final instance, which means
that the parameter can increase to be of the magnitude of the entire kernel.

Road-map. In this extended abstract, we only present a high-level overview of
our approach. (All details can be found in the appendix, with pointers provided
in relevant sections.) In particular, our focus is to convey the main ideas of Step 2
above. In Section 3, we present a short description of our zone decomposition (Step
1). In Section 4, we describe the main difficulties, and the insights incorporated
to overcome them, with respect to the design a procedure to find a k-DFVS
representative set for any single zone (Step 2). In Section 5, we recall our final
objective, that is, to bound the size of each zone (Step 3).

2 Preliminaries

Standard definitions are relegated to Appendix A. Throughout the paper, paren-
thesis (resp. braces) notation denote ordered (resp. unordered) sets. For a digraph
D and subsets X,Y ⊆ V (D), an (X,Y )-separator in D is a set S ⊆ V (D)\(X∪Y )
such that there is no path from any vertex in X to any vertex in Y in D − S.
(The separator should have an empty intersection with X ∪Y .) When we consider
a topological ordering of a DAG, suppose that no arc is directed from a vertex v
to a vertex u that occurs before v in the ordering. Given a topological ordering π
of a DAG D and X ⊆ V (D), we say that πX is induced by π if the vertices of X
appear in the same order in πX and in π. By the treewidth tw(D) of a digraph
D and a (nice) tree decomposition of D, we refer to the treewidth and a (nice)
tree decomposition of the underlying undirected graph of D, respectively. For any
X ⊆ V (D), we say that X is a η-treewidth modulator in D if tw(D −X) ≤ η.
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Definition 2.1 (Important Separators). Let D be a digraph and X,Y ⊆
V (D). Let S ⊆ V (D) \ (X ∪ Y ) be an (X,Y )-separator and let R be the set
of vertices reachable from X in D − S. We say that S is an important (X,Y )-
separator if it is inclusion-wise minimal and there is no (X,Y )-separator S′ ⊆
V (D) \ (X ∪ Y ) such that |S′| ≤ |S| and R ( R′, where R′ is the set of vertices
reachable from X in D − S′.

Proposition 2.1 ([14]). Let D be a digraph, X,Y ⊆ V (D) and k ∈ N ∪ {0}.
Then, D has at most 4k important (X,Y )-separators of size at most k, and the
set of all of them can be constructed in time O(4k · k2 · (n+m)).

3 Decomposing the Graph

Given an instance (D, k,M) of DFVS/DFVS+Tw-η Mod, the goal of this
section is to compute a decomposition of D consisting of three components: the
vertex set M (modulator), a collection of vertex sets Z (zones), and a vertex set
R (remainder). All of these sets would be pairwise disjoint. The crux is to “divide-
and-conquer” D so that each zone—that is, a set Z ∈ Z—would correspond to a
subproblem that is easier to solve than (D, k,M) because (1) the intersection of
a minimum solution with Z would be necessarily small, and (2) the interaction
of Z is “well-structured” with respect to M , “limited” with respect to R , and
“non-existent” with respect to any other zone. Towards the computation of R, we
compute three sets: (i) a solution S in D −M ; (ii) a set F to separate vertices
in M that have low-flow; (iii) an LCA-closure of bags derived from S ∪ F . The
arguments given on the way to construct these sets will only partially prove that
we have derived the desired decomposition. At the end, we complete the proof by
focusing on the property regarding the intersection of a minimum solution with
each zone. For lack of space, we defer these details to Appendix B. We summarize
the properties of our decomposition and its construction as follows.

Definition 3.1. Let (D, k,M) be an instance of DFVS/DFVS+Tw-η Mod .
A partition V (D) = M ]R ] (

⊎
Z∈Z Z) is a zone-decomposition if:

1. D − (M ∪R) is a DAG.
2. For all Z ∈ Z, we have N(Z) ⊆M ∪R, and |N(Z) ∩R| ≤ 2(η + 1).
3. For all (u, v) ∈ M ×M \ E(D), either there is no path from u to v in the

digraph D − ((M ∪R) \ {u, v}), or there are at least k + 1 internally vertex-
disjoint paths from u to v in D.(For u = v, having no path refers to having
no path on at least two vertices.)

Lemma 3.1. There is a polynomial-time algorithm that, given an instance
(D, k,M) of DFVS/DFVS+Tw-η Mod, either correctly decides that (D, k,M)
is a NO-instance, or constructs a zone-decomposition V (D) = M ]R] (

⊎
Z∈Z Z)

with |Z| ≤ 6k(`2 + 1) and |R| ≤ 2(η + 1)k(`2 + 1).

We now argue that if (D, k,M) is a YES-instance, then the size of the
intersection of each minimum(-size) solution with each zone is only a constant.
Formally, we have the following lemma (proved in Appendix B).
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Lemma 3.2. Let (D, k,M) be a YES-instance of DFVS/DFVS+Tw-η Mod
with zone-decomposition V (D)=M ]R ] (

⊎
Z∈ZZ). For any minimum-sized di-

rected feedback vertex set S of D, we have |S∩Z|≤|N(Z)∩R|≤2(η+1) for all
Z∈Z.

4 Reducing Each Part: k-DFVS Representative Marking

For an instance (D, k,M) of DFVS/DFVS+Tw-η Mod, the kernelization
algorithm starts by applying Lemma 3.1 and either concludes that (D, k,M) is a
NO-instance, or obtains a zone decomposition V (D) = M ]R ] (

⊎
Z∈Z Z) with

the properties in Lemma 3.1. In this section, we fix an arbitrary zone Z ∈ Z and
give a polynomial time algorithm (Lemma 4.1) to mark a small set of vertices
in Z which in some sense ”represents” all partial solutions in Z. Such a set will
then be used to design reduction rules that bound the degree of the vertices in Z
that are not in the representative, which will further be useful to decompose Z
into a small number of protrusions. We now formally define the desired set.

Definition 4.1 (k-DFVS Representative in Z). For a digraph D, Z ⊆ V (D)
and an integer k, we say that ΓDFVS ⊆ Z is a k-DFVS representative in Z if the
following holds. If D has a directed feedback vertex set of size at most k, then it
also have a directed feedback vertex set S of size at most k where S ∩Z ⊆ ΓDFVS.

Lemma 4.1 (k-DFVS Representative Marking Lemma). There is an al-
gorithm that given a digraph D, Z ⊆ V (D) and an integer k, runs in time

2O(η2) · (k`)O(η2) · (n+m), and returns a set ΓDFVS ⊆ Z of size (k`)O(η2) such
that ΓDFVS is a k-DFVS representative in Z.5

We prove Lemma 4.1 in two parts. In Section 4.1, we revisit the relation
between DFVS and Skew Multicut (defined later). Using this relation, we
conclude that ΓDFVS can be computed by taking the union of skew multicuts of
“appropriate” instances of Skew Multicut. The problem at this stage stems
from the fact that the set of appropriate instances that we need to consider is not
polynomially bounded, and hence a naive approach of finding a solution to each
of these instances and taking their union does not work. This issue is tackled in
Section 4.2. Statements in this section marked by an * are proved in Appendix C.

4.1 Revisiting the Relation with the Skew Multicut Problem

Towards the definition of Skew Multicut, we first define a skew multicut in a
digraph. Let D be a digraph, and P = ((s1, t1), . . . , (sp, tp)) be an ordered set of
pairs of vertices (called terminals) of D. A skew multicut in D with respect to
P is a set S of non-terminal vertices of D such that for all i, j ∈ {1, . . . , p} with
i ≤ j, there is no path from si to tj in D−S. 6 In Skew Multicut (SMC), the

5 Throughout the paper, we do not hide constants that depend on η in the O notation.
6 In the standard definition of a skew multicut, the latter condition is replaced by the

following symmetric condition: For all i, j ∈ {1, . . . , p} with j ≤ i, there is no path
from si to tj in D − S. Here, it is convenient to use i ≤ j rather than j ≤ i.
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input is a digraph D, an ordered set P = ((s1, t1), . . . , (sp, tp)) and an integer k.
The goal is to decide whether D has a skew multicut of size at most k with
respect to P. In order to state the relation between our problem and Skew
Multicut, the following notation will come handy. Informally, for a digraph D
and a subset B ⊆ V (D), we “split” each vertex in B into two distinct vertices,
and thereby define the digraph D†B . The two fractions of each split vertex will
latter correspond to a terminal pair. Formally, we construct D†B as follows.

Definition 4.2. Let D be a digraph and B ⊆ V (D). The digraph D†B is obtained
from D as follows. Replace each vertex v ∈ B by two new vertices vout and vin,
add the arc (vin, vout) and replace each arc (u, v) ∈ E(D) by (u, vin) and each
arc (v, u) ∈ E(D) by (vout, u).

Lemmas 4.2 and 4.3 show that any DFVS solution restricted to Z is a skew
multicut solution to an appropriate instance of Skew Multicut and vice-versa.

Lemma 4.2 (*). Let D be a digraph, Z ⊆ V (D) and k ∈ Z. Let S be a
directed feedback vertex set in D of size at most k. Let B = N(Z) \ S, and let
πB = (v1, . . . , vb) be an ordering of B induced by a topological ordering π of
D−S. Denote D′ = D[Z∪B]†B, P = ((vout1 , vin1 ), . . . , (voutb , vinb )) and k′ = |S∩Z|.
Then, there is a skew multicut in D′ with respect to P of size at most k′, that is,
(D′,P, k′) is a YES-instance of Skew Multicut.

Lemma 4.3 (*). Let D be a digraph, Z ⊆ V (D) and k ∈ Z. Let S be a directed
feedback vertex set in D of size at most k. Let B = N(Z) \ S and let πB =
(v1, . . . , vb) be an ordering of the vertices of B induced by a topological ordering
π of D − S. Denote D′ = D[Z ∪B]†B, and P = ((vout1 , vin1 ), . . . , (voutb , vinb )). Let
S′ be any skew multicut in D′ with respect to P. Then, S∗ = (S \ Z) ∪ S′ is a
directed feedback vertex set in D.

The number of guesses for the Skew Multicut instance for which the
intersection of a potential DFVS solution with Z is a skew multicut solution is
2|N(Z)| · |N(Z)||N(Z)|. This is not polynomially bounded in k and `. In the next
section, we see how to compute a set containing some skew multicut solution to
each of these instances without having to go over the instances individually.

4.2 Computing Solutions for All Instances of Skew Multicut

We formalize the notion of “all possible choices for the appropriate instance of
Skew Multicut”, by defining a family of instances of Skew Multicut denoted
by FSMC. To simplify notation, for a digraph D and a (not necessarily ordered)
set P of terminal pairs, let D − P be the digraph obtained from D by deleting
all terminals in P. Similarly, for a subset X ⊆ V (D), let X − P be the set of
vertices obtained from X by deleting all terminals in P. To improve readability,
unordered sets of terminal pairs will be denoted by Q rather than P. We also
stress that in what follows, k should be thought of as a small constant, because
here it does not refer to the original k in the input instance of DFVS, but to the
parameter set up when we construct an instance of Skew Multicut.
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Definition 4.3. Given a digraph D, an unordered set Q = {(si, ti) : i ∈
{1, . . . , p}, si, ti ∈ V (D)} and an integer k, FSMC(D,Q, k) is a family of in-
stances of Skew Multicut such that for each P ∗ ⊆ {1, . . . , p}, for each ordering
π of P ∗ and for each k′ ≤ k, the instance (D − (Q \ P∗),P∗, k′) belongs to
FSMC(D,Q, k) where P∗ = ((sπ(i), tπ(i)) : i ∈ P ∗).

We clarify that the above notation P∗ = ((sπ(i), tπ(i)) : i ∈ P ∗) means that
for all i, j ∈ P ∗, we have that (sπ(i), tπ(i)) is ordered before (sπ(j), tπ(j)) if and
only if i < j. Similar to the notion of a k-DFVS representative of Z, we first
define the notion of a k-SMC representative. The construction of a set that, for
any instance in FSMC, contains some solution for that instance, is captured by
the Lemma 4.4.

Definition 4.4 (k-SMC Representative). Given a digraph D, a set Q =
{(si, ti) : i ∈ {1, . . . , p}, si, ti ∈ V (D)} and an integer k, a k-SMC representative
in D with respect to Q is a subset ΓSMC⊆ D such that each YES-instance in the
family FSMC(D,Q, k) has a solution that belongs to ΓSMC.

Lemma 4.4 (k-SMC Representative Marking Lemma). There is an algo-
rithm that, given a digraph D p, k ∈ N and Q = {(si, ti) : i ∈ {1, . . . , p}, si, ti ∈
V (D)}, runs in time pO(k2) · (n+m) time and outputs a k-SMC representative

in D with respect to Q of size at most k2(k + 1)k · pk(k+2) · 4k2 .

The rest of this section concerns the proof of Lemma 4.4. We first explain
(intuitively) how the algorithm of Lemma 4.4 works. Since |FSMC(D,Q, k)| is
exponential in p, if a k-SMC representative in D with respect to Q, say ΓSMC, of
the desired size exists, then the solutions of “many” instances in FSMC(D,Q, k)
intersect “a lot”. This is exactly what we want to exploit. Roughly speaking, we
want to recursively apply the following step. In each recursive call, partition the
instances of FSMC(D,Q, k) into pO(k) classes, and for each class find a set that is
guaranteed to be contained in some solution for each of the instances in the class.
Delete this set from the instances in the class, and recurs. Note that we keep
track of deleted vertices, since they are precisely the vertices that will form ΓSMC.
Since we are looking for a k-sized solution in each instance in FSMC(D,P, k), the
depth of the recursion is at most k and hence, we can form the set ΓSMC of the
desired size (i.e. O(pg(k)) for some function g of k).

Now, we try to formalize this approach; depending on the obstacles faced,
we add layers and machinery to the outline above. First consider the step of
partitioning the instances of FSMC(D,Q, k) into some pO(k) classes, such that
for each class there is a set guaranteed to be contained in some solution for each
of the instances in the class. To this end, we first try the power of the Pushing
Lemma for Skew Multicut, defined below. Roughly speaking, this lemma
states that any YES-instance (D, ((si, ti) : i ∈ {1, . . . , a}), k) of Skew Multicut
(for instances in FSMC(D,Q, k), we have a ≤ p) has a solution of size at most k
that contains an important ({s1}, {t1, . . . , ta})-separator of size at most k.

Proposition 4.1 (Pushing Lemma for Skew Multicut, [14]). For a YES-
instance (D,P = ((s1, t1), . . . , (sp, tp)), k) of Skew Multicut, there is a solution
S∗ containing an important ({s1}, {t1, . . . , tp})-separator in D of size at most k.
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Now, consider any P ∗ ⊆ {1, . . . , p}. Assume w.l.o.g. that P ∗ = {1, . . . , p∗}.
Consider all YES-instances in FSMC(D,P, k) where the first terminal pair is
(s1, t1) and the other terminal pairs are {(s2, t2), . . . , (sp∗ , tp∗)} in some order.
Then, by Proposition 4.1, for each of these instances there exists a solution
containing some important ({s1}, {t1, . . . , tp∗})-separator of size at most k. This
is not exactly what we wanted (since we do not obtain a single set that is
contained in some solution for each of the instances), but we can still work with
this as the number of important separators of size at most k is at most 4k (from
Proposition A.4). Then, we can branch on which important separator to add to
ΓSMC. Thus, Proposition 4.1 seems to give a way to go about constructing ΓSMC.

However, we are not done yet because if we naively utilize the Pushing Lemma
approach, we need to partition FSMC(D,P, k) into 2p · p classes. Indeed, we have
2p possibilities to choose a subset P ∗ ⊆ {1, . . . , p} (which captures the indices of
the terminals pairs in P that should not be deleted), and p∗ ≤ p choices for which
is the index in P ∗ of the first terminal pair (from which we push our solution
as described above). For us, 2p · p is a huge number. To handle this issue, we
introduce another tool, called the Important Separator Preservation (via Small
Sink Set) Lemma (formally defined later). Intuitively, this lemma says that if I
is an important (X,Y )-separator, then I is also an important (X,Y ′)-separator
for some Y ′ ⊆ Y where the size of Y ′ is at most the size of I plus one.

Lemma 4.5 (*, Important Separator Preservation (via Small Sink Set)
Lemma). Let D be a digraph with X,Y ⊆ V (D) and an important (X,Y )-
separator S ⊆ V (D) of size α. There is Y ′ ⊆ Y of size α+ 1 such that S is an
important (X,Y ′)-separator in D − (Y \ Y ′).

The observation that we can exploit this lemma in our setting is a crucial
insight in the design of our kernel. Recall that by Proposition 4.1, we can conclude
that for some class of instances, the following property holds: There exists a
pair (X,Y ), where X = {si} and Y is some set of terminals tj , such that there
is an important (X,Y )-separator of size at most k that is contained in some
solution for each of the instances in the class. Since the number of important
(X,Y )-separators of size at most k is small, we could branch on them. Basically,
we combine Lemma 4.5 with Proposition 4.1 to add another layer of branching.
Below, we briefly discuss the meaning of this extra layer.

Here, we partition our instances into p classes: All instances that have (si, ti)
as the first terminal pair (recall that the set of terminal pairs in Skew Multicut
is ordered) belong to the same class. While before we had a refined partition
with 2p · p classes, here we only have p classes, but which at first glance seem
non-informative. However, we show that (by Lemma 4.5) not much additional
information is needed. More precisely, we argue that for all YES-instances in
the same class of our rough partition, there exists some pO(k) sized collection of
pairs {(Xi, Yi) : i ∈ pO(k)} with the following property: For any instance in the
class, there exists a pair in this collection, say (Xi, Yi), such that there exists an
important (Xi, Yi)-separator of size at most k that is contained in some solution
of that instance. Since the size of the collection is pO(k), and for each pair in it
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there are at most 4k important separators of size at most k, we branch into at
most pO(k) ·4k branches for each class. Since pO(k) ·4k is small enough to obtain a
kernel—recall that in Skew Multicut, k is small (constant) but p is large—let
us move ahead to see how we obtain the collection {(Xi, Yi) : i ∈ pO(k)}.

We claim that for any class, whose first terminal pair is some (si, ti), the
collection {(si, T ) : T ⊆ {t1, . . . , tp}, |T | ≤ k + 1} is precisely that collection that
we want. To see this, consider any YES-instance (D,P∗, k) whose first terminal
pair is (si, ti). Let P ∗ denote the set of indices of the pairs in P∗. By the Pushing
Lemma for Skew Multicut, there exists a solution to this instance that contains
some important ({si}, {tj | j ∈ P ∗})-separator of size at most k. In turn, by the
Important Separator Preservation Lemma, there exists T ⊆ {tj | j ∈ P ∗} of size
at most k + 1, such that any important ({si}, {tj | j ∈ P ∗})-separator is also
an important ({si}, T )-separator! Thus, we conclude that for each YES-instance
in FSMC(D,P, k) whose first terminal pair is (si, ti), there exists a pair in the
collection {(si, T ) : T ⊆ {t1, . . . , tp}} such that one of the important separators
of size at most k of this pair is contained in some solution for this instance.

We formalize the approach above in the proof of Lemma 4.4 in Appendix C.4.
Having this lemma at hand, we give a short proof for Lemma 4.1 .

5 Reduction Rules

In this section we give reduction rules to reduce the size of each “zone”. More
precisely, we first apply the algorithm of Lemma 3.1 which either correctly
decides that (D, k,M) is a NO-instance, or constructs a zone-decomposition
V (D) = M ]R] (

⊎
Z∈Z Z) with |Z| ≤ 6k(`2 +1) and |R| ≤ 2(η+1)k(`2 +1). For

a fixed zone Z ∈ Z, we concentrate on reducing the size of Z. Once we are able
to bound the size of each zone by a polynomial function of k and `, we obtain a
polynomial kernel for our problem. Thus, from now onwards we concentrate on
bounding the size of a single zone Z.

For the rest of this section, consider the zone-decomposition V (D) = M ]
R] (

⊎
Z∈Z Z) computed by the algorithm of Lemma 3.1 on input (D, k,M). Let

Z ∈ Z be an arbitrarily fixed zone and let ΓDFVS be a k-DFVS representative in
Z, computed using the algorithm of Lemma 4.1. We bound the size of Z in a two
step procedure. In the first step, described in Appendix D.1, we design reduction
rules that remove all the arcs between M and Z \ ΓDFVS (at the cost of adding
arcs between M and ΓDFVS). Once this is done, we have that Z interacts with
the “outside world” in a limited fashion via ΓDFVS alone. After we have achieved
this, in the second step (described in Appendix D.2), we will be able to partition
Z \ ΓDFVS into a “small” number of slices such that each slice has treewidth at
most η and has at most O(η) neighbors outside (that is, the slice is an O(η)-
protrusion). Each such slice can then be replaced by a constant size equivalent
slice using the protrusion replacement machinery. For the implementation of this
approach, see Appendix D (concluded with the proof of Theorem 1.1).
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24. Erdős, P., Pósa, L.: On independent circuits contained in a graph. Canad. J. Math
17, 347–352 (1965)

25. Even, G., Naor, J., Schieber, B., Sudan, M.: Approximating minimum feedback
sets and multicuts in directed graphs. Algorithmica 20(2), 151–174 (1998)

26. Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical
Computer Science. An EATCS Series, Springer-Verlag, Berlin (2006)

27. Fomin, F.V., Lokshtanov, D., Misra, N., Saurabh, S.: Planar F-deletion: Approxi-
mation, kernelization and optimal FPT algorithms. In: FOCS. pp. 470–479 (2012),
see http://www.ii.uib.no/ daniello/papers/PFDFullV1.pdf for the fullversion.

28. Fomin, F.V., Lokshtanov, D., Saurabh, S., Zehavi, M.: Kernelization: theory of
parameterized preprocessing. Cambridge University Press (2018)

29. Fomin, F.V., Saurabh, S.: Kernelization methods for fixed-parameter tractability.
In: Tractability, pp. 260–282. Cambridge Univ. Press (2014)

30. Ford, L.R., Fulkerson, D.R.: Maximal flow through a network. CJM 8(3), 399–404
(1956)

31. Guo, J., Niedermeier, R.: Invitation to data reduction and problem kernelization.
SIGACT News 38(1), 31–45 (2007)

32. Guruswami, V., Lee, E.: Inapproximability of H-transversal/packing. In: AP-
PROX/RANDOM. LIPIcs, vol. 40, pp. 284–304 (2015)

33. Kakimura, N., Kawarabayashi, Kobayashi, Y.: Erdös-Pósa property and its algo-
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A Preliminaries (Full)

Throughout the paper, parenthesis notation denote ordered sets, and braces
notation denote unordered sets.
Graphs. We consistently use D to refer to a digraph with vertex set V (D) and arc
set E(D). Moreover, n denotes the number of vertices of D. For any u, v ∈ V (D),
(u, v) ∈ E(D) refers to the arc directed from u to v. We say a directed graph is
acyclic if it has no directed cycles. For a directed graph D, by the underlying
undirected graph of D we refer to the simple, undirected graph with vertex set
V (D) and arc set E(D). For a directed graph D, by the connected components of
D, we refer to the connected components of the underlying undirected graph of
D. For a path P from u to v, the set of internal vertices of P refers to the set of
vertices in the path P except for u and v. For any X,Y ⊆ V (D), a path from X
to Y refers to a path from some vertex in X to some vertex in Y . A collection P
of paths from X to Y are called internally vertex-disjoint if all the sets of internal
vertices of the paths in P are pairwise disjoint.For any X ⊆ V (D) × V (D),
D ∪X refers to the directed graph with vertex set V (D) and arc set E(D) ∪X.
Given X ⊆ V (D), D[X] is the subgraph of D induced by X, and D −X refers
to D[V (D) \ X]. For any X,Y ⊆ V (D), an (X,Y )-separator in D is a set of
vertices, say S ⊆ V (D) \ (X ∪ Y ), such that there is no path from any vertex
in X to any vertex in Y in D − S. Notice that the separator should have an
empty intersection with X ∪ Y . For a (di)graph D and v ∈ V (D), by NG(v) we
denote the set of neighbors of v in G. For C ⊆ V (G), NG(C) = ∪v∈CN(v) \ C,
and NG[C] = ∪v∈CN(v) ∪ C.

Let D be a directed graph and let V (D) = {v1, . . . , vn}. A topological ordering
of D is an ordering π of V (D) such that if (vπ(i), vπ(j)) ∈ E(D), then i > j. We
stress that here we suppose that no arc is directed from a vertex v to
a vertex u that occurs before v, while it might be more standard to
consider the symmetric condition. It is well known that a digraph has a
topological ordering if and only if it is acyclic. A set S ⊆ V (D) whose deletion
makes the digraph acyclic is called a directed feedback vertex set of D. Given a
topological ordering π of D, for any X ⊆ V (D), we say πX is an ordering induced
by π if the vertices of X appear in the same order in πX and in π.
LCA-closure. For a rooted tree T and a subset M ⊆ V (T ), the least common
ancestor-closure (LCA-closure) LCA-closure(M) is obtained by the following
process. Initially, set M ′ = M . As long as there are vertices x and y in M ′

whose least common ancestor w is not in M ′, add w to M ′. When the process
terminates, output M ′ as the LCA-closure of M .

Proposition A.1 (Lemma 1, [27]). Let T be a rooted tree, M ⊆ V (T ) and
M ′ = LCA-closure(M). Then |M ′| ≤ 2|M | and for every connected component
C of T −M ′, |N(C)| ≤ 2.

Tree Decomposition and Treewidth. Roughly speaking, the treewidth of
an undirected graph is a structural parameter indicating how much a graph
resembles a tree. To define treewidth formally, we first need to define the concept
of a tree decomposition.
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Definition A.1. A tree decomposition of a graph G is a pair (T, β), where T
is a tree and β : V (T )→ 2V (G), that satisfies the following properties:

1. Edge Covering Property: For any edge {u, v} ∈ E(G) there exists a node
t ∈ V (T ) such that x, y ∈ β(t), and

2. Connectivity Property: For any vertex u ∈ V (G), the subgraph of T
induced by the set Tu = {t ∈ V (T ) : u ∈ β(t)} is a non-empty tree.

The width of (T, β) is maxt∈V (T ){|β(t)|} − 1. The treewidth of G, denoted by
tw(G), is the minimum width over all tree decompositions of G.

The following proposition gives an algorithm to compute a tree decomposition
of a particular width of a graph.

Proposition A.2 (Computing a Tree decomposition, [8]). Given a graph

G and t ∈ N, there is an O(tO(t3) · n)-time algorithm that computes a tree
decomposition (T, β) of G of treewidth at most t (if such a decomposition exists).
Moreover, |V (T )| = O(|V (G)|).

We now define a special kind of tree decomposition, called a nice tree decom-
position.

Definition A.2 (Nice Tree Decomposition). A tree decomposition (T, β) of
a graph G is nice if T is a rooted, binary tree with root r, such that β(r) = ∅ and
every node t ∈ V (T ) is of the one of the following types.

– Leaf: t is a leaf in T and β(t) = ∅.
– Forget: t has exactly one child, say t′, and β(t) = β(t′)\{v}, where v ∈ β(t′).
– Introduce: t has exactly one child, say t′, β(t) = β(t′)∪{v}, where v 6∈ β(t′).
– Join: t has exactly two children, say t1 and t2, and β(t) = β(t1) = β(t2).

Whenever we work with a tree decomposition of a graph, we will work with the
nice tree decomposition, mainly because the tree T in the nice tree decomposition
(T, β) is a rooted, binary tree. Given a tree decomposition (T, β) of a graph G,
Bodlaender [8] showed how to construct a nice tree decomposition of G of the
same width as (T, β).

Proposition A.3 ([8]). Given a tree decomposition (T, β) of the graph G of
width t, a nice tree decomposition (T ′, β′) of G on at most O(t · |V (G)|) nodes
and also of width at most t, can be computed in time O(t2 ·max{|V (T )|, |V (G)|}).

For a directed graph D, by treewidth of D (tw(D)) and by a (nice) tree decom-
position of D, we will refer to the treewidth of the underlying undirected graph
of D and a (nice) tree decomposition of the underlying undirected graph of D,
respectively. For any X ⊆ V (D), we say that X is a η-treewidth modulator if
tw(D −X) ≤ η.
Important Separators. Roughly speaking, an important separator for sets
X,Y ⊆ V (D) is an (X,Y )-separator that cannot be “pushed” towards Y without
increasing its size. Formally, this notion is defined as follows.
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Definition A.3 (Important Separators). Let D be a directed graph and
X,Y ⊆ V (D). Let S ⊆ V (D) \ (X ∪ Y ) be an (X,Y )-separator and let R
be the set of vertices reachable from X in D − S. We say that S is an important
(X,Y )-separator if it is inclusion-wise minimal and there is no (X,Y )-separator
S′ ⊆ V (D) \ (X ∪ Y ), such that |S′| ≤ |S| and R ⊂ R′, where R′ is the set of
vertices reachable from X in D − S′.

Proposition A.4 ([14]). Let D be a directed graph, X,Y ⊆ V (D) and k ∈
N ∪ {0}. Then, D has at most 4k important (X,Y )-separators of size at most
k. In fact, the set of all important (X,Y )-separators in D can be constructed in
time O(4k · k2 · (n+m)).

Kernelization. A parameterization of a problem is the association of an in-
teger p with each input instance, which results in a parameterized problem. A
parameterized problem is said to admit a kernel of size f(p), for some function
f that depends only on p, if there exists a polynomial-time algorithm, called a
kernelization algorithm, that translates any input instance into an equivalent
instance of the same problem whose size is bounded by f(p) and such that the
value of the parameter does not increase. In case the function f is polynomial in
p, the problem is said to admit a polynomial kernel. While designing our kernel-
ization algorithm, we might be able to determine whether the input instance is a
YES-instance or a NO-instance. For the sake of clarity, in the first case, we simply
return YES, and in second case, we simply return NO. To properly comply with
the definition of a kernel, the return of YES and NO should be interpreted as
the return of a trivial YES-instance and a trivial NO-instance, respectively. To
design our kernelization algorithm, we rely on the notion of a reduction rule. A
reduction rule is a polynomial-time procedure that replaces an instance (I, p) of
a parameterized problem Π by a new instance (I ′, p′) of Π. Roughly speaking, a
reduction rule is useful when the instance I ′ is in some sense ”simpler” than the
instance I. In particular, it is desirable to ensure that p′ ≤ p. The rule is said to
be safe if (I, p) is a YES-instance if and only if (I ′, p′) is a YES-instance.

B Decomposing the Graph (Full)

Let (D, k,M) be an instance of DFVS/DFVS+Tw-η Mod. Informally, the
objective of this section is to compute a decomposition of D that consists of three
components: the vertex set M (modulator), a collection of vertex sets Z (zones),
and a vertex set R (remainder). All of these sets would be pairwise disjoint. The
crux is to “divide-and-conquer” D so that each zone—that is, a set Z ∈ Z—would
correspond to a subproblem that is easier to solve than (D, k,M) because (1)
the intersection of a minimum solution with Z would be necessarily small, and
(2) the interaction of Z is “well-structured” with respect to M , “limited” with
respect to R , and “non-existent” with respect to any other zone.

Towards the computation of R, we need to compute three sets: (i) a solution
S in D −M ; (ii) a set F to separate vertices in M that have low-flow; (iii) an
LCA-closure of bags derived from S ∪ F . The arguments we provide along the
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way to construct these sets will only partially prove that we have indeed derived
the decomposition we desire. At the end, we complete the proof by focusing on
the property regarding the intersection of a minimum solution with each zone.
In what follows, we execute this plan.
Phase I: Solution S. The first phase of our proof is simple. Recall that the
treewidth of D −M is upper bounded by η. Furthermore, Bonamy et al. [10]
have shown that, given a (di)graph D′ of treewidth t, a smallest size set S′ such
that D′−S′ is a DAG can be computed in time 2O(t log t)nO(1). In particular, this
means that in time 2O(η log η)nO(1)—that is, polynomial time—we can compute a
subset S ⊆ V (D) of smallest size such that D−(M ∪S) is a DAG. In case |S| > k,
we directly conclude that (D, k,M) is a NO-instance of DFVS/DFVS+Tw-η
Mod. Otherwise, we proceed as described below.
Phase II: Flow-Blocker F . The purpose of the second phase is to compute a
subset F ⊆ V (D) that governs the flow between all pairs of vertices in M . Having
this subset at hand will be crucial when we later argue about the intersection of a
minimum directed feedback vertex set with each zone. Specifically, for every pair
of vertices in M , if we can easily separate them—we simply do that; otherwise, no
solution of size at most k can separate these vertices, which is again beneficial for
our arguments. Let us now proceed to the formal description of the computation
of F .

Formally, for every ordered pair (u, v) of (not necessarily distinct) vertices
u, v ∈M such that (u, v) /∈ E(D), we compute a subset C(u,v) ⊆ V (D) \ ((M ∪
S) \ {u, v}) of minimum size such that D − ((M ∪ S ∪ C(u,v)) \ {u, v}) has no
directed path from u to v (that consists of more than one vertex), that is, C(u,v)

is a vertex cut. The computation of each such set C(u,v) can be executed in
polynomial time by using, for example, Ford-Fulkerson algorithm [30]. Having all
vertex cuts at hand, we define F =

⋃
(u,v)∈M×M\E(D),|C(u,v)|≤k C(u,v). In words,

we take the union of all cuts C(u,v) of size at most k. Note that |F | ≤ k`2.
Before we turn to further enriching the set S ∪ F , let us formally summarize

the structural properties already induced by this set on D − (M ∪ S ∪ F ). To
this end, note that by the classic Menger’s theorem, the size of C(u,v) for a pair
(u, v) ∈ M ×M \ E(D) equals the number of internally vertex-disjoint paths
from u to v in C(u,v) ⊆ V (D) \ (M ∪ S ∪ {u, v}). Thus, the correctness of our
observation is an immediate consequence of the construction of S and F .

Observation B.1. The digraph D− (M ∪ S ∪ F ) is a DAG such that for every
pair (u, v) ∈M ×M \ E(D), either there is no path from u to v in the digraph
D − ((M ∪ S ∪ F ) \ {u, v}), or there are at least k + 1 internally vertex-disjoint
paths from u to v in D.

Phase III: LCA-Closure to Derive R. Having that the set M ∪ S ∪F is not
sufficient for us—the vertices of D − (M ∪ S ∪ F ) can have many neighbors in
M ∪ S ∪ F while Observation B.1 provides us a handle only for those neighbors
in M . However, we can compute a subset R ⊆ V (D) \M that contains S ∪ F ,
such that no vertex of D− (M ∪R) has many neighbors in R. In fact, we require
a stronger claim—we will bound the neighborhood not only of each individual
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vertex, but also of entire sets of vertices that will later be called zones. For this
purpose, we rely on the fact that the treewidth of D−M is at most η. Specifically,
we will “highlight” a small set of bags (in a tree decomposition) that captures
S ∪ F , and since bags are separators and the size of each bag is small, we will be
able to derive the desired set R.

Towards the computation of R, we first obtain a nice tree decomposition
(T, β) of D −M of width at most η. This step is done in time O(n) using the
algorithms of Propositions A.2 and A.3 because η = O(1). Now, we highlight bags
that capture the vertices in S ∪ F as follows. For every vertex v ∈ S ∪ F , select
(arbitrarily) a node tv ∈ V (T ) such that v ∈ β(t). Then, we define B as the set of
all selected nodes, that is, B = {tv : v ∈ S ∪ F}. Next, keeping in mind that our
eventual goal is to control sizes of neighborhoods, we define B? as the LCA-closure
of B in T . From Proposition A.1, |B?| ≤ 2 · |B| ≤ 2(|S| + |F |) ≤ 2k(`2 + 1).
Having B? at hand, we define R as the union of all bags corresponding to its
vertices, that is, R =

⋃
t∈B? β(t). Then, the following observation is immediate.

Observation B.2. |R| ≤ 2k(η + 1)(`2 + 1).

Decomposition. Having already computed R, it remains to partition V (D) \
(M∪R) into zones. To this end, we first define C as the set of connected components
(subtrees) of the forest T − B?. Since (T, β) is a nice tree decomposition, the
degree of every node is at most 3, which means that |C| ≤ 3|B?| ≤ 6k(`2 + 1).
Now, for every tree C ∈ C, we define ZC =

⋃
t∈V (C) β(t) and Z?C = ZC \ R.

Finally, the collection of zones is given by Z = {Z?C : C ∈ C}. Because (T, β)
is a tree decomposition, for every vertex v ∈ V (D), the set of nodes whose
bags contain v induce a tree, and hence it is immediate that for all distinct
C,C ′ ∈ C, we have that Z?C ∩ Z?C′ = ∅. Furthermore, because (T, β) is a tree
decomposition, for every arc (u, v) ∈ E(D −M), there exists t ∈ V (T ) such that
u, v ∈ β(t), and hence it is also immediate that for all Z?C ∈ Z, N(ZC) ∩R is a
subset of the bags of the nodes in N(C) (that is, the neighbors of the nodes in
C in T ); because we have defined B? as the LCA-closure of B, |N(C)| ≤ 2 (see
Proposition A.1). Specifically, this means that for all Z?C ∈ Z, N(Z?C) ⊆M ∪R
and |N(Z?C) ∩R| ≤ 2(η + 1).

Let us summarize the properties of our decomposition, as well as its construc-
tion, in the following definition and lemma.

Definition B.1. Let (D, k,M) be an instance of DFVS/DFVS+Tw-η Mod.
A partition V (D) = M ]R ] (

⊎
Z∈Z Z) is a zone-decomposition if:

1. D − (M ∪R) is a DAG.
2. For all Z ∈ Z, we have N(Z) ⊆M ∪R, and |N(Z) ∩R| ≤ 2(η + 1).
3. For all (u, v) ∈ M ×M \ E(D), the digraph D − ((M ∪ R) \ {u, v}) either

has at least k + 1 internally vertex-disjoint paths from u to v, or it has no
path from u to v (that consists of more than one vertex).

Lemma 3.1. There is a polynomial-time algorithm that, given an instance
(D, k,M) of DFVS/DFVS+Tw-η Mod, either correctly decides that (D, k,M)
is a NO-instance, or constructs a zone-decomposition V (D) = M ]R] (

⊎
Z∈Z Z)

with |Z| ≤ 6k(`2 + 1) and |R| ≤ 2(η + 1)k(`2 + 1).
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Small Intersection Property. We are now ready to argue that if (D, k,M) is
a YES-instance, then the size of the intersection of every minimum(-size) solution
with every zone is merely a constant. Formally, we have the following lemma.

Lemma 3.2. Let (D, k,M) be a YES-instance of DFVS/DFVS+Tw-η Mod
with zone-decomposition V (D)=M ]R ] (

⊎
Z∈ZZ). For any minimum-sized di-

rected feedback vertex set S of D, we have |S∩Z|≤|N(Z)∩R|≤2(η+1) for all
Z∈Z.

Proof. Let S be a directed feedback set of D of minimum size. Since (D, k,M)
is a YES-instance, we have that |S| ≤ k. Suppose, by way of contradiction, that
there exists Z ∈ Z such that |S∩Z| > |N(Z)∩R|. Let S? = (S \Z)∪(N(Z)∩R).
Clearly, |S?| < |S|. However, this means that S? is not a directed feedback
vertex set of D. Thus, there exists a directed cycle C in D − S?. Note that
V (C) ∩ (N(Z) ∩R) = ∅ because N(Z) ∩R ⊆ S?.

Since D−S is a DAG and S \Z ⊆ S?, we have that V (C)∩Z 6= ∅. Moreover,
D[Z] is a DAG since D − (M ∪ R) is a DAG (by Definition B.1). Because
V (C) ∩ (N(Z) ∩ R) = ∅ and N(Z) ⊆ M ∪ R (by Definition B.1), this means
that V (C) ∩ (N(Z) ∩M) 6= ∅. In turn, this means that the directed cycle C is
of the form C = u1 − Pu1,u2

− u2 − Pu2,u3
− . . .− ur−1 − Pur−1ur − ur for some

r ≥ 1, such that u1 = ur, u1, . . . , ur ∈ N(Z) ∩M , and for all i ∈ {1, . . . , r},
ui−Puiui+1−ui+1 is a directed path from ui to ui+1 in D whose internal vertices
either all belong to Z or all belong to V (D)\(M∪R∪Z). Consider any non-empty
path Puiui+1

where all the vertices belong to Z. By Definition B.1 (Condition 3),
there are at least k + 1 internally vertex-disjoint paths from ui to ui+1. Since
|S| ≤ k, there exists a path, say ui−P ′uiui+1

−ui+1, all of whose internal vertices
do not belong to S. This means that we can replace (in C) each non-empty path
Puiui+1 whose vertices belong to Z by the corresponding path P ′uiui+1

as defined
above, thereby getting a directed closed walk C ′ in D − S. As a directed closed
walk contains a directed cycle, this contradicts the choice of S as a directed
feedback set of D.

Important Note. From now onwards, we denote by V (D) = M ]R] (
⊎
Z∈Z Z)

a zone-decomposition as computed by the algorithm of Lemma 3.1. Recall that
|M | = `, |Z| ≤ 6k(`2 + 1) and |R| ≤ 2(η + 1)k(`2 + 1), and thus to derive our
polynomial kernel, it is next sufficient to upper bound the size of each set Z ∈ Z
individually. For this purpose, from now onwards, we fix an arbitrary set Z ∈ Z,
and argue how the size of Z can be bounded. As the choice of Z is arbitrary, we
can thus bound the size of every set in Z. When we eventually formally prove
Theorem 1.1, we shall zoom out of the view of a specific Z ∈ Z, but until we
reach this (short) proof, we suppose that Z is fixed.

C Proofs Omitted from Section 4

C.1 Proof of Lemma 4.2

We claim that S′ = S∩Z is a solution to the Skew Multicut instance (D′,P, k′).
Observe that the intersection of S′ with the set of terminals in P is empty. Clearly,
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|S′| ≤ k′. Suppose, for the sake of contradiction, that S′ is not a skew multicut
in D′ with respect to P . Then, there exist vouti and vinj , i < j, such that there is

a path from vouti to vinj in D′ − S′. From the construction of D′, there is a path
from vi to vj in D − S. This is a contradiction because πB is induced by some
topological ordering of D − S, and hence there cannot be a path from vi to vj ,
i < j, in D − S. ut

C.2 Proof of Lemma 4.3

Suppose, for the sake of contradiction, that S∗ is not a directed feedback vertex
set in D. Then, there exists a directed cycle C in D − S∗. Since D[Z] is acyclic
(from Lemma 3.1) and S∗ \ Z = S \ Z, we have that C ∩B 6= ∅ and C ∩ Z 6= ∅.
Let us first consider the case where |C ∩B| = 1. In this case, let C ∩B = {vi}.
Since C is a cycle in D− S∗ and S∗ ∩Z = S′, we observe (from the construction
of D′) that there is path from vouti to vini in D′ − S′. This is a contradiction to
the assumption that S′ is a skew multicut in D′ with respect to P. Henceforth,
we assume that |C ∩B| ≥ 2.

Let P be some directed path of the cycle C such that the endpoints of P
are in B = {v1, . . . , vb} and all its internal vertices are in Z. Let the first vertex
of P be vi and the last vertex of P be vj . Since S′ is a skew multicut solution
of the instance stated in the lemma, and because S′ ⊆ S∗, we have that j < i.
Since P is a path of the cycle C, there exists another path P ′ from vj to vi in
D−S∗, such that the union of the sets of arcs of P and P ′ forms the cycle C. We
will show that the existence of the path P ′ from vj to vi in D − S∗ (with j < i)
implies that there exists a path P ′′ from some vq to some vr with q < r, such
that either (i) all the internal vertices of P ′′ belong to Z \ S∗ (which includes
the case where P ′′ has no internal vertices), or (ii) all the internal vertices of P ′′

belong to (V (D)\Z)\S∗. Let us first show why, to complete the proof, it suffices
to prove the existence of such a path P ′′. In the first case, from the construction
of D′ and because S∗ ∩ Z = S′, we have that there is a path from voutq to vinr in
D′ − S′. Such a path cannot exist because S′ is a skew multicut solution in D′

with respect to P. In the second case, since the ordering {v1, . . . , vb} is induced
by some topological ordering of D − S and S∗ \ Z = S \ Z, the path P ′′ again
should not exist. Thus, both cases lead to a contradiction.

Let us now describe how to obtain the path P ′′ from P ′. Recall that P ′ is a
path from vj to vi (with j < i) in D − S∗. Let vr be the first internal vertex of
P ′ such that vr ∈ B and j < r (such a vertex exists because vi ∈ B and j < i).
Now consider this sub-path of P ′ from vj to vr. Let vq be the last vertex on
this path that belongs to B and which is not equal to vr (q could be equal to j).
Now, consider the subpath of P ′ from vq to vr. We claim that this subpath is
the desired path P ′′. Since vq is the last vertex that belongs to B on the path
from vj to vr that is not vr itself, the set of internal vertices of P ′′ has an empty
intersection with B. If there are at least two internal vertices in P ′′, say x, y,
such that x ∈ Z \ S∗, y ∈ (V (D) \Z) \ S∗ and there is a path from x to y in P ′′,
then this path has to pass through a vertex of B (because N(Z) \ S = B and
S∗ \ Z = S \ Z). Thus, we have reached a contradiction. The other case, where
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x ∈ (V (D) \ Z) \ S∗ and y ∈ Z \ S∗, is symmetric. This shows that P ′′ must
satisfy one of the conditions (i) and (ii), and hence the proof is complete. ut

C.3 Proof of Lemma 4.5

Let R be the set of vertices reachable from X in D − S, and denote RS = R ∪ S.
Let S∗ ⊆ V (D) be such that S∗ ∩RS ( S, S∗ ∩ Y = ∅ and there is no path from
RS \ S∗ to Y in D − S∗. Since S is an important (X,Y )-separator of size α and
R ( RS , any such S∗ has size at least α+ 1. From Menger’s Theorem, there are
at least α + 1 internally vertex disjoint paths from RS \ S∗ to Y , all of whose
internal vertices are in D − ((RS \ S∗) ∪ Y ). Consider an arbitrary collection
of exactly α + 1 of these paths. Let Y ′ be the subset of Y which contains the
endpoints in Y of the α + 1 paths in this collection. Observe that these α + 1
paths exist even in D − (Y \ Y ′). Since there are α+ 1 internally vertex disjoint
paths from RS \ S∗ to Y ′ in D − (Y \ Y ′), from Menger’s Theorem, any set S∗

with S∗ ∩ RS ( S and S∗ ∩ Y ′ = ∅, that kills all paths from RS \ S∗ to Y ′ in
D − (Y \ Y ′), is of size α+ 1.

Suppose, for the sake of contradiction, that S is not an important (X,Y ′)-
separator in D − (Y \ Y ′). Then there exists S′ such that (i) |S′| ≤ |S| = α, (ii)
S′ is an (X,Y ′)-separator in D − (Y \ Y ′), and (iii) R ( R′ (where R is the set
of vertices reachable from X in D − S and R′ is the set of vertices reachable
from X in D − S′). Note that S′ ∩ RS ( S (because R ( R′ and S 6= S′) and
S′ ∩ Y ′ = ∅. Also, S′ kills all paths from RS \ S′ to Y ′ in D − (Y \ Y ′). But this
is a contradiction because we have already proved that any such S′ has size at
least α+ 1. ut

C.4 Proof of Lemma 4.4

Description of the Algorithm. Our algorithm is a branching (recursive)
algorithm. (Here, by branching tree we refer to the tree whose root is the initial
call to the algorithm, and which described the relationships between the calls
to the algorithm as excepted, that is, the children of a node correspond to the
recursive calls made by that node.) Each node of the branching tree corresponds
to a triple (D,Q, k) where D is a directed graph, Q is an unordered set of vertex
pairs in D, and k is an integer. The measure to analyze the size of the branching
tree is k. The algorithm initializes ΓSMC= ∅ and updates ΓSMC at the end of
each branch. The base case occurs when k ≤ 0. Whenever k > 0, the algorithm
branches into the branches described below and updates ΓSMC.

Consider a node of the branching tree labeled by (D,Q, k). We fix some
notation before we proceed further. Let Q = {(si, ti) : i ∈ {1, . . . , p}}. By T
we denote the set T = {ti : i ∈ {1, . . . , p}}. For any P ′ ⊆ {1, . . . , p}, by TP ′ we
denote the set TP ′ = {ti : i ∈ P ′}, and by QP ′ we denote QP ′ = {(si, ti) : i ∈ P ′}.
We will now describe the branches of the algorithm at the node (D,Q, k) of
the branching tree. For each i ∈ {1, . . . , p}, for each P ′ ⊆ {1, . . . , p} of size at
most k + 1 and for each I 6= ∅ which is an important (si, TP ′)-separator in
D − (Q \ QP ′∪{i}) of size at most k, there is a branch that corresponds to the
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triple (i, P ′, I). A branch (i, P ′, I) at a node (D,Q, k) results in a node that
corresponds to the triple (D − I,Q \ {(si, ti)}, k − |I|). Also, at the end of this
branch, ΓSMC is updated as ΓSMC = ΓSMC ∪ I. Observe that the measure in
each branch drops by at least 1 because I 6= ∅.
The size of the branching tree. Since the number of important separators of
size at most k is at most 4k (Proposition A.4), observe that at any node of the

branching tree, the number of branches, w ≤ p ·
∑k+1
i=0

(
p
i

)
· 4k ≤ (k+ 1) · pk+2 · 4k.

Since the measure of the branching tree is k, the branching algorithm halts
when k ≤ 0 and in each branch the measure strictly decreases, the depth of
the branching tree is at most k. Thus, the number of nodes in the branching
tree is at most

∑
i∈{1,...,k} w

i ≤ k · wk ≤ k(k + 1)k · pk(k+2) · 4k2 . Since, at each

node of the branching tree, the size of ΓSMC increases by at most k, |ΓSMC| =
k2(k + 1)k · pk(k+2) · 4k2 .
Running Time. At any node (D,Q, k), for each i ∈ {1, . . . , p} and P ′ ⊆
{1, . . . , p} of size at most k + 1, we need to compute the set of appropriate
important separators of size at most k. From Proposition A.4, this takes time, say
t = p ·

∑k+1
i=0

(
p
i

)
· O(4k · k2 · (n+m)) = O(pk+2 · 4k · k3 · (n+m)). Recall that at

any node of the branching tree, the number of branches is w ≤ (k + 1) · pk+2 · 4k.
Let T (k) be the time taken by the algorithm when the input triple (D,Q, k) has
measure k. Then, we have the following recurrence relation: if k ≤ 0, T (k) = 1;
otherwise, T (k) ≤ wT (k − 1) + t. Solving this recurrence, we get that T (k) ≤
wk · t = O(p(k+1)(k+2) · 4k(k+1) · (k + 1)k · k3 · (n+m)).
Correctness. Suppose that the algorithm takes as initial input the instance
(D,Q, k). Consider an instance (D,P∗, k∗) in FSMC(D,P, k) which is a YES-
instance of Skew Multicut. Without loss of generality, let P∗ = ((si, ti) : i ∈
{1, . . . , p∗}). We need to show that there exists a skew multicut solution of the
instance (D,P∗, k∗) contained inside ΓSMC. Let µ be the depth of the algorithm.
For any d ≤ µ, let ΓSMCd be the partial set (subset of ΓSMC) constructed by the
algorithm at the end of the last branch at depth d of its branching tree. We will
now prove the following claim by induction on d, and then later show how the
correctness of the algorithm follows from this claim.

Claim. For any d ≤ µ, there exists Sd ⊆ΓSMCd with the following properties.

1. There is a solution S to the instance (D,P∗, k∗) of Skew Multicut such
that Sd ⊆ S.

2. For all i ∈ {1, . . . , d}, j ∈ {1, . . . , p∗} with j ≥ i, there is no path from si to
tj in D − Sd.

3. There is a path from the root of the branching tree to one of its nodes at
depth d such that Sd is the union of the sets added to ΓSMC at each node
along this path.

Proof. We will prove this claim by induction on d, that is, the depth of the
branching tree.
Base Case. Suppose d = 1. Since (D,P∗, k∗) is a YES-instance of Skew Multi-
cut, from Proposition 4.1, there exists an important (s1, {t1, . . . , tp∗})-separator,
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say I, of size at most k∗ (≤ k) in D such that there is no path in D − I from s1
to tj , for all j ∈ P ∗, and there exists a solution S to the instance (D,P∗, k∗) such
that I ⊆ S. We will now prove that I ⊆ ΓSMC1. From Lemma 4.5, there exists
T ⊆ {t1, . . . , tp∗} such that |T | ≤ k + 1 and I is an important (si, T )-separator
in D − (P∗ \ {(si, ti) : ti ∈ T}) of size at most k. Consider the branch that
corresponds to the triple (i, {j : tj ∈ T}, I). At the end of this branch, ΓSMC is
updated as ΓSMC = ΓSMC ∪I. This proves the base case.

Inductive Step: Suppose that the claim holds for d − 1. By the induction
hypothesis, there exists a set Sd−1 ⊆ ΓSMCd−1 with the properties mentioned in
Claim C.4. Let (D′,Q′, k′) be the triple corresponding to the node at level d− 1
which is the end-point of the path in the branching tree along which Sd−1 is
constructed. Observe that Q′ = {(si, ti) : i ∈ {1, . . . , p∗}, i ≥ d}, D′ = D − Sd−1
and k′ = k − |Sd−1|. We now prove the three properties stated in the claim.

Property 1. Let S′ be a solution to the Skew Multicut instance (D′, ((si, ti) :
i ∈ {1, . . . , p∗}, i ≥ d), k′). We first claim that Sd−1 ∪ S′ is a solution to the
Skew Multicut instance (D,P∗, k∗). From the induction hypothesis, for all
i ∈ {1, . . . , d − 1}, j ∈ {1, . . . , p∗} with j ≥ i, there is no path from si to tj in
D−Sd−1. Since S′ is a skew multicut solution to (D′, ((si, ti) : i ∈ {1, . . . , p∗}, i ≥
d), k′) and D′ = D − Sd−1, for all i, j ∈ {1, . . . , p∗} with j ≥ i, there is no path
from si to tj in D − (Sd−1 ∪ S′). We now need to show that |Sd−1 ∪ S′| ≤ k∗,
that is, |Sd−1|+ k′ ≤ k∗. To prove this, note that, from the induction hypothesis,
there exists a solution, say S, of (D,P∗, k∗), such that Sd1 ⊆ S. Since k′ =
k − |Sd−1| ≥ k∗ − |Sd−1|, we conclude that k∗ ≥ k′ + |Sd−1|.

Thus, we have proved that there exists a solution, say S, to the Skew
Multicut instance (D,P∗, k∗) such that S = Sd−1∪S′, where S′ is any solution
to the Skew Multicut instance (D′, ((si, ti) : i ∈ {1, . . . , p∗}, i ≥ d), k′). From
Proposition 4.1, we know that there exists a skew multicut solution S′ for
(D′, ((si, ti) : i ∈ {1, . . . , p∗}, i ≥ d), k′) which contains an important (si, {ti :
i ∈ {1, . . . , p∗}, i ≥ d})-separator, say I, in D′. Let S′ be such a solution to
(D′, ((si, ti) : i ∈ {1, . . . , p∗}, i ≥ d), k′). From Lemma 4.5, there exists T ⊆
{td . . . , tp∗} of size at most k+ 1 such that I is an important (sd, T )-separator in
D′ − (Q′ \ {(si, ti) : i ∈ T}) of size at most k. Consider the branch at (D′,Q′, k′)
that corresponds to the triple (d, {(si, ti) : i ∈ T}, I). At the end of this branch,
I is added to ΓSMC. Let Sd = Sd−1 ∪ I.

Since Sd ∪ S′ is a solution to the Skew Multicut instance (D,P∗, k∗),
where S′ is any solution of the Skew Multicut instance (D′, ((si, ti) : i ∈
{1, . . . , p∗}, i ≥ d), k′), and there exists a solution S′ to the Skew Multicut
instance (D′, ((si, ti) : i ∈ {1, . . . , p∗}, i ≥ d), k′) such that I ⊆ S′, we conclude
that there exists a solution S to the Skew Multicut instance (D,P∗, k∗), such
that Sd−1 ∪ I ⊆ S. Since Sd = Sd−1 ∪ I, we conclude that Sd ⊆ S.

Property 2. Since, for any i ∈ {1, . . . , d − 1} and for all j ∈ {1, . . . , p∗} with
j ≥ d−1 there are no paths from si to tj in D−Sd−1 (from induction hypothesis),
and I is an (sd, {td, . . . , tp∗})-separator in D − Sd−1, we have that for all i ∈
{1, . . . , d} and for all j ∈ {1, . . . , p∗} with j ≥ d, there is no path from si to tj in
D − Sd.
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Property 3. Consider the path in the branching tree along which Sd−1 is
constructed. Such a path exists because of induction hypothesis. Since (D′,Q′, k′)
is the last node on this path, the set I is added to ΓSMC at one of the branches
from (D′,Q′, k′), we have that Sd is the union of the sets added to ΓSMC along a
path in the branching tree. This concludes the proof of the claim.

If µ is the depth of the branching tree of the algorithm, consider the set Sµ as
defined in Claim C.4. Consider the path in the branching tree that corresponds to
the construction of Sµ. Since µ is the depth of the branching tree of the algorithm
and the algorithm terminates only when k∗ ≤ 0, |Sµ| ≥ k∗. From Claim C.4,
there exists a solution S to the instance (D∗,P∗, k∗) such that Sµ ⊆ S. Since
|S| ≤ k∗, |Sµ| ≥ k∗ and Sµ ⊆ S, we have that Sµ = S. Since Sµ ⊆ ΓSMC, we
have that S ⊆ ΓSMC. ut

C.5 Proof of Lemma 4.1

Recall that the input for the algorithm is a digraph D, an integer k and a set
Z. We run the algorithm of Lemma 4.4 on the input (D[N [Z]]†N(Z), {(vout, vin) :
v ∈ N(Z)}, 2(η+ 1)). Let ΓSMC be the output of this algorithm. We claim that it
is safe to set ΓDFVS = ΓSMC, that is, ΓSMC is a k-DFVS representative in Z. First
observe that, from Lemma 4.4, |ΓSMC| = |N(Z)|O(η2) = |M∪R|O(η2) = (k·`)O(η2).
Next, suppose that (D, k,M) is a YES-instance of DFVS/DFVS+Tw-η Mod.
We now show that there is a solution S∗ such that S∗ ∩ Z ⊆ ΓSMC. Since
(D, k,M) is a YES instance of DFVS/DFVS+Tw-η Mod, from Lemma 3.2,
there exists a solution S such that |S ∩ Z| ≤ 2(η + 1). If S ∩ Z ⊆ ΓSMC, then
S = S∗. Otherwise, let B = N(Z) \ S and let πB = {v1, . . . , vb} be an ordering
of the vertices of B induced by some topological ordering of D− S. Consider the
instance (D[Z∪B]†B , {(vouti , vini ) : i ∈ {1, . . . , b}}), 2(η+1)) of Skew Multicut.
If this is a YES-instance, then there exists S′ ⊆ Z such that S′ is a solution of
the instance (D[Z ∪B]†B , {(vouti , vini ) : i ∈ {1, . . . , b}}), 2(η+ 1)) and S′ ⊆ ΓSMC.

Since |S ∩Z| ≤ 2(η+ 1), from Lemmas 4.2 and 4.3, (D[Z ∪B]†B , {(vouti , vini ) :
i ∈ {1, . . . , b}}), 2(η + 1)) is indeed a YES-instance of Skew Multicut and
S∗ = (S \ Z) ∪ S′ is a solution to the instance (D, k,M) of directed feedback
vertex set. Thus, we conclude that S∗ ∩ Z ⊆ ΓSMC. ut

D Reduction Rules (Continued)

In the upcoming subsections, we give several reduction rules. These rules are
applied in the given order, exhaustively. That is, at any point of time we apply
the lowest numbered reduction rule that is applicable. In all our reduction rules,
we reduce an instance (D, k,M) to (D′, k′,M ′), M ′ ⊆M and k′ ≤ k.

D.1 Limiting the Interaction Between M and Z

Recall that our goal is to design reduction rules that eventually remove all arcs
between M and Z \ΓDFVS. This is achieved at the cost of adding arcs among the
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vertices of M , and between vertices in M and vertices in ΓDFVS. The first set of
reduction rules ensures that the addition of this set of arcs is safe. Using this, we
then design reduction rules that delete the arcs between M and Z \ ΓDFVS.

Reduction Rule D.1. If there exist u, v ∈ N(Z)∩M (here, u may be the same
vertex as v) such that there is a path from u to v, all of whose internal vertices
are in Z \ ΓDFVS, then add the arc (u, v) to D, if it does not already exist. That
is, reduce the instance (D, k,M) to (D ∪ {(u, v)}, k,M).

Lemma D.1. Reduction Rule D.1 is safe.

Proof. The backward direction is trivial. For ease of notation, let us denote
D ∪ {(u, v)} by D′. For the forward direction, first observe that M is also an
η-treewidth modulator in the graph D′, that is, tw(D′ − M) ≤ η, because
D′ − M = D − M . If (D, k,M) is a YES instance, then from Lemma 4.1,
there exists a directed feedback vertex set S in D of size at most k such that
S ∩ Z ⊆ ΓDFVS. We claim that S is also a directed feedback vertex set in D′.
Suppose not. Then there is a cycle C in D′ − S that uses the arc (u, v). Since
there is a path from u to v, all of whose internal vertices are in Z \ ΓDFVS and
the arc (u, v) is not present in D, there are at least k+ 1 internally vertex disjoint
paths from u to v in D (from Lemma 3.1). Since |S| ≤ k, there is a path from u
to v in D− S. Replacing the arc (u, v) by this path in C, we get a closed walk in
D − S, which contradicts the fact that S is a directed feedback vertex set in D.

Observe that when u and v are the same vertex in Reduction Rule D.1,
the resulting digraph will have self-loops. The next reduction rule removes all
self-loops in the digraph. It is easy to see that Reduction Rule D.2 is safe.

Reduction Rule D.2. If there exists v ∈ V (D) with a self-loop, then delete v
and reduce k by 1. That is, reduce the instance (D, k,M) to (D− {v}, k− 1,M \
{v}).

The next reduction rule gives a sufficient condition in which we can add an
arc between a vertex in M and a vertex in ΓDFVS.

Reduction Rule D.3. Suppose that there exist u ∈M and v ∈ Z \ΓDFVS such
that (u, v) ∈ E(D), and x ∈ ΓDFVS such that there exists a path from v to x,
all of whose internal vertices are in Z \ ΓDFVS. Let D′ = D ∪ {(u, x)}. Reduce
(D, k,M) to (D′, k,M).

Lemma D.2. Reduction Rule D.3 is safe.

Proof. The backward direction is trivial. For the forward direction, first observe
that, M is also a treewidth modulator for the graph D′, that is, tw(D′−M) ≤ η,
because D′ −M = D −M . If (D, k,M) is a YES instance, from Lemma 4.1,
there exists a directed feedback vertex set S in D of size at most k such that
S ∩ Z ⊆ ΓDFVS. We claim that S is also a directed feedback vertex set in D′.
Suppose not. Then there is a cycle C in D′−S that uses the arc (u, x). Consider
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the path from u to x in D, all of whose internal vertices are in Z \ ΓDFVS. From
the choice of S, such a path exists in D − S. Replacing the arc (u, x) in C by
this path we get a closed walk in D − S, which contradicts the fact that S is a
directed feedback vertex set in D.

Reduction Rule D.4. Suppose there exist u ∈M and v ∈ Z \ΓDFVS such that
(v, u) ∈ E(D), and x ∈ ΓDFVS such that there is a path from x to v, all of whose
internal vertices are in Z \ ΓDFVS. Let D′ = D ∪ {(x, u)}. Reduce (D, k,M) to
(D′, k,M).

The proof of safeness of Reduction Rule D.4 is analogous to the proof of
safeness of Reduction Rule D.3 and thus omitted.

The next reduction rules delete arcs between M and Z \ ΓDFVS.

Reduction Rule D.5. If there exists u ∈ M and v ∈ Z \ ΓDFVS such that
(u, v) ∈ E(D), then reduce (D, k,M) to (D′, k,M), where D′ = D \ {(u, v)}.

Lemma D.3. Reduction Rule D.5 is safe.

Proof. The forward direction is trivial. For the backward direction, let S be a
directed feedback vertex set of D′ of size at most k. We claim that S is also
a directed feedback vertex set in D. Suppose not. Then there is a cycle C in
D − S that uses the arc (u, v). Since C uses the arc (u, v), C passes through
Z. Let P be the unique path u to some vertex w ∈ N(Z), all of whose internal
vertices are in C and none in N(Z). Observe that u ∈ N(Z). If all the internal
vertices of P are in Z \ ΓDFVS, then, since Reduction Rule D.1 has been applied,
there is an arc (u,w) ∈ E(D). Consider the closed walk C ′ obtained from C
after replacing the path P by (u,w). Since C ′ is a closed walk in D′ − S, this
contradicts that S is a directed feedback vertex set in D′. In the other case, there
exists an internal vertex of P that belongs to ΓDFVS. Let x be the first vertex
of P that belongs to ΓDFVS. Since Reduction Rule D.3 has been applied, there
exists an arc (u, x) ∈ E(D) and hence in E(D′ − S). Consider the sub-path P ′

of P from u to x. Replacing P ′ in C by the arc (u, x), we get a closed walk in
D′ − S, which contradicts that S is a directed feedback vertex set in D′.

Reduction Rule D.6. If there exists u ∈ M and v ∈ Z \ ΓDFVS such that
(v, u) ∈ E(D), then reduce (D, k,M) to (D′, k,M), where D′ = D \ {(v, u)}.

The proof of safeness of Reduction Rule D.6 is symmetric to the proof of
safeness of Reduction Rule D.5 and thus omitted. Observe that each of the
Reduction Rules D.1-D.6 can be applied in polynomial time (by using the
algorithms for computing shortest path in directed graphs). We conclude this
subsection with the following observation.

Observation D.1. If Reduction Rules D.5 and D.6 are no longer applicable,
then N(Z \ ΓDFVS) ∩M = ∅.
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D.2 Protrusion Replacement and Proof of Theorem 1.1

Recall that the goal now is to slice up Z \ ΓDFVS into pieces each of which has
treewidth η and O(η) neighbors outside it. Such a slice is what we call an O(η)-
protrusion. For any positive integer r, the formal definition of an r-protrusion is
given below.

Definition D.1 (r-Protrusion). For any r ∈ Z+, an r-protrusion in a graph
D is a set of vertices X ⊆ V (D) such that |N(X)| ≤ r and tw(D[X]) ≤ r.

We need the following lemma which says that if there exists a large enough
protrusion, then it can be replaced with an equivalent one of constant size in linear
time. As the proof of the lemma requires the introduction of several concepts
only relevant to it, we present this proof separately in Appendix E.

Lemma D.4. For every t ∈ Z+, there exists c ∈ Z+ (depending only on t), and
an algorithm that, given an instance (D, k,M) of DFVS/DFVS+Tw-η Mod
and a t-protrusion X in D such that |X| > c and X ∩M = ∅, outputs, in time
O(|X|), a digraph D′ and integer k′, such that:

1. |V (D′)| < |V (D)| and k′ ≤ k,
2. D′ is obtained from D by deleting some vertices/arcs of X and/or contracting

some edges of X, and
3. D has a directed feedback vertex set of size at most k if and only if D′ has a

directed feedback vertex set of size at most k′.

Observe that the graph D′ in Lemma D.4 is a minor of D (for a directed
graph D, by a minor of D we refers to a minor in the underlying undirected
graph of D). In fact, if M is a treewidth-η modulator in D, then M is also a
treewidth-η modulator in D′. Note that Lemma D.4 is not replacing a big enough
protrusion by any arbitrary smaller protrusion, rather the replacement is such
that the resulting graph is a minor of the original graph. This is necessary to
ensure that the size of the treewidth-η modulator (a component in the parameter
of our problem) does not increase after this replacement.

Henceforth, c is the constant of Lemma D.4 when t = 4(η + 1). For a given
set B ⊆ V (D), define XB to be the set of vertices that are either in B or
in some connected component of D − B that has treewidth at most η. From
Lemma 3.1, tw(D[Z]) ≤ η. Let (T, β) be a nice tree decomposition of D[Z],
computed using the algorithms of Propositions A.2 and A.3. Let BΓDFVS

⊆ V (T )
be such that for each u ∈ ΓDFVS, there exists t ∈ BΓDFVS

such that u ∈ β(t).
Observe that |BΓDFVS

| ≤ |ΓDFVS|. Let B′ΓDFVS
be the LCA-closure of BΓDFVS

in T .
From Proposition A.1, |B′ΓDFVS

| ≤ 2|BΓDFVS
| ≤ 2|ΓDFVS|. Let C be the collection

of connected components of T −B′ΓDFVS
. Since (T, β) is a nice tree decomposition,

for any t ∈ V (T ), the degree of t in T is at most 3. Hence, |C| ≤ 3 · |B′ΓDFVS
| ≤

6|ΓDFVS|. Let Γ̃DFVS =
⋃
t∈B′ΓDFVS

β(t). Observe that ΓDFVS ⊆ Γ̃DFVS. For each

Ci ∈ C, define Ui ⊆ Z \ ΓDFVS as Ui =
⋃
t∈Ci β(t) \ Γ̃DFVS. Since (T, β) is a tree

decomposition of width at most η, |Γ̃DFVS| ≤ (η+1) · |B′ΓDFVS
| ≤ 2(η+1) · |ΓDFVS|.



Wannabe Bounded Treewidth Graphs Admit a Polynomial Kernel for DFVS 29

Observe that Z = Γ̃DFVS ]
⋃
i∈{1,...,|C|} Ui. From Proposition A.1, and the edge

covering and connectivity properties of a tree decomposition, we have that for
each Ui ∈ C, |N(Ui)∩Z| ≤ 2(η+1). Since |N(Z)∩R| ≤ 2(η+1) (from Lemma 3.1),
|N(Ui) ∩ R| ≤ 2(η + 1). Furthermore, from Observation D.1, |N(Ui) ∩M | =
0. Since N(Z) ⊆ M ∪ R (from Lemma 3.1) and Ui ⊆ Z, we conclude that
|N(Ui)| ≤ 4(η + 1). Also, since tw(D[Z]) ≤ η and Ui ⊆ Z, we conclude that Ui
is a 4(η + 1)-protrusion in D.

Reduction Rule D.7 (Protrusion Replacement Reduction Rule). If there
exists i ∈ {1, . . . , |C|}, such that |Ui| > c, then apply the algorithm of Lemma D.4
on the instance (D, k,M) along with the 4(η + 1)-protrusion Ui. Let D′, k′ be
the digraph and integer, respectively, outputted by this algorithm. Then reduce
(D, k,M) to (D′, k′,M).

The safeness of Reduction Rule D.7 follows from Lemma D.4. Also, from the
construction of Ui and Lemma D.4, Reduction Rule D.7 can be applied in
polynomial time.

Lemma D.5. When none of the reduction rules is applicable, |Z| = (k`)O(1).

Proof. Since Z = Γ̃DFVS ]
⋃
i∈{1,...,|C|} Ui, |C| ≤ 6|ΓDFVS|, |Γ̃DFVS| ≤ 2(η + 1) ·

|ΓDFVS| and |Ui| ≤ c (after the application of Reduction Rule D.7), we have that

|Z| = (k`)O(η2) (from Lemma 4.1).

Now that we have bounded the size of each zone Z, we are ready to prove
Theorem 1.1.

Proof (Proof of Theorem 1.1). Let (D, k,M) be an instance to DFVS/DFVS+Tw-
η Mod. Now we apply Lemma 3.1 and either correctly decide that (D, k,M) is a
NO-instance, or construct a zone-decomposition V (D) = M ]R] (

⊎
Z∈Z Z) with

|Z| ≤ 6k(`2 +1) and |R| ≤ 2(η+1)k(`2 +1). For each Z ∈ Z, we do the following.
We compute a k-DFVS representative in Z and call it ΓDFVS. We then apply all
the reduction rules of Section 5 exhaustively. From Lemma D.5, when none of
the reduction rules are applicable |Z| = (k`)O(η2). Thus, for each Z ∈ Z, when

none of the reduction rules are applicable, |V (D)| ≤ |M |+ |R|+ (k`)O(η2) · |Z|.
Thus, from Lemma 3.1, |V (D)| = (k · `)O(η2).

E Proof of Lemma D.4

In this section we give a proof of Lemma D.4. We start with some notations and
definitions. The next two subsections are taken from [9].

E.1 Counting Monadic Second Order Logic and its properties

The syntax of Monadic Second Order Logic (MSO) of graphs includes the logical
connectives ∨, ∧, ¬, ⇔, ⇒, variables for vertices, edges, sets of vertices, and
sets of edges, the quantifiers ∀, ∃ that can be applied to these variables, and the
following five binary relations:
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1. u ∈ U where u is a vertex variable and U is a vertex set variable;
2. d ∈ D where d is an edge variable and D is an edge set variable;
3. inc(d, u), where d is an edge variable, u is a vertex variable, and the inter-

pretation is that the edge d is incident with the vertex u;
4. adj(u, v), where u and v are vertex variables and the interpretation is that u

and v are adjacent;
5. equality of variables representing vertices, edges, sets of vertices, and sets of

edges.

In addition to the usual features of monadic second-order logic, if we have
atomic sentences testing whether the cardinality of a set is equal to q modulo r,
where q and r are integers such that 0 ≤ q < r and r ≥ 2, then this extension of
the MSO is called the counting monadic second-order logic. Thus CMSO is MSO
with the following atomic sentence for a set S:

cardq,r(S) = true if and only if |S| ≡ q (mod r).

The p-min-CMSO problem defined by formula ψ is denoted by p-min-
CMSO[ψ] and defined as follows.

p-min-CMSO[ψ]
Input: A graph G (or digraph D) and an integer k
Parameter: k
Question: Is there a subset S ⊆ V (G) such that |S| ≤ k and (G,S) |= ψ?

In other words, p-min-CMSO[ψ] is a subset Π of Σ∗ × Z where for every
(x, k) ∈ Σ∗×Z+, (x, k) ∈ Π if and only if there exists a set S ⊆ V where |S| ≤ k
such that the graph G encoded by x together with S satisfy ψ, i.e., (G,S) |= ψ.
For (x, k) ∈ Σ∗ × Z− we know that (x, k) /∈ Π.

E.2 Boundaried Graphs

Here we define the notion of boundaried graphs and various operations on them.

Definition E.1. [Boundaried Graphs] A boundaried graph is a graph G with
a set B ⊆ V (G) of distinguished vertices and an injective labelling λ from B to
the set Z+. The set B is called the boundary of G and the vertices in B are
called boundary vertices or terminals. Given a boundaried graph G, we denote
its boundary by δ(G), we denote its labelling by λG, and we define its label set
by Λ(G) = {λG(v) | v ∈ δ(G)}. Given a finite set I ⊆ Z+, we define FI to
denote the class of all boundaried graphs whose label set is I. Similarly, we define
F⊆I =

⋃
I′⊆I FI′ . We also denote by F the class of all boundaried graphs. Finally

we say that a boundaried graph is a t-boundaried graph if Λ(G) ⊆ {1, . . . , t}.

Definition E.2. [Gluing by ⊕] Let G1 and G2 be two boundaried graphs. We
denote by G1 ⊕ G2 the graph (not boundaried) obtained by taking the disjoint
union of G1 and G2 and identifying equally-labeled vertices of the boundaries of
G1 and G2. In G1 ⊕G2 there is an edge between two labeled vertices if there is
either an edge between them in G1 or in G2.
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Definition E.3. Let G = G1 ⊕ G2 where G1 and G2 are boundaried graphs.
We define the glued set of Gi as the set Bi = λ−1Gi (Λ(G1) ∩ Λ(G2)), i = 1, 2.
For a vertex v ∈ V (G1) we define its heir h(v) in G as follows: if v 6∈ B1 then
h(v) = v, otherwise h(v) is the result of the identification of v with an equally
labeled vertex in G2. The heir of a vertex in G2 is defined symmetrically. The
common boundary of G1 and G2 in G is equal to h(B1) = h(B2) where the
evaluation of h on vertex sets is defined in the obvious way. The heir of an edge
{u, v} ∈ E(Gi) is the edge {h(u), h(v)} in G.

Let G be a class of (not boundaried) graphs. By slightly abusing notation we
say that a boundaried graph belongs to a graph class G if the underlying graph
belongs to G.

E.3 Finite Integer Index

Definition E.4. [Canonical equivalence on boundaried graphs.] Let Π be
a parameterized graph problem whose instances are pairs of the form (G, k). Given
two boundaried graphs G1, G2 ∈ F , we say that G1 ≡Π G2 if Λ(G1) = Λ(G2)
and there exist a transposition constant c ∈ Z such that

∀(F, k) ∈ F × Z (G1 ⊕ F, k) ∈ Π ⇔ (G2 ⊕ F, k + c) ∈ Π.

Note that the relation ≡Π is an equivalence relation. Observe that c could be
negative in the above definition. This is the reason we extended the definition of
parameterized problems to include negative parameters also.

Next we define a notion of “transposition-minimality” for the members of
each equivalence class of ≡Π .

Definition E.5. [Progressive representatives, [9]] Let Π be a parameterized
graph problem whose instances are pairs of the form (G, k) and let C be some
equivalence class of ≡Π . We say that J ∈ C is a progressive representative of C
if for every H ∈ C there exists c ∈ Z−, such that

∀(F, k) ∈ F × Z (H ⊕ F, k) ∈ Π ⇔ (J ⊕ F, k + c) ∈ Π. (1)

The following lemma guaranties the existence of a progressive representative
for each equivalence class of ≡Π .

Lemma E.1 ([9]). Let Π be a parameterized graph problem whose instances
are pairs of the form (G, k). Then each equivalence class of ≡Π has a progressive
representative.

Definition E.6. [Finite Integer Index, [9, ?]] For a parameterized problem Π
and two t-boundaried graphs G1 and G2, we say that G1 ≡Π G2 if there exists
a constant c such that for every t-boundaried graph G and for every integer k,
(G1⊕G2, k) ∈ Π if and only if (G2⊕G, k+ c) ∈ Π. For every t, the relation ≡Π
on t-boundaried raphs is an equivalence relation, and we call ≡Π the canonical
equivalence relation of Π. We say that a problem Π has Finite Integer Index if
for every t, ≡Π has a finite index on t-boundaried graphs.
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Let G be a graph class. We say that G is CMSO-definable if there exist a
sentence ψ on graphs such that G = {G | G |= ψ} and, in such a case, we say that
ψ defines the class G. Given a parameterized graph problem Π and a graph class
G, we denote by Π e G the problem obtained by removing from Π all instances
that encode graphs that do not belong to G.

We would like to show that DFVS/DFVS+Tw-η Mod has Finite Integer
Index (FII) property over Fη. Observe that a digraph D ∈ Fη if and only if
the underlying undirected graph has treewidth at most η. Thus, Fη can be
characterized by finite forbidden set of minors. Since minor testing can be
expressed into CMSO we have that Fη is CMSO-definable. Let Π denote the
DFVS. The problem Π is p-min-CMSO[ψ] and is strongly monotone (see [9]
for definition). A proof for this fact is analogous to the proof of [9, Lemma 8.4].
Thus, by [9, Lemmas 7.3 and 7.4] we get the following.

Lemma E.2. Π e Fη has FII. Here, Π is DFVS/DFVS+Tw-η Mod.

E.4 Proof of Lemma D.4

Proof. The proof is essentially given in [9, Lemma 5.18]. We just adapt it here for
our purposes. Our problem is Π e Fη where Π is DFVS/DFVS+Tw-η Mod.

We denote by S⊆{1,...,2t+1} a set of (progressive) representatives for ≡Π
restricted to boundaried graphs with label sets from {1, . . . , 2t+ 1}. Let

c = max
{
|V (Y )|

∣∣ Y ∈ S⊆{1,...,2t+1}

}
.

Our algorithm has in its source code hard-wired a table that stores for each
boundaried graph GY in F⊆{1,...,2t+1} on at most 2c vertices a boundaried graph
G′Y ∈ S⊆{1,...,2t+1} and a constant µ ≤ 0 such that GY ≡Π G′Y , and specifically

∀(F, k) ∈ F × Z : (GY ⊕ F, k) ∈ (Π e Fη) ⇐⇒ (G′Y ⊕ F, k + µ) ∈ (Π e Fη).
(2)

The existence of such a constant µ ≤ 0 is guaranteed by the fact that S⊆{1,...,2t+1}
is a set of progressive representatives.

We now apply [9, Lemma 5.5] and find a (2t+ 1)-protrusion Y of D where
c < |Y | ≤ 2c. Split D into two boundaried graphs DY = D[Y ∪ N(Y )] and
DR = D[(V (G) \ Y )] as follows. Both DR and DY have boundary N(Y ), and
since |N(Y )| ≤ 2t+ 1 we may label the boundaries of DY and DR with labels
from {1, . . . , 2t+1} such that D = DY ⊕DR. As c < |V (GY )| ≤ 2c the algorithm
can look up in its table and find a D′Y ∈ S⊆{1,...,2t+1} and a constant µ such that
DY ≡ D′Y and DY , D′Y and µ satisfy Equation 2. Observe that since the initial
protrusion X is disjoint from M we have that the vertex set of M remains in D′.
The algorithm outputs

(D′, k′,M) = (D′Y ⊕DR, k + µ,M).

Since |V (D′Y )| ≤ c < |V (DY )| and k′ ≤ k + µ ≤ k it remains to argue that
the instances (D, k,M) and (D′, k′,M) are equivalent. However, this is directly
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implied by Equation 2. In particular, by Equation 2 we have that D has a directed
feedback vertex set of size at most k if and only if D′ has directed feedback
vertex set of size at most k′. Now we show that D′ −M has treewidth at most η.
Let DM

R = DR −M . Now since, DY ≡ D′Y with respect to Π e Fη we have that
(DY ⊕DM

R , k
∗) is in Π e Fη if and only if (D′Y ⊕DM

R , k
∗) is in Π e Fη. Since

tw(DY ⊕DM
R ) ≤ η we have that tw(D′Y ⊕DM

R ) has treewidth at most η. This
completes the proof.

F An Outline of a Kernel for Fη-Vertex Deletion Set

In this section we give an outline of a kernel for Fη-Vertex Deletion Set. The
kernelization algorithm follows along the lines of kernel for Planar-F-Deletion
given in [27]. We follow the steps of kernelization algorithm given for Planar-
F-Deletion in [27] to design a polynomial kernel for Fη-Vertex Deletion
Set.

Recall that for a positive integer η > 0, Fη denotes the family of digraphs
of treewidth at most η. Let D be a digraph and let S be a vertex subset such
that D − S is a DAG and has treewidth at most η. Then, we call such S a
DAG-treewidth η-modulator set. Towards kernelization, we begin by showing that
any YES-instance (D, k) to Fη-Vertex Deletion Set has a set X of kO(1)

vertices such that every connected component C of D −X is a near-protrusion.
Recall that a r-protrusion C in a graph D is a vertex set such that |N(C)| ≤ r
and tw(G[C]) ≤ r. The components of D−X will not necessarily be protrusions,
however we will prove that there is a constant r such that if (D, k) is a yes
instance, then for any DAG-treewidth η-modulator set S of size at most k, C \ S
is a r-protrusion of D − S.

For our kernelization algorithm we also need an approximation algorithm for
Fη-Vertex Deletion Set. To obtain a factor c-approximation algorithm for
Fη-Vertex Deletion Set we do as follows. Towards computing an approximate
solution for Fη-Vertex Deletion Set, we run the constant factor approxima-
tion algorithm for Treewidth-η-Modulator given in [27], on the underlying
undirected graph of D. Let us recall that in the Treewidth-η-Modulator
problem, we are given an undirected graph G and the objective is to find a
minimum sized vertex set W such that tw(G−W ) ≤ η. Let, W be a c′ · OPT
sized approximation to the Treewidth-η-Modulator problem when run on
the underlying undirected graph of D. Here, OPT is the size of a minimum sized
vertex set W such that tw(D −W ) ≤ η. Furthermore, let OPTdag be the size
of a minimum sized set W ? such that D −W ? is a DAG in Fη. Observe that
OPT ≤ OPTdag. Note that D −W is in Fη, though DW may not be DAG. To
make D −W a DAG we now find a set of vertices such that it is a directed
feedback vertex set. We compute a smallest size directed feedback vertex set,
Wdfvs, in D −W by calling the algorithm for DFVS parameterized by treewidth
given in [10]. Since, an optimum solution to Fη-Vertex Deletion Set is also
a directed feedback vertex set we have that |Wdfvs| ≤ OPTdag. Now observe
that W ∪ Wdfvs is a solution to Fη-Vertex Deletion Set of size at most
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(c′ + 1)OPTdag. Thus, this gives a factor c = (c′ + 1) approximation algorithm
for Fη-Vertex Deletion Set. Let this factor c approximation algorithm for
Fη-Vertex Deletion Set be called Approx-Fη-VDS.

The kernelization algorithm begins by running Approx-Fη-VDS, a c-approximation
algorithm, for Fη-Vertex Deletion Set. If the solution returned by the ap-
proximation algorithm is more than ck, the kernelization algorithm returns a
trivial no instance. Otherwise, let W denote the approximate solution. Based
on W , and exploiting the fact that D −X has treewidth at most η, we are able
to construct R ⊆ (D −W ) on kO(1) vertices such that: (a) for every connected
component C of D \ (W ∪R), |N(C)∩R| ≤ 2(η+ 1), and (b) for every connected
component C of D \ (W ∪R), and u, v ∈ N(C) ∩W there are at least k + η + 3
vertex disjoint paths from u to v in the underlying undirected graph of D. Now we
can combine these components (or rather near protrusions) to get the following
partition of V (D) satisfying the below stated properties. That is,

V (D) = W ]R ]
⋃

i∈{1,...,q}

Zi (3)

The properties satisfied by the partition given in Equation 3 are as follows.

1. |R| ≤ kO(1).
2. for each i ∈ {1, . . . , q}, D[Zi] is acyclic and tw(D[Zi]) ≤ η,
3. for each i ∈ {1, . . . , q}, N(Zi) ⊆W ∪R,
4. for each i ∈ {1, . . . , q}, |N(Zi) ∩R| ≤ 2(η + 1), and
5. for each i ∈ {1, . . . , q}, Zi is a O(η)-near protrusion.

The proof for the partition given in Equation 3 is similar to the decomposition
algorithm given in Lemma 3.1, and in fact identical to the proof of Lemma 25 of
Fomin et al. [27].

The next step of the kernelization algorithm is to bound the number q of
connected components of D− (W ∪R) by a polynomial in k. Towards this we can
proceed in a manner identical to Lemma 36 of Fomin et al. [27]: Here it is proved
that, if W ∪R satisfies properties 2-5 then one can mark in polynomial time a
kO(1) size subset of the connected components with the following properties.

For every connected component Zi that is not marked, every subset S ⊆ V (D)
such that |S| ≤ k + 1 and tw(D − (S ∪ {v})) ≤ η, we have that tw(D − S) ≤ η.

In other words, all vertices in all of the unmarked connected components are
irrelevant with respect to the treewidth of D − S for a potential solution S. In
our setting, such vertices v may still be relevant because D − (S ∪ {v}) could
be a DAG, while D − S is not. However, this can be remedied by essentially the
same strategy: For each pair u, v of vertices in W ∪R (including the pairs where
u = v), mark at most k+ 10 connected components of D− (W ∪R) that contain
a directed path from an out-neighbor of u to an in-neighbor of v. This results in
at most kO(1) additional components being marked. A proof following the lines of
the proof of Lemma 36 of Fomin et al. [27] (but simpler, because directed paths
are easier than rooted minors) shows every vertex v in an unmarked component is
irrelevant in the following sense: For every subset S ⊆ V (D) such that |S| ≤ k+ 1
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and D − S ∪ {v} ∈ Fη we have that D − S ∈ Fη. This leads to a reduction rule
that, provided the number of components of D − (W ∪ R) is more than kO(1),
selects any vertex v in an unmarked component and deletes it. After this rule
is exhaustively applied we can also conclude that the number q of connected
components of D − (W ∪R) is at most kO(1).

Having bounded the number of connected components of D−(W ∪R), next we
need to bound their size. However, instead of bounding the size of the connected
components we instead bound the bitsize of a representation of the component.
This leads to a compression rather than a kernel, but because the compression
is into a problem in NP, we can use NP-completeness to reduce back to our
problem and obtain a polynomial kernel.

For each component Zi, define its boundary Bi = N(Zi) \ S. We know
that |Bi| = βi = O(η) for any solution S of size at most k. Define Di to be a
boundaried graph D[N [Zi]\S] with boundary |N(Zi)\S|. Since the class Fη has
finite state (see e.g. Bodlaender et al. [9]) the canonical equivalence relation for
Fη restricted to the set of βi-boundaried graphs has a finite set of representatives.
Let D′i be the representative for Di. We have that (D − Zi ∪ S)⊕D′i is in Fη if
and only if D − S ∈ Fη.

We may think of the selection of D′i given S as a function of Bi and Si =
S ∩ Zi, and write D′i(Bi, Si) for this function. Similarly, Bi(S) = N(Zi) \ S and
Si(S) = S ∩Zi can be thought of as functions of S. The equivalence above shows
that, for any two sets S1 and S2 of size at most k, if S1∩ (W ∪R) = S2∩ (W ∪R)
and for every i, D′i(Bi(S

1), Si(S
1)) = D′i(Bi(S

2), Si(S
2)) then D − S1 ∈ Fη if

and only if D − S2 ∈ Fη.
Thus, for every connected component Zi it is sufficient to store for every

Bi ⊆ N(Zi) of size O(η), for every representative D′i of the canonical equivalence
relation for Fη restricted to the set of O(η)-boundaried graphs, the size of the
smallest set Si such that D′i(Bi, Si) = D′i (or ∞ if no such set exists or is larger
than k). Hence, for each of the connected components Zi we store a number
between 0 and k + 1 for each of the kO(1) choices of Bi and each of the O(1)
choices of D′i.


