
Approximation Schemes via Width/Weight Trade-offs on

Minor-free Graphs

Fedor V. Fomin∗ Daniel Lokshtanov† Saket Saurabh‡ Meirav Zehavi§

Abstract

In this paper, we prove a new scaling lemma for vertex weighted minor free graphs that
allows for a smooth trade-off between the weight of a vertex set S and the treewidth of
G− S. More precisely, we show the following.

There exists an algorithm that given an H-minor free graph G, a weight function
w : V (G) → Q+ and integers t and s, runs in polynomial time, and outputs a
subset S ⊆ V (G) of weight at most d log n ·opt(G,w, t)/s such that the treewidth
of G − S is at most c · st. Here, d and c are fixed constants that depend only
on H, and opt(G,w, t) is the (unknown) minimum weight of a subset U ⊆ V (G)
such that the treewidth of G− U is at most t.

This lemma immediately yields the first polynomial-time approximation schemes (PTASes)
for Weighted Treewidth-η Vertex Deletion, for η ≥ 2, on graphs of bounded genus
and the first PTAS for Weighted Feedback vertex Set on H-minor free graphs. These
results effortlessly generalize to include weighted edge deletion problems, to all Weighted
Connected Planar F-Deletion problems, and finally to quasi polynomial time approx-
imation schemes (QPTASes) for all of these problems on H-minor free graphs. For most of
these problems even constant factor approximation algorithms, even on planar graphs, were
not previously known.

Additionally, using the scaling lemma we subsume, simplify and extend the recent frame-
work of Cohen-Addad et al. [STOC 2016] for turning constant factor approximation algo-
rithms for “ubiquitous” problems into PTASes for the same problems on graphs of bounded
genus. Specifically, we obtain PTASes for ubiquitous problems without the requirement of
having a constant factor approximation.

While the statement of the scaling lemma is inspired by an analogous lemma by Cohen-
Addad et al. [STOC 2016] for edge contractions on weighted graphs of bounded genus, as
well as a scaling lemma by Fomin et al. [SODA 2011] for unweighted graphs, the proof is
entirely different. The proof detours via three different linear programming relaxations for
the Weighted Treewidth-η Vertex Deletion problems and a strengthening of a recent
rounding procedure of Bansal et al. [SODA 2017] enhanced by the classic Klein-Plotkin-Rao
Theorem [STOC 1993].

∗University of Bergen, Bergen, Norway. fomin@ii.uib.no
†University of California Santa Barbara, Santa Barbara, USA. daniello@ucsb.edu
‡The Institute of Mathematical Sciences, HBNI, Chennai, India. saket@imsc.res.in
§Ben-Gurion University, Beersheba, Israel. meiravze@bgu.ac.il

1 Introduction

In this paper, we prove a new scaling lemma (stated below) for vertex weighted minor free
graphs that allows a smooth trade-off between the weight of a vertex set S and the treewidth
of G− S.

Lemma 1.1. (Scaling Lemma) There exists an algorithm that given an H-minor free graph
G, a weight function w : V (G)→ Q+, and positive integers t and s, in polynomial time outputs
a subset S ⊆ V (G) of weight at most d log n · opt(G,w, t)/s such that tw(G− S) ≤ c · st. Here,
d and c are fixed constants that depend only on H, tw(G − S) is the treewidth of G − S, and
opt(G,w, t) is the minimum weight of a subset U ⊆ V (G) such that tw(G− U) ≤ t.

Lemma 1.1, combined with previously known results, enables to effortlessly obtain new
approximation algorithms for a wide range of problems on H-minor free graphs and graphs
of bounded genus. The class of problems that we consider are the Weighted Connected
Planar F-Deletion problems. Each family F of connected graphs, containing at least one
planar graph, defines a Weighted Connected Planar F-Deletion problem. Here, the
input is a graph G and a weight function w : V (G) → Q+. The goal is to find a minimum
weight set S such that G− S does not contain any of the graphs in F as a minor.1 The Graph
Minors Theorem [54] implies that, without loss of generality, the family F can be assumed to
be finite. This definition captures problems such as Weighted Vertex Cover, Weighted
Feedback Vertex Set, Weighted (Treewidth/Pathwidth/Treedepth)-η Deletion
Set, Weighted Diamond Hitting Set and Weighted Outerplanar Vertex Deletion.

Weighted Connected Planar F-Deletion problems (and their un-weighted coun-
terparts) have received substantial attention both from the perspective of approximation al-
gorithms [5, 7, 14, 29, 31, 39, 47] and parameterized algorithms [9, 16, 31, 56]. On planar
and H-minor free graphs (the unweighted version of) Treewidth-η Vertex Deletion has
played a central role in the developlemt of Efficient PTASes (EPTASes) via Bidimensional-
ity [19, 23, 33, 34]. Nevertheless, prior to our work, most of these problems were not even
known to admit constant factor approximation algorithms, even on planar graphs. The first
collection of algorithmic consequences of Lemma 1.1 are encapsulated in the following theorem.

Theorem 1.1. (1) Every Weighted Connected Planar F-Vertex Deletion problem
admits a PTAS on graphs of bounded genus. (2) Every Weighted Connected Planar F-
Vertex Deletion problem admits a (1 + ε)-approximation algorithm on H-minor free graphs
running in time nO(log logn log ε/ε). (3) Weighted Feedback Vertex Set admits a PTAS on
H-minor free graphs.

Here a feedback vertex set is a set S such that G − S is acyclic, and in the Weighted
Feedback Vertex Set problem the goal is to find a feedback vertex set of minimum weight.

To the best of our knowledge the only problems covered by Theorem 1.1 for which even
constant factor approximation algorithms, even on planar graphs, were Feedback Vertex
Set and Diamond Hitting Set (which admit constant factor approximation algorithms on
general graphs [5, 29]), as well as “local” problems, where F contains at least one path, or
equivalently, where every graph G that excludes all graphs in F as a minor have constant
diameter. These problems are known to admit PTASes, in fact even EPTASes on minor-free
graphs, by a classic result of Dawar et al. [17]. In the list above, Weighted Vertex Cover
and Weighted Treedepth-η Vertex Deletion are local problems, while the others are
not.

1The “connected” in the problem name refers to all graphs in F being connected. This is different from the
meaning of “connected” in e.g. Connected Vertex Cover where the solution set S needs to induce a connected
subgraph of G.

1

Problem Name Planar graphs Bounded genus H-minor free

Wt Feedback Vertex Set PTAS [14] 2 [5] / PTAS 2 [5] / PTAS
Wt Treewidth-η Deletion Set O(log2 n) [1] / PTAS O(log2 n) [1] / PTAS O(log2 n) [1] / QPTAS
Wt Diamond Hitting Set 9 [29] / PTAS 9 [29] / PTAS 9 [29] / QPTAS
Wt “Local’’ F-Deletion Problems EPTAS [17] EPTAS [17] EPTAS [17]
Wt Connected F-Deletion Problems O(log2 n) [1] / PTAS O(log2 n) [1] / PTAS O(log2 n) [1] / QPTAS
Ubiquitous Problems PTAS [14] / PTAS? PTAS [14] / PTAS? Unknown
Semi-ubiquitous Problems PTAS PTAS Unknown

Table 1: Summary of the new results obtained in the paper (in bold) together with previously best known
ratio and relevant citation. Here, Wt represents Weighted. Ubiquitous problems include e.g. Wt Connected
Dominating Set and Tour Cover. Semi-ubiquitous problems (that are not Ubiquitous) include Wt Domi-
nating Set with at most c-Components and Wt Cover by c-Tours. PTAS? means that the same results
are obtained without needing a constant factor approximation for the considered problem as a prerequisite. The
results of [1, 5, 17, 29] hold for classes more general than minor free.

Additionally, in a landmark result in 2016, Cohen-Addad et al. [14] obtained a PTAS for
Weighted Feedback Vertex Set on planar graphs. The work of Cohen-Addad et al. [14]
forms the starting point of this article. In particular, the statement of Lemma 1.1 is inspired by
the main technical result of Cohen-Addad et al. [14] (restated here as Proposition 1.2) and a
Scaling Lemma of Fomin et al. [33] for unweighted H-minor free graphs. We note that despite
the similarity of statements, the proof of Lemma 1.1 is entirely different. We will discuss the
results of Cohen-Addad et al. [14], as well as how this work extends theirs, in Sections 1.1 and 1.2.
First, however, we demonstrate how to use Lemma 1.1 in order to obtain the approximation
schemes claimed in Theorem 1.1.

Proof of Theorem 1.1. We begin by giving a PTAS for Weighted Feedback Vertex
Set on H-minor free graphs. It is well known that the treewidth of acyclic graphs is at most 1.
Therefore, the algorithm of Lemma 1.1 will output in polynomial time a vertex set S of weight
at most ε · OPT , where OPT is the minimum weight of a feedback vertex set in G, such that
the treewidth of G−S is at most O(log n/ε). Using the 2O(tw(G))nO(1) time algorithm of Cygan
et al. [11] for Weighted Feedback Vertex Set, we can obtain a minimum weight feedback
vertex set S′ of G− S in time nO(1/ε). Clearly, the weight of S′ is at most OPT, and therefore
S ∪ S′ is a (1 + ε)-approximate solution to G.

To adapt this approach to work for all Weighted Connected Planar F-Deletion
problems we proceed as follows. First, for every planar graph H there exists a constant t =
O(|V (H)|10) such that every graph G that excludes H as a minor has treewidth at most t [13].
Since F contains a planar graph, it follows that any solution U to Weighted Connected
Planar F-Vertex Deletion satisfies tw(G − U) ≤ t. Thus, using Lemma 1.1 we obtain a
vertex set S of weight at most ε ·OPT such that the treewidth of G−S is at most O(t log n/ε).
Here, OPT is the weight of the optimal solution U . Using the 2O(tw(G))nO(1) algorithm of Baste
et al. [8, 9] for Weighted Connected Planar F-Vertex Deletion problems on graphs of
bounded genus, we obtain an optimal solution S′ of G−S in time nO(t/ε). Clearly the weight of
S′ is at most OPT, and thus S∪S′ is a (1+ε)-approximate solution to G. Hence all Weighted
Connected Planar F-Deletion problems admit PTASes on graphs of bounded genus.

The only essential difference between the arguments for Weighted Feedback Vertex Set
and for Weighted Connected Planar F-Vertex Deletion is that the former has an algo-
rithm with running time 2O(tw(G))nO(1) on general graphs, whereas the latter only has an algo-
rithm with such a running time on graphs of bounded genus. If we use the 2O(tw(G) log tw(G))nO(1)

algorithm of Baste et al. [8, 9] for Weighted Connected Planar F-Vertex Deletion on
general graphs, we obtain a (1 + ε)-approximation algorithm on H-minor free graphs running
in time nO(log logn log ε/ε). This concludes the proof of Theorem 1.1.

We remark that the (1 + ε)-approximation algorithms on H-minor free graphs running in

2

time nO(log logn log ε/ε) are not PTASes, but they “over-qualify” as Quasi-Polynomial Time Ap-
proximation Schemes (QPTASes), since QPTASes are allowed to have polylogarithmic factors
in n in the exponent of n.

1.1 Related Work

The study of PTASes on planar graphs is a popular research area whose history spans more
than forty years [48]. In the early years, researchers primarily considered “local” graph problems
on planar graphs [6]. The powerful layering technique of Baker [6, 40] is able to handle both
weighted and un-weighted local problems on planar graphs with equal ease. For this reason
the research focus shifted to “non-local” problems, such as Travelling Salesman [4, 37] and
Feedback Vertex Set [46]. Approximation schemes for problems on planar graphs were
designed on a problem to problem basis [37, 46], and weighted problems appeared to be more
difficult than their unweighted counterparts—for example, it took 3 years to lift the PTAS for
Travelling Salesman from unweighted to weighted planar graphs [4, 37], and 18 years to do
the same for Feedback Vertex Set [46, 14].

Over time, the majority of known PTASes for both local and non-local problems on un-
weighted graphs were consolidated in the theory of bidimensionality [18, 19, 33], which in one
broad stroke gave PTASes (even EPTASes) for a large class of problems on planar graphs. An
advantage of bidimensionality is that it is “combinatorial”—it does not need an embedding of
the input graph into a surface. For this reason, the approximation schemes obtained using bidi-
mensionality work on classes substantially more general than planar graphs, such as H-minor
free or apex-minor free classes of graphs, and even other geometric graph classes [19, 33].

At the same time, the picture for weighted and non-local problems on planar graphs is much
more complex. Despite intensive study [4, 6, 17, 19, 25, 26, 35, 38, 42, 44, 48] and powerful de-
sign techniques, such as Klein’s sparsification technique [43, 44] and contraction decomposition
theorems [21, 22, 26], approximation schemes continue to be designed on a problem to problem
basis and are mostly confined to planar or surface-embedded graphs. For example, basic prob-
lems such as Weighted Connected Dominating Set and Weighted Feedback Vertex
Set did not have a PTAS on planar graphs until 2016 [14]. The approximability of Weighted
Connected r-Dominating Set on planar graphs remains open.

In a recent important advance, Cohen-Addad et al. [14] introduced a new framework for
designing PTASes for a class of non-local problems on weighted planar graphs and on graphs of
bounded genus. Their framework allows to simultaneously obtain PTASes for Weighted Con-
nected Dominating Set, Weighted Feedback Vertex Set, and many other problems
on graphs of bounded genus. Nevertheless, we are still far from the same kind of understanding
of the approximability of weighted problems on planar graphs, as we have of unweighted ones.

First, many important problems such as Weighted Treewidth-η Deletion Set prob-
lems for η ≥ 2 are not captured by the framework of Cohen-Addad et al. [14]. Here, it is
important to note that Treewidth-η Deletion Set problems play a central role in bidimen-
sionality [18, 19, 33]. It is therefore quite natural to believe that a thorough understanding of
Weighted Treewidth-η Deletion Set problems is crucial for building a general framework
for approximation schemes on planar graphs and beyond. Second, the approach of Cohen-Addad
et al. [14] is based on surface embeddings, and therefore “land-locked” to graphs of bounded
genus. Indeed, their PTAS for Feedback Vertex Set relies on a clever duality trick, and
therefore only works on planar graphs. It seems quite difficult to extend the results obtained by
their approach to more general classes of graphs. Finally, the approximation schemes obtained
by Cohen-Addad et al. [14] are all PTASes, while the unweighted versions of the considered
problems all admit EPTASes. It is tempting to hypothesize that most of the problems that
admit EPTASes on unweighted minor-free graphs also do on weighted minor-free graphs, and

3

the paper of Cohen-Addad et al. [14], while a major advance, is a far cry from proving this.
In this paper, we substantially generalize the framework of Cohen-Addad et al. [14]. We

address both the first and second issues simultaneously: our framework applies to a much larger
class of problems (including Weighted Treewidth-η Deletion Set), and for many problems
it works on the same classes of graphs as those covered by Bidimensionality (albeit at the cost
of giving QPTASes instead of PTASes). Additionally, we come quite close to addressing the
third issue—if the O(log n) gap rounding algorithm in Section 7 can be improved to o(log n) or
o(log n/ log logn) then most of the PTASes and QPTASes automatically become EPTASes. If
the gap becomes constant, they all do. We also remark that the framework of Cohen-Addad et
al. [14] requires to have a constant factor approximation algorithm at hand (which may not be
known a-priori), while our framework does not. A summary of the algorithmic results in our
paper compared to previously known approximation algorithms can be found in Table 1.

Ubiquitous problems. Cohen-Addad et al. [14] consider problems that they termed ubiqui-
tous: A problem is t-ubiquitous if, for every input graph G and every feasible solution S, (i) the
graph G[S] is connected, and (ii) the graph G/S (the graph obtained by contracting the edges
of G[S]) has treewidth at most t.

We say that a minimization problem is contraction closed if contracting an edge and setting
the weight of the resulting vertex to 0 can only decrease the value of the optimum. Cohen-
Addad et al. [14] proved that if a minimization problem Π is t-ubiquitous, contraction closed
and satisfies three more properties, then it admits a PTAS on weighted graphs of bounded
genus. To properly compare their results with ours we re-state their main theorem here.

Proposition 1.1 ([14]). Let Π be a contraction-closed t-ubiquitous minimization problem such that

1. Π admits a constant-factor approximation algorithm on graphs of bounded genus,

2. Π admits an exact (or (1+ε)-approximation) 2O(k)nO(1)-time algorithm on bounded genus
graphs of treewidth at most k, and

3. Π has a lifting algorithm: There exits a constant β and a polynomial time algorithm that,
given a graph G, vertex set S, and a solution X to problem Π for input G/S, outputs a
solution for G of weight at most w(S) + β · w(K).

Then, Π admits a PTAS on weighted graphs of bounded genus.

By direct application of Proposition 1.1, Cohen-Addad et al. derived the first PTASes for a
number of fundamental “non-local” problems on weighted graphs of bounded genus, including
the (edge-weighted) Weighted Tree Cover and Weighted Tour Cover problems, and the
(vertex-weighted) Weighted Connected Dominating Set, and Weighted Connected
Vertex Cover problems.

Theorem 1.1 and Proposition 1.1 apply to disjoint sets of problems because Weighted
Connected Planar F-Vertex Deletion problems are not t-ubiquitous, and t-ubiquitous
problems are not Weighted Connected Planar F-Vertex Deletion problems. However,
using clever observations Cohen-Addad et al. [14] extended their results to give PTASes for two
problems that do not directly fall within the scope of Proposition 1.1, namely for Max-weight-
leaf Spanning Tree on bounded genus graphs and for Weighted Feedback Vertex Set
on planar graphs. For comparison, the PTAS of Theorem 1.1 for Weighted Feedback Ver-
tex Set works on all H-minor free classes of graphs.

The main technical contribution of Cohen-Addad et al. [14] is a the following scaling lemma
for contraction on bounded genus graphs.

Proposition 1.2 ([14]). There exists an algorithm that given a graph G of genus g, a weight
function w : V (G) → Q+, a vertex set U such that G[U] is connected, and an integer s > 0,
in polynomial time outputs a subset S ⊆ V (G) of weight at most O(log n · w(U)/s) such that
tw(G/S) = O(gO(1) · s · tw(G/U)).

4

We remark that Cohen-Addad et al. [14] state Proposition 1.2 in a slightly different way,
in particular they have weights both on vertices and on edges. The two different ways of
stating Proposition 1.2 can easily be shown to be equivalent. The proof of Proposition 1.2 given
Proposition 1.1 goes along the same lines as the proof of Theorem 1.1 given Lemma 1.1 (or
rather, it is the other way around).

1.2 PTASes for Ubiquitous Problems: Simplified and Generalized

Starting from Lemma 1.1 we are able to obtain the following strengthening of Proposition 1.2.
We will discuss how to derive Lemma 1.2 from Lemma 1.1 in Section 1.3.

Lemma 1.2. For every pair of integers t ≥ 1, g ≥ 0, there exists an algorithm that given a graph
G of genus g, a weight function w : V (G)→ Q+, and an integer s, in polynomial time outputs
a subset S ⊆ V (G) of weight at most d log n · optV C(G,w, t)/s such that tw(G/S) ≤ c · s. Here,
d and c are fixed constants that depend only on g and t, and optV C(G,w, t) is the minimum
weight of a subset U ⊆ E(G) such that tw(G/U) ≤ t. The degree of the polynomial bounding
the running time is independent of t and g.

Lemma 1.2 is a strengthening of Proposition 1.2 in the sense that Proposition 1.2 requires
the set U to be connected, and to be given as input, while Lemma 1.2 does not. This comes at
the price that Lemma 1.2 has additional factors that are exponential in t in the running time of
the algorithm and the bounds on the weight and treewidth of G/S, while Proposition 1.2 does
not. This overhead does not matter for our applications, since we always consider both g and t
to be constants.

By replacing Proposition 1.2 with Lemma 1.2 in the arguments of Cohen-Addad et al. [14],
we obtain a substantial strengthening of their main result. We start by defining the class
of problems that our results apply to, and show that they are a strict generalization of the
t-ubiquitous problems considered by Cohen-Addad et al. [14].

Definition 1.1. (Semiubiquitous Problems) A problem P on (vertex-weighted) graphs is t-
semiubiquitous if there exists a constant c such that for every input graph G and weight function
w : V (G)→ Q+, there exists a set S ⊆ V (G) of weight at most c · optP (G,w, t) such that G/S
has treewidth at most t.

Observe that if a problem P is t-ubiquitous then it is also t-semiubiquitous, because every
optimal solution S to a t-ubiquitous problem P satisfies the conditions of the set S in Defini-
tion 1.1. On the other hand, not all semiubiquitous problems are ubiquitous: Definition 1.1 does
not require feasible solutions to be connected, and does not require every feasible solution X to
satisfy tw(G/X) ≤ t. Instead, we only need a set S of weight comparable to that of the optimal
solution, such that tw(G/S) ≤ t. We are now in position to state and prove our strengthening
of Proposition 1.1.

Theorem 1.2. Let Π be a contraction closed, t-semiubiquitous minimization problem such that

1. Π admits an exact (or (1+ε)-approximation) 2O(k)nO(1)-time algorithm on bounded genus
graphs of treewidth at most k, and

2. Π has a lifting algorithm: There exits a constant β and a polynomial time algorithm that,
given a graph G, vertex set S, and a solution X to problem Π for input G/S, outputs a
solution for G of weight at most w(X) + β · w(S).

Then, Π admits a PTAS on weighted graphs of bounded genus.

5

Proof. First, apply the algorithm of Lemma 1.2 and obtain a set S of weight δ ·OPT such that
tw(G/S) ≤ O(log n/ε). Then use the 2O(k)nO(1)-time algorithm to obtain a (1+α)-approximate
solution X to G/S. Since Π is contraction closed, w(X) ≤ (1+α)OPT where OPT is the weight
of an optimal solution in G. Finally, use the lifting procedure on X and S to get a solution to
G of weight at most (1 + ε)OPT , where ε = α+ δ · β.

Since every semiubiquitous problem is also ubiquitous, Theorem 1.2 applies to all problems
that Proposition 1.1 applies to. Additionally, because it does not require a constant factor
approximation, Theorem 1.2 is easier to apply. For example, to obtain a PTAS for Weighted
Connected Dominating Set, Cohen-Addad et al. [14] first needed to design a constant factor
approximation for the problem (on bounded genus graphs). Finally, Theorem 1.2 also yields
PTASes for the variants of Weighted Vertex Cover, Weighted Connected Dominating
Set, Tree Cover and Tour Cover where the solution does not have to be connecteded but
instead have at most c connected components for a fixed constant c. Here we omit the details
of verifying that these variants of the problems still satisfy the conditions of Theorem 1.2; they
are essentially identical to the discussion for the original problems by Cohen-Addad et al. [14].

1.3 Extensions and Further Applications of the Scaling Lemma

At first glance the applicability of Lemma 1.1 seems limited to vertex subset problems. This
turns out not to be the case. Indeed, with relative ease, we can extend Lemma 1.1 to variants
of edge deletion and edge contraction.

Lemma 1.3. There exists an algorithm that given an H-minor free graph G, a weight function
w : E(G) → Q+, and positive integers t and s, in polynomial time outputs a subset S ⊆ E(G)
of weight at most d log n · optE(G,w, t)/s such that tw(G − S) ≤ c · st. Here, d and c are
fixed constants that depend only on H, and optE(G,w, t) is the minimum weight of a subset
U ⊆ E(G) such that tw(G− U) ≤ t.

Since it is easy to derive Lemma 1.3 from Lemma 1.1, we give a proof sketch here. A full
proof of Lemma 1.3 is given in Section 8.

Proof sketch. To derive Lemma 1.3 from Lemma 1.1, it suffices to transform the edge weighted
input instance (G,w) to a vertex weighted instance (G′, w′) where G′ is equal to G with all
edges subdivided, and w′ assigns infinite weight to vertices of G′ that correspond to vertices of
G, and for every vertex ve ∈ V (G′) that corresponds to an edge e ∈ E(G), we set w′(xe) = w(e).
Applying Lemma 1.1 to G′ and w′, and translating the output set S ⊆ V (G′) back to an edge
set of G, completes the proof.

Lemma 1.3 implies precisely the same conclusions (PTASes on bounded genus graphs, QP-
TASes on H-minor free graphs) for the edge deletion versions of Weighted Connected Pla-
nar F-Vertex Deletion problems. (In the edge deletion versions, the weights are on edges
and we seek a minimum weight edge set S such that G−S excludes all graphs in F as a minor.)
The results follow because the algorithms of Baste et al. [8, 9] extend also to these edge deletion
variants. We remark that Baste et al. [8, 9] do not state this explicitly, but their arguments
for vertex deletion apply (almost) without modification to edge deletion problems. For ease of
reference we state our results for Weighted Connected Planar F-Edge Deletion in a
separate theorem. Note that a PTAS for the edge deletion version of Weighted Feedback
Vertex Set is meaningless, as this problem is equivalent to Maximum Weight Spanning
Tree, and therefore solvable in polynomial time.

Theorem 1.3. (1) Every Weighted Connected Planar F-Edge Deletion problem ad-
mits a PTAS on graphs of bounded genus. (2) Every Weighted Connected Planar F-Edge

6

Deletion problem admits a (1 + ε)-approximation algorithm on H-minor free graphs running
in time nO(log logn log ε/ε).

In the rest of this section we will outline the proof of Lemma 1.2. For graphs of bounded
genus it is easy to apply Lemma 1.3 and derive a scaling lemma for edge contraction.

Lemma 1.4. There exists an algorithm that given a graph G of genus g, a weight function
w : V (E) → Q+, and positive integers t and s, in polynomial time outputs a subset S ⊆ E(G)
of weight at most d log n · optEC(G,w, t)/s such that tw(G/S) ≤ c · st. Here, d and c are
fixed constants that depend only on g and optEC(G,w, t) is the minimum weight of a subset
U ⊆ E(G) such that tw(G/U) ≤ t.

Just as for Lemma 1.3, we give a proof sketch here and defer the full proof of Lemma 1.4 to
Section 8.

Proof sketch. If the graph G can be embedded in a surface of genus g, then the treewidth of G
and the treewidth of the dual graph G∗ of G are equal, up to an additive term of g + 1 (see
Mazoit [50]). Further, there is a one-to-one correspondence between edges of G and G∗, and
contracting edges in G is the same as deleting edges in the dual G∗. In particular, for any edge
set U ⊆ E(G), the dual of G/U is G∗ − U . Thus we can apply Lemma 1.3 to the dual graph
G∗, and the edge set S of G∗ output by Lemma 1.3, when interpreted as an edge set of G, has
the desired properties. Here, to upper bound the treewidth of G/S, we again use the result of
Mazoit [50] that the treewidth of G/S and G∗−S are equal up to an additive term of g+1.

Lemma 1.4 does not yield any immediate algorithmic consequences for contraction variants
of Weighted Connected Planar F-Vertex Deletion problems, because the algorithms
of Baste et al. [8, 9] do not apply to edge contraction problems. It is quite plausible that the
techniques of Baste et al. [8, 9] can be adapted to yield algorithms with similar running times
even for contraction problems, however this is pure speculation.

Lemma 1.4 looks conspicuously like Lemma 1.2. An important difference is that Lemma 1.4
deals with edge-weighted graphs, whereas Lemma 1.2 deals with vertex weighted graphs. It
turns out that this gap can be bridged, and a contraction scaling lemma for vertex weighted
graphs that almost matches the statement of Lemma 1.2 can be derived from Lemma 1.4.

Lemma 1.5. There exists an algorithm that given a graph G of genus g, a weight function
w : V (G) → Q+, positive integers t and s, and a subset U ⊆ V (G) such that tw(G/U) ≤ t,
in polynomial time outputs a subset S ⊆ V (G) of weight at most d log n · w(U)/s such that
tw(G/S) ≤ c · st. Here, d and c are fixed constants that depend only on g.

Deriving Lemma 1.5 from Lemma 1.4 requires a bit more effort than the previous steps,
and so we shall not give a proof sketch here and rather point the reader to the full proof
in Section 8.1. We remark that this proof is relatively simple (it spans a couple pages) and
relies only on combinatorial arguments. An ingredient of this proof that may have independent
interest is a purely combinatorial result that states that contracting a set of vertex disjoint
stars in an apex-minor-free graph G can only decrease the treewidth of G by a constant factor
(Lemma 8.2).

The reason Lemma 1.2 does not immediately follow form Lemma 1.5 is that Lemma 1.5
requires the set U to be given as input. On the other hand, in Lemma 1.2 the weight of the
output set S is compared against the “best possible” U . To derive Lemma 1.2 from Lemma 1.5
we will use an approximation algorithm for the following problem.

Weighted Treewidth-η Vertex Contraction
Instance: A graph G, and a weight function w : V (G)→ Q+.

Objective: Find a minimum weight set S ⊆ V (G) such that tw(G/S) ≤ η.

7

Our approximation algorithm crucially uses that the output set S does not have to be
connected. In particular, an approximation algorithm for Weighted Treewidth-η Vertex
Contraction together with Proposition 1.2 instead of Lemma 1.5 could almost be used to
prove Lemma 1.2, but this does not quite work out because Proposition 1.2 needs the set U
(and therefore the output of the approximation algorithm) to be connected.

Theorem 1.4. For every fixed constant η ∈ N and graph H there exists a constant factor
approximation algorithm for Weighted Treewidth-η Vertex Contraction on H-minor-
free graphs. The approximation ratio and the multiplicative constant of the running time of the
algorithm depend on H and η, while the degree of the running time does not2.

The algorithm of Theorem 1.4, given in Section 9, works by combining the local-ratio tech-
nique with Myhill-Nerode equivalence style arguments, and is interesting in its own right. Com-
bining Lemma 1.5 and Theorem 1.4, we obtain a scaling lemma for vertex contraction where
the set U does not have to be given as input.

Proof of Lemma 1.2. The algorithm first calls the approximation algorithm of Theorem 1.4 and
obtains in polynomial time a set U of weight at most d′ ·optV C(G,w, t) such that tw(G/U) ≤ t.
The value of d′ depends only on t and g. Now the algorithm applies Lemma 1.5 on G, w, and U to
obtain in polynomial time a set S of weight at most d′′ log n·w(U)/s ≤ d′′ log n·d′ ·optV C(G,w, t)
such that tw(G/S) ≤ c′′ · st. Here, d′′ and c′′ depend only on the genus g of G. Setting c = c′t
and d = d′ · d′′, we observe that S satisfies the statement of the lemma.

1.4 Brief Proof Outline for Lemma 1.1

Both the proof of Fomin et al. [33] of the unweighted scaling lemma and our proof of Lemma 1.1
builds on the linear relationship between the treewidth of an H-minor-free graph G and the size
of the largest grid minor in G.

Let gm(G) be the largest t such that G contains a t× t grid as a minor. It is easy see that
tw(G) ≥ gm(G). On the other hand, Demaine and Hajiaghayi showed [20] that for every graph
H there exists a constant cH such that tw(G) ≤ cH ·gm(G). Thus, for minor free graphs gm(G)
and tw(G) are essentialy the same. For ease of notation, in the rest of this outline we will treat
them as if they are the same. Thus, a subset of vertices S satisfies tw(G− S) ≤ t if and only if
it intersects every t× t grid minor model in G.

Observe now that an (rt)×(rt) grid minor model contains r2 disjoint t×t grid minor models.
Thus, in any graph one can pack a factor of r2 more disjoint t×t grid minor models as (rt)×(rt)
grid minor models. With a leap of faith one can conclude that the same should hold for hitting
grid minor models. In other words, that hitting all t × t grid minor models should require a
factor of r2 more vertices than hitting all (rt) × (rt) grid minor models. What we are really
interested in is the contrapositive of this statement, that hitting all (rt)×(rt) grid minor models
requires a factor of r2 fewer vertices than hitting all t × t grid minor models. For unweighted
minor free graphs this intuition can be turned into a relatively simple proof [33]. For weighted
graphs we do not know how to do this in a direct way, and so we take an indirect route through
the world of Linear Programming (LP).

Consider the natural LP relaxation of Weighted Treewidth-η Deletion Set where
every vertex v gets a variable xv that takes values between 0 and 1. Here 1 means that the
vertex is included in the solution S and 0 means that it is not. Naturally we wish to minimize∑

v∈V (G)wvxv subject to the constraint that for every t × t grid minor model the sum of the
variables in it should be at least 1.

2That is, the time complexity is of the form f(H, η) · ns where s is independent of H and η.

8

It is easy to see that the scaling property we seek (even a stronger one, without the log n
factor) holds for the this LP relaxation. In particular consider a feasible assignment x to the
variables for hitting all t× t grid minor models. Observe now that x/r2 is a feasible assignment
to the variables for hitting all tr× tr grid minor models, and that this assignment is a factor of
r2 cheaper than the original x. This is precisely what we need - making the solution set cheaper
at the cost of making the treewidth of the graph with the solution removed larger.

Observe now that the characteristic vector of a vertex set S such that tw(G − S) ≤ t is a
feasible solution to the t × t grid hitting LP. Thus, by the arguement above we can make it a
factor r2 cheaper by fractionally hitting rt×rt grids instead. If we could round this LP solution

with a gap of o(r2) we would obtain a cheaper set S′ (of weight at most w(S) · o(r
2)

r2
≤ εw(S))

such that tw(G − S′) ≤ rt. Unfortunately we do not know how to round solutions to the grid
hitting LP.

Fortunately, Bansal et al. [7] recently introduced a different LP relaxation for the Weighted
Treewidth-η Deletion Set problem (we will call this the well-linkedness LP) and proved
that the (edge deletion) version of this LP can be rounded with gap O(log n log log n), even on
general graphs.

In order to use the well-linkedness LP in order to round solutions to the grid hitting LP
we first need to make make a vertex version of the well-linkedness LP, and then establish a
relationship between solutions to the grid hitting LP and solutions to the well-linkedness LP.
On of the main technical contributions of this paper is to establish such a connection. In
particular we show that an assignment x is feasible for t× t grid hitting LP if and only if x · t is a
feasible solution for the well-linkedness LP relaxation of Weighted Treewidth-t Deletion
Set. We remark that on general graphs this relationship does not hold.

We can now try to use the LP scaling above together with the rounding algorithm of Bansal
et al. [7] (in fact an adaptation of their rounding algorithm to the vertex version, which is non-
trivial!) to prove Lemma 1.1. This almost works. Start with S, this is a feasible solution to the
well-linkedness LP. Using the “only if” direction of the relationship between LP relaxations we
see that assigning 1/t to every vertex in S is a feasible solution to the t× t grid hitting LP. By
scaling the grid hitting LP we see that assigning 1/r2t to every vertex in S is a feasible solution
to the (rt) × (rt) grid hitting LP. By using the “if” direction of the relationship between LPs
we conclude that assigning 1/r to every vertex in S is a feasible solution to the well-linkedness
LP for deletion to treewidth tr.

Rounding this solution using the method of Bansal et al. [7] leads to a set S′ of weight
at most w(S)/r · log n log logn s.t. tw(G − S′) ≤ tr. To make w(S′) ≤ εS we need to pick
r ≤ log n log logn implying that tw(G− S′) = O(log n log logn). This is almost what we claim
in Lemma 1.1, but it is off by a factor of log log n. This factor turns out to be a big problem for
our applications, because treewidth based algorithms have running times that are at least ex-
ponential in the treewidth. Since 2logn is polynomial in n while 2logn log logn is quasipolynomial,
this approach appears to yield QPTASes, but not PTASes.

We overcome this problem by designing our own rounding algorithm for (the vertex version
of) the well-linkedness LP with gap O(log n). Our rounding algorithm is essentialy the same
as that of Bansal et al. [7], but it uses the Klein Plotkin Rao balanced separator rounding [45]
for minor-free graphs, and needs needs some non-trivial modifications to work for the vertex
version instead of the edge version.

2 Proof Outline of Lemma 1.1

In this section, we give a slightly more technical overview before proceeding with the formal
proof. We do not define standard or self-explanatory notations here to keep this overview light
(or rather, as light as possible!); formal definitions can be found in Section 3.

9

2.1 An LP-formulation that is useful for rounding

Recall the Weighted Treewidth-η Vertex Deletion problem. Here, given a graph G
and a weight function w : V (G) → Q+, the objective is to find a set X of minimum weight
such that tw(G − X) ≤ η. An LP for the edge version of this problem, called the Bounded
Treewidth Interdiction problem, was given by Bansal et al. [7]. Towards this, they used
the notion of well-linked sets: a vertex set S is t-linked in G if S does not have a 1

2 -separator X
in G with |X| < t. Moreover, the linkedness of G, denoted by link(G), is the maximum integer
t such that there exists a t-linked set in G. It is known from [52] that link(G) < tw(G) ≤
4link(G). Bansal et al. [7] used this approximate characterization of treewidth to formulate
the LP, and gave a bicriteria (log n log log n, log η)-approximation algorithm for the Bounded
Treewidth Interdiction problem on general graphs. That is, they gave an algorithm that
runs in polynomial time and output a set F ′ such that w(F ′) ≤ O(log n log log n · opt(G,w, η))
and tw(G− F ′) ≤ O(η log η). Here, opt(G,w, η) is the (unknown) minimum weight of a subset
U ⊆ E(G) such that tw(G − U) ≤ η. We refer to the LP formulation used for this result as
Well-Linkedness LP. Let us state the vertex version of this LP:

Well-Linkedness LP(G,w, t):

min
∑

v∈V (G)

wvxv

s.t.
∑

v∈V (G)

ySv ≤ t ∀S ⊆ V (G)

dSuv ≤
∑

r∈V (P)

(xr + ySr) ∀S ⊆ V (G), u, v ∈ S, P ∈ PG(u, v)

∑
v∈U

dSuv ≥ |U | −
|S|
2

∀U ⊆ S ⊆ V (G), u ∈ U

xv ≥ 0, ySv ≥ 0, dSuv ≥ 0

In this LP, we are given a graph G, a weight function w : V (G) → Q+ and t ∈ N. Our
objective is to delete vertices of minimum weight so that G will not have a (t + 1)-linked set.
Each variable xv indicates whether we delete v. For every subset S ⊆ V (G), we have a variable
ySv for all v ∈ V (G), and a variable dSuv for all u, v ∈ S. Informally, these variables exhibit a
1
2 -separator Y of S in G with |Y | ≤ t as follows. First, each variable ySv indicates whether v
belongs to Y . Now, each variable dSuv encodes the distance (lightest path) between u and v
in the metric where the weight of each vertex r is given by (xr + ySr). In the constraints, we
have that dSuv ≤

∑
r∈V (P)(xr + ySr) for all P ∈ PG(u, v), and since it is “beneficial” too keep

dSuv as large as possible, this means that it can be thought of as being equal to the distance∑
r∈V (P)(xr + ySr) above. Now, to ensure that Y is a 1

2 -separator of S in G, it should (roughly)

hold that in this metric, for every vertex u ∈ S that can exist at most |S|2 vertices at distance

smaller than 1 from u. This is encoded by having a constraint
∑

v∈U d
S
uv ≥ |U | −

|S|
2 for all

U ⊆ S ⊆ V (G) and u ∈ U . Here, the consideration of every subset U ⊆ S aims to replace the
need to cap (bound from above) the distances dSuv by 1 and hence lose the property of encoding
a metric. Specifically, for a vertex u ∈ S, our purpose is to satisfy the constraint where U is the
set of all vertices at distance at most 1 from u. This LP has some very good properties that
make it useful in our rounding procedure (see Section 2.4).

10

2.2 An LP-formulation that is useful for scaling

We also need an LP that has a good “scaling property”. For this recall that our objective is
to design a polynomial time algorithm that takes as input an H-minor free graph G, a weight
function w : V (G)→ Q+ and integers t and s (which can depend on G), and outputs a subset
S ⊆ V (G) of weight at most d log n · opt(G,w, t)/s such that tw(G− S) ≤ c · st. Here, d and c
are fixed constants that depend only on H and opt(G,w, t) is the (unknown) minimum weight
of a subset U ⊆ V (G) such that tw(G− U) ≤ t. It is well known if an H-minor free graph has
treewidth at most t, then it excludes a t′×t′ grid as a minor where t′ = O(t) [23]. Thus, another
natural LP that can be associated with our problem is the one that has a “hitting constraints”
for every small (but not too small) subgrid in G. We refer to this formulation as Grid Hitting
LP:

Grid Hitting LP(G,w, t):

min
∑

v∈V (G)

wvxv

s.t.
∑
v∈S

xv ≥ 1 ∀S ∈ Gridt(G)

xv ≥ 0

In Grid Hitting LP, we are given a graph G, a weight function w : V (G)→ Q+ and t ∈ N.
Our objective is to hit all t × t-grids in G. Each variable xv indicates whether we delete v,
and the constraints are self-explanatory. The rationale behind the definition of this LP, in the
context of our work, stems from the following known results. On the one hand, we have the
following relation.

Proposition 2.1 ([23]). Let H be a graph. There exists a fixed constant c = c(H) such that
for any H-minor free graph G of treewidth lower bounded by ct, it holds that G has a t× t-grid
as a minor.

On the other hand, the following result implies that if G has a t × t-grid as a minor, then
its treewidth is lower bounded by t.

Proposition 2.2 ([15]). The treewidth of a t× t grid is exactly t.

Scaling. Grid Hitting LP is particularly useful since it allows to “convert” the cost of its
objective function to a “relaxation” of its constraints. Roughly speaking, we delete vertices at a
lower cost, but satisfy constraints that encode a larger treewidth. In particular, the tradeoff is
quadratic. Formally, Grid Hitting LP has the scaling property stated in the following lemma.

Lemma 2.1. Let α be a feasible fractional solution of Grid Hitting LP(G,w, t) for some
triple (G,w, t), and let s ∈ N (where s can depend on (G,w, t)). Define α′ by α′(xv) = α(xv)/s

2

for all v ∈ V (G). Then, α′ is a feasible fractional solution of Grid Hitting LP(G,w, s · t) such
that cost(α′) = cost(α)/s2.

Proof. To prove that α′ is a feasible fractional solution of Grid Hitting LP(G,w, st), consider
some set S ∈ Gridst(G). Then, there exists a partition S = S1 ·∪ S2 ·∪ · · · ·∪ Ss2 such that
Si ∈ Gridt(G) for all i ∈ {1, 2, . . . , s2}. (To see this, let H be a grid, such that V (H) =
{vi,j : i, j ∈ {1, 2, . . . , st} and E(H) = {{vi,j , vi′,j′} : |i − i′| + |j − j′| = 1}. Consider a
minor model ϕ of H in G. Then, for all p, q ∈ {1, 2, . . . , s}, we have that ϕ restricted to
{vi,j : i ∈ {(p−1)t+1, (p−1)t+2, . . . , pt}, j ∈ {(q−1)t+1, (q−1)t+2, . . . , qt}} is a minor model

11

of a t × t grid in G.) Because α is a feasible fractional solution of Grid Hitting LP(G,w, t),
we have that

∑
v∈Si α(xv) ≥ 1 for all i ∈ {1, 2, . . . , s2}. Therefore,

∑
v∈S

α′(xv) =
∑
v∈S

α(xv)/s
2 =

s2∑
i=1

(
∑
v∈Si

α(xv)/s
2) ≥

s2∑
i=1

(1/s2) = 1

Thus, α′ is a feasible fractional solution of Grid Hitting LP(G,w, st). Now, note that

cost(α′) =
∑

v∈V (G)

wvα
′(xv) =

∑
v∈V (G)

wvα(xv)/s
2 = cost(α)/s2.

This completes the proof.

2.3 Translation Between LPs

We first show how a feasible fractional solution of Well-Linkedness LP can be translated to
a feasible fractional solution of Grid Hitting LP. In particular, we show the following.

Lemma 2.2. There exists a fixed constant c such that for any triple (G,w, t) and feasible
fractional solution α of Well-Linkedness LP(G,w, t), the following claim holds. Define α′ :
{xv : v ∈ V (G)} → Q+

0 by α′(xv) = (1/t) · α(xv) for all v ∈ V (G). Then, α′ is a feasible
fractional solution of Grid Hitting LP(G,w, ct) such that cost(α′) = (1/t) · cost(α).

Observe that in Lemma 2.2, we “win” a factor of 1/t of the cost. Next, we need to go
from a feasible fraction solution of Grid Hitting LP(G,w, t) to a feasible fraction solution of
Well-Linkedness LP(G,w, t). This is achieved in two stages. We first go to what an LP that
we call Pairwise-Flow LP.

(h, t)-Pairwise Flow and the Pairwise-Flow Hitting LP. For a graph G and an integer
h, we let ConPart(G, h) denote the set of all tuples (X1, X2, . . . , Xh) of pairwise disjoint subsets
of V (G), where each Xi, i ∈ {1, 2, . . . , h}, is a connected set in G. Having this notation, we
define the following notion.

Definition 2.1. A graph G has an (h, t)-pairwise flow if there exists X ∈ ConPart(G, h) such
that for all distinct i, j ∈ {1, 2, . . . , h}, the maximum number of pairwise vertex-disjoint paths
in G − (X \ (X[i] ∪ X[j])) with one endpoint in X[i] and the other endpoint in X[j] is lower
bounded by t. The maximum integer t such that G has an (h, t)-pairwise flow is denoted by
pfh(G).

In Pairwise-Flow Hitting LP, we are given a graph G that is H minor-free for a graph
H with |V (H)| = h, a weight function w : V (G) → Q+ and t ∈ N. Our objective is to
delete vertices of minimum weight so that G will not have an (h, t + 1)-pairwise flow. Each
variable xv indicates whether we delete v. For every X ∈ ConPart(G, h) and i, j ∈ {1, 2, . . . , h}
with i < j, we have variables λX,(i,j) and y

X,(i,j)
v for all v ∈ V (G). Informally, setting the

variable λX,(i,j) to 1 indicates that the maximum number of pairwise vertex-disjoint paths in
G − (X \ (X[i] ∪ X[j])) with one endpoint in X[i] and the other endpoint in X[j], after the
deletion of vertices as indicated by the variables xv for all v ∈ V (G), should be upper bounded

by t. In turn, the satisfaction of this indication is realized by using the variables y
X,(i,j)
v for

all v ∈ V (G), which specify (by setting their value to 1) which vertices hit, together with the
vertices already deleted, all paths in G− (X \ (X[i] ∪X[j])) with one endpoint in X[i] and the
other endpoint in X[j].

12

Pairwise-Flow Hitting LP(G,w, h, t):

min
∑

v∈V (G)

wvxv

s.t.

h−1∑
i=1

h∑
j=i+1

λX,(i,j) ≥ 1 ∀X ∈ ConPart(G, h)

∑
v∈V (G)

yX,(i,j)v ≤ t ∀X ∈ ConPart(G, h), i, j ∈ {1, . . . , h}, i < j

∑
v∈V (P)

(xv + yX,(i,j)v) ≥ λX,(i,j) ∀X ∈ ConPart(G, h), i, j ∈ {1, . . . , h}, i < j,

P ∈ PG−(X\(X[i]∪X[j]))(X[i], X[j])

xv ≥ 0, y
X,(i,j)
v ≥ 0, λX,(i,j) ≥ 0

The rationale behind the definition of this LP, in the context of our work, stems from the
following result which we prove.

Lemma 2.3. Let H be a graph and denote h = |V (H)|. Then, for any graph G that is H-minor

free, it holds that pfh(G) < 5
(
h
2

)3
(tw(G) + 1).

We are now ready to present the translation. Here, given a feasible fractional solution
of Grid Hitting LP, the translation entails the multiplication of the value assigned to each
variable xv by O(t), along with the extension of the result to the variable set of Pairwise-Flow
Hitting LP. We also pay the penalty of multiplying t by a fixed constant.

Lemma 2.4. Let H be a graph with h = |V (H)|. There exist fixed constants c = c(H) and
d = d(H) such that given any triple (G,w, t) where G is H-minor free, and given any feasible
fractional solution α of Grid Hitting LP(G,w, t), the following claim holds. Define α′ by
α′(xv) = dt · α(xv) for all v ∈ V (G). Then, there exists a feasible fractional solution α? of
Pairwise-Flow Hitting LP(G, w, h, ct) that extends α′ and such that cost(α?) = dt·cost(α).

Finally, we present the last translation. Here, given a feasible fractional solution of Pairwise-
Flow Hitting LP, the translation entails the multiplication of the value assigned to each
variable xv by a fixed constant, along with the extension of the result to the variable set of
Well-Linkedness LP. Again, we also pay the penalty of multiplying t by a fixed constant.

Lemma 2.5. Let H be a graph with h = |V (H)|. There exist fixed constants c = c(H) and d
such that given any triple (G,w, t) where G is H-minor free, and given any feasible fractional
solution α of Pairwise-Flow Hitting LP(G,w, h, t), the following claim holds. Define α′ by
α′(xv) = d · α(xv) for all v ∈ V (G). Then, there exists a feasible fractional solution α? of
Well-Linkedness LP(G,w, ct) that extends α′ and such that cost(α?) = d · cost(α).

The proof of Lemma 2.5 is done into two phases. The objective of Phase I is to show that, for
any infeasible fractional solution of Well-Linkedness LP, we can obtain a structured witness
that is an adaptation of the following.

Definition 2.2. Let G be a graph and x : V (G) → Q+
0 . An (s, δ, λ)-fractional well-linkedness

witness with respect to (G, x), or simply an (s, δ, λ)-witness, is a pair (S,Q) where S ⊆ V (G),
|S| = s, and Q is a collection of paths in G that includes exactly one path in P(u, v) for each
pair of vertices u, v ∈ S, such that the following conditions hold.

13

1. For every path P ∈ Q, it holds that
∑

v∈V (P) xv ≤ δ.
2. For every vertex v ∈ V (G), it holds that λ · |{P ∈ Q : v ∈ V (P)}| ≤ 1.

The existence of this witness will be the foundation of Phase II, where the actual translation
is made. We begin by modifying Definition 2.2 in two ways: first, we need to allow having,
between every pair of vertices, many fractional paths rather than only one fractional path;
second, we do not obtain a clique but only ensure that between any two large subsets of our
structure, the flow is large. From this, we proceed to the actual translation in Phase II.

2.4 Rounding the Well-Linkedness LP

Finally, we give our rounding algorithm. This shows that on H-minor free graphs the integrality
gap for Well-Linkedness LP is O(log n). In particular, we show the following theorem.

Theorem 2.1. There is a polynomial time algorithm that, for any graph H, takes as input
an H-minor free graph G, a weight function w : V (G) → Q+, and an integer t, and outputs
a vertex set S such that tw(G) ≤ O(t) and w(S) is at most O(log n) times the optimum of
Well-Linkedness LP(G,w, t). That is, w(S) ≤ O(log n · opt(G,w, t)).

The proofs of Lemmas 2.2, 2.4 and 2.5 and Theorem 2.1 require several novel ideas and are
quite technical. We invite the readers to read the corresponding subsections for more details.
For example, for the proof of Theorem 2.1 we need to use the well-known Klein-Plotkin-Rao
rounding scheme as well as a new “weight redistribution” trick.

2.5 Summary

Recall that we have two LPs: Well-Linkedness LP and Grid Hitting LP. One has a good LP
rounding property, and the other has a good scaling property. Now we need to translate solutions
of one LP to other and vice-versa. The polynomial time algorithm described in Theorem 1.1
has the following steps. Given an input (G,w, t) it works as described below. Let c1, c2, d1, d2

be some fixed constants that only depend on H.

Step A. Solve Well-Linkedness LP on (G,w, t) and obtain a solution α. We must remark
here that we cannot solve this LP, and we need to apply the methodology of round and
separate introduced by Bansal et al. [7].

Step B. Translate α into a fractional solution α1 of Grid Hitting LP(G,w, c1t) such that
cost(α1) = (1/t) · cost(α). (Lemma 2.2.)

Step C. Then, scale the feasible solution α1 of Grid Hitting LP(G,w, c1t) to get a feasible
fractional solution α2 of Grid Hitting LP(G,w, s·c1t) such that cost(α2) = cost(α1)/s2.
(Lemma 2.1.)

Step D. Now given a feasible fractional solution α2 of Grid Hitting LP(G,w, s·c1t) such that
cost(α2) = cost(α1)/s2, we obtain a feasible fractional solution α? of Well-Linkedness
LP on (G,w, s · c2c1t) of cost d1st · cost(α2). (Lemmas 2.4 and 2.5.)

Step E. Finally, we round α? (using Theorem 2.1) to get an integral solution α† that corre-
sponds a subset S ⊆ V (G) such that tw(G− S) ≤ c · st, and

14

cost(α†) ≤ d2 log n · cost(α?)

≤ d2 log n · d1st · cost(α2)

≤ d2 log n · d1st ·
cost(α1)

s2

≤ d2 log n · d1st ·
cost(α)

s2t

= d2 log n · d1 ·
cost(α)

s

≤ d2 log n · d1 ·
opt(G,w, t)

s
.

Thus, these steps together yield a proof of Lemma 1.1.

3 Preliminaries

Given a set X, we use X = X1 ·∪ X2 ·∪ · · · ·∪ Xh to denote that X = (X1, X2, . . . , Xh) is a
partition of X. Moreover, we use X[i] to denote Xi for all i ∈ {1, 2, . . . , h}. Let Q+

0 contain all
non-negative rational numbers.

Graphs. Wherever it is not explicitly written otherwise, we consider undirected graphs. Given
a graph G, we let V (G) and E(G) denote the vertex set and edge set of G, respectively. Given
a collection of graph G, we denote V (G) =

⋃
G∈G V (G). Given a vertex v ∈ V (G), denote the

open and closed neighborhoods of v in G by NG(v) and NG[v], respectively. Moreover, given a
subset U ⊆ V (G), denote NG[U] =

⋃
v∈U NG[v] and NG(U) = NG[U] \ U . Given A,B ⊆ V (G),

denote EG(A,B) = {{a, b} ∈ E(G) : a ∈ A, b ∈ B}. Given a function f : V (G)→ Q, we denote
fv = f(v). Given two vertices u, v ∈ V (G), we let PG(u, v) denote the collection of (simple)
paths in G whose endpoints are u and v, and let WG(u, v) denote the collection of walks in G
whose endpoints are u and v. When G is clear from context, we drop it from the subscript.
Given two paths P and P ′ that have one common endpoints, by PP ′ we denote that walk that
results from the concatenation of P and P ′. Moreover, given subsets A,B ⊆ V (G), denote
PG(A,B) =

⋃
u∈A,v∈B PG(u, v). Given a subset U ⊆ V (G), we let G[U] denote the subgraph of

G induced by U , and we denote G−U = G[V (G)\U]. We say that U is a connected set if G[U] is
a connected graph. Given a subset U ⊆ E(G), we let G−U denote the graph on V (G) with the
edge set E(G)\U , and G[U] := (V (G), U). An α-separator of a subset S ⊆ V (G) in G is a subset
X ⊆ V (G) such that for every connected component C of G−X it holds that |V (C)∩S| ≤ α|S|.
A t× t-grid is a graph H whose vertex set can be denoted by {vi,j : i, j ∈ {1, 2, . . . , t}} so that
E(H) = {{vi,j , vi′,j′} : |i− i′|+ |j − j′| = 1}.

For a directed graph D, we let A(D) denote its arc set. Given a vertex v ∈ V (D), we let
Nin(v) := {u ∈ V (D) : (u, v) ∈ A(D)} denote the ingoing neighborhood of v, and Nout(v) :=
{u ∈ V (D) : (v, u) ∈ A(D)} denote the outgoing neighborhood of v.

Given a graph G and an edge e = {u, v} ∈ E(G), the graph obtained by contracting e in G
is the graph whose vertex set is (V (G) \ {u, v}) ∪ {x}) for some new vertex x, with the edges
in {{a, b} ∈ E(G) : a, b /∈ {u, v}}, and with a new edge {x, y} for every edge {y, v} ∈ E(G) and
{y, u} ∈ E(G). Note that this operation may result in multiedges. Throughout the paper, we
implicitly assume that multiplicities of edges are automatically reduced to 1, thus we deal with
simple graphs, unless explicitly stated otherwise (which will be the case when we discuss duals
of bounded genus graphs later). We let G/e denote the result of contracting e in G. Given a
connected set U ⊆ V (G), we let G/U denote the graph obtained by contracting the edges of

15

some spanning tree of G[U]—specifically, the resulting graph has the vertex set (V (G)\U)∪{x})
for some new vertex x and with a new edge {x, y} for every edge {y, v} ∈ E(G) such that v ∈ U .
Given a subset U ⊆ V (G), we let G/U denote the result of the contraction of every maximal
connected subset of U . Note that the contraction of each individual connected subset T ⊆ U
results one vertex in v ∈ V (G/U) \ V (G); we refer to the set T the origin of v, and denote
OriginG,U (v) = T . For vertices v ∈ V (G/U) ∩ V (G), denote OriginG,U (v) = {v}. When, G and
U are clear from context, we drop the subscript.

Minors, treewidth, and well-linkedness. We say that a graph H is a minor of a graph G
if there exists a function ϕ : V (H) → 2V (G) such that for all v ∈ V (H), it holds that G[ϕ(v)]
is connected, for all u, v ∈ V (H), it holds that ϕ(u) ∩ ϕ(v) = ∅, and for all {u, v} ∈ E(H), it
holds that there exist u′ ∈ ϕ(u) and v′ ∈ ϕ(v) such that {u′, v′} ∈ E(G). Such a function ϕ is a
minor model of H in G. Equivalently, a graph H is a minor of a graph G if H can be obtained
from G by deleting vertices, deleting edges, and contracting edges. Given an integer t ∈ N, we
let Gridt(G) denote the collection of all subsets U ⊆ V (G) such that G[U] contains a t× t-grid
as a minor.

Treewidth is a measure of how “treelike” is a graph, which is formally defined as follows.

Definition 3.1. A tree decomposition of a graph G is a pair (T, β) of a tree T and β : V (T)→
2V (G), such that

1. for any edge {x, y} ∈ E(G) there exists a node v ∈ V (T) such that x, y ∈ β(v), and

2. for any vertex x ∈ V (G), the subgraph of T induced by the set Tx = {v ∈ V (T) : x ∈ β(v)}
is a non-empty tree.

The width of (T, β) is maxv∈V (T){|β(v)|} − 1. The treewidth of G is the minimum width over
all tree decompositions of G.

Given a tree decomposition (T, β) of a graph G, for every v ∈ V (T), the set β(v) is called the
bag of v, and we let γ(v) denote the union of all the bags of the descendants of v in T including
the bag of v. For the root r of T , the set β(r) is called the root bag.

Note that if a graph H is a minor of a graph G, then tw(H) ≤ tw(G). Tightly linked
to treewidth are grid minors, a relation that is discussed later. In addition, tightly linked to
treewidth is also the notion of well-linkedness, which is defined as follows.

Definition 3.2. Let G be a graph. A vertex set S ⊆ V (G) is t-linked in G if S does not have
a 1

2 -separator X in G with |X| < t. Moreover, the linkedness of G, denoted by link(G), is the
maximum integer t such that there exists a t-linked set in G.

H-Minor freeness, genus, and planarity. For a graph H, we say that a graph G is H-
minor free if it does not contain H as a minor. A planar graph is a graph that can be embedded
in the plane, i.e., it can be drawn on the plane in such a way that its edges intersect only at
their endpoints. By Wagner’s theorem, a graph is planar if and only if it contains neither K5

nor K3,3 as minors. A plane graph is a planar graph with a fixed embedding.
An embedding is called cellular if every face is homeomorphic to an open disk. The genus of

a connected, orientable surface is an integer representing the maximum number of cuttings along
non-intersecting closed simple curves without rendering the resultant manifold disconnected. A
graph of genus g has a (cellular) embedding on a surface of genus g. In this paper, we consider
only such cellular embeddings. A graph of genus 0 is a planar graph. Graphs of bounded genus
g can be characterized as the graphs excluding a finite set (whose size depends on g) of graphs
as minors, and are therefore H-minor free for any choice of H from that set.

16

Let G be a graph (cellularly) embedded on a surface. The dual graph D of G is the embedded
graph whose vertex set includes a vertex vf for each face f of G, and which contains an edge
between vf and vf ′ if the faces f and f ′ are adjacent (in G). Note that even if G is simple, its
dual D may contain multiedges. Moreover, if G is a graph of genus g, then its dual D is also
a graph of genus g, and the dual graph of D is G itself. For any edge {u, v} ∈ E(G), we let
ϕ({u, v}) denote the edge {vf , vf ′} of the dual graph D of G such that f and f ′ are the (unique)
faces in G having {u, v} as a common boundary.

Let us explicitly state the following simple observation.

Observation 3.1 (Folklore). Let G be a graph (cellularly) embedded on a surface, and let D be
the dual graph of G. Let e ∈ E(G). Then, the dual of G/e is G− {ϕ(e)}.

We also need the following proposition, relating the treewidth of G to the treewidth of D.

Proposition 3.1 ([55]). There exists a fixed constant c such that for any graph G of genus g
cellularly embedded on a surface, the treewidth of the dual graph D of G is upper bounded by
c · (tw(G) + g).

Linear Programming (LP). An LP consists of a set of variables, say X = {x1, x2, . . . , xn},
an objective function

∑n
i=1 cixi for some constants ci where the objective can be either maxi-

mization or minimization, and a set of m constraints: For j = 1, 2, . . . ,m, we have a constraint
of the form

∑n
i=1 ai,jxi sign bj for some constants ai,j and bj and where sign ∈ {≤,=,≥}.

A fractional solution of an LP is a function α that assigns a rational number to each variable.
We say that a fractional solution is feasible if all of the constraints are satisfied; otherwise (that
is, if at least one constraint is not satisfied), it is infeasible. We say that α is integral if its
image is a subset of Z. The cost of a fractional solution α, denoted by cost(α), is defined
as
∑n

i=1 ciα(xi). The optimum of the LP is the maximum or minimum cost—depending on
whether its objective is maximization or minimization—of a feasible fractional solution of it (if
one exists). An optimal (feasible fractional) solution is a feasible fractional solution whose cost
is the optimum.

A separating hyperplane for an infeasible solution α to an LP is a function β that assigns
a rational number to every variable, and a rational c, such that

∑n
i=1 α(xi)β(xi) > c, and for

every feasible solution α′ we have
∑n

i=1 α
′(xi)β(xi) ≤ c.

Given a maximization LP P with an objective function
∑n

i=1 cixi, for j = 1, 2, . . . ,m, a
constraint

∑n
i=1 ai,jxi ≤ bj , and for i = 1, 2, . . . , n, the constraint xi ≥ 0, the dual LP of

P is the minimization LP D defined as follows. The objective function of D is
∑m

j=1 bjyj ,
for i = 1, 2, . . . , n, it has the constraint

∑m
j=1 ai,jyj ≥ ci, and for j = 1, 2, . . . ,m, it has the

constraint yj ≥ 0. The dual of a minimization LP D is defined analogously. In particular, the
dual of the dual of an LP Q is Q itself.

We now state the strong duality theorem.

Proposition 3.2 ([49]). For any LP Q, the optimum of Q and the optimum of the dual of Q
are equal.

Boundaried Graphs and Their Folios and Contractions. Roughly speaking, a bound-
aried graph is a graph where some vertices are labeled. Formally,

Definition 3.3. A boundaried graph is a graph G with a set δ(G) ⊆ V (G) of distinguished
vertices called boundary vertices, and a labeling λG : δ(G)→ 2N \ {∅} such that for all distinct
u, v ∈ δ(G), it holds that λG(u) ∩ λG(v) = ∅. The set δ(G) is the boundary of G, and the label
set of G is Λ(G) = {λG(v) : v ∈ δ(G)}.

17

Note that any (unboundaried) graph can be viewed as a boundaried graph with an empty
boundary. For a boundaried graph G, we will only contract sets of vertices that contain no
vertex in δ(G); then, δ(G/S) = δ(G) and λG/S = λG.

We say that a boundaried graph H is a minor of a boundaried graph G if
⋃

Λ(H) ⊆
⋃

Λ(G)
and there exists a function ϕ : V (H)→ 2V (G) such that (i) for all v ∈ V (H), it holds thatG[ϕ(v)]
is connected, (ii) for all u, v ∈ V (H), it holds that ϕ(u) ∩ ϕ(v) = ∅, (iii) for all {u, v} ∈ E(H),
it holds that there exist u′ ∈ ϕ(u) and v′ ∈ ϕ(v) such that {u′, v′} ∈ E(G), (iv) for all v ∈ δ(H),
it holds that λH(v) =

⋃
{λG(v′) : v′ ∈ ϕ(v) ∩ δ(G)}, and (v) for all v ∈ V (H) \ δ(H), it holds

that ϕ(v)∩ δ(G) = ∅. Such a function ϕ is a minor model of H in G. Accordingly, the ρ-folio of
a boundaried graph G is the set of all boundaried graphs on at most ρ vertices that are minors
of G.

Given a boundaried graph G and a subset U ⊆ V (G), the boundaried graph G/U is the
graph G/U whose boundary consists of of every vertex v ∈ δ(G) ∩ V (G/U) (whose label is
λG/U (v) = λG(v)) and every vertex v ∈ V (G/U) \V (G) that originated from the contraction of
a connected set X with non-empty intersection with δ(G) (then, λG/U (v) =

⋃
u∈X∩δ(G) λG(u)).

4 From Well-Linkedness LP to Grid Hitting LP

In this section, we translate a feasible fractional solution of an LP called Well-Linkedness LP
(by Bansal et al. [7]) to a feasible fractional solution of an LP called Grid Hitting LP. In
addition, we exhibit the scaling property of the Grid Hitting LP.

4.1 Well-Linkedness LP

The (edge version of) Well-Linkedness LP is due to Bansal et al. [7]. Here, we present
the vertex version of this LP. However, their proof of the dual of an LP nested inside Well-
Linkedness LP (as explained later) directly extends to the vertex version.3

In this Well-Linkedness LP, we are given a graph G, a weight function w : V (G) → Q+

and t ∈ N. Our objective is to delete vertices of minimum weight so that G will not have a
(t+ 1)-linked set. Each variable xv indicates whether we delete v. For every subset S ⊆ V (G),
we have a variable ySv for all v ∈ V (G), and a variable dSuv for all u, v ∈ S. Informally, these
variables exhibit a 1

2 -separator Y of S in G with |Y | ≤ t as follows. First, each variable ySv
indicates whether v belongs to Y . Now, each variable dSuv encodes the distance (lightest path)
between u and v in the metric where the weight of each vertex r is given by (xr + ySr). In
the constraints, we have that dSuv ≤

∑
r∈V (P)(xr + ySr) for all P ∈ PG(u, v), and since it is

“beneficial” too keep dSuv as large as possible, this means that it can be thought of as being
equal to the distance

∑
r∈V (P)(xr + ySr) above. Now, to ensure that Y is a 1

2 -separator of S
in G, it should (roughly) hold that in this metric, for every vertex u ∈ S that can exist at

most |S|2 vertices at distance smaller than 1 from u. This is encoded by having a constraint∑
v∈U d

S
uv ≥ |U | −

|S|
2 for all U ⊆ S ⊆ V (G) and u ∈ U . Here, the consideration of every subset

U ⊆ S aims to replace the need to cap (bound from above) the distances dSuv by 1 and hence
lose the property of encoding a metric. Specifically, for a vertex u ∈ S, our purpose is to satisfy
the constraint where U is the set of all vertices at distance at most 1 from u.

3We note that, however, their bicriteria (logn log log n, log η)-approximation algorithm (on general graphs)
does not extend to the edge version of Bounded Treewidth Interdiction (without using our “weight redis-
tribution” trick).

18

Well-Linkedness LP(G,w, t):

min
∑

v∈V (G)

wvxv

s.t.
∑

v∈V (G)

ySv ≤ t ∀S ⊆ V (G)

dSuv ≤
∑

r∈V (P)

(xr + ySr) ∀S ⊆ V (G), u, v ∈ S, P ∈ PG(u, v)

∑
v∈U

dSuv ≥ |U | −
|S|
2

∀U ⊆ S ⊆ V (G), u ∈ U

xv ≥ 0, ySv ≥ 0, dSuv ≥ 0

The rationale behind the definition of this LP, in the context of our work, stems from the
following known results. First, it is tightly linked to treewidth:

Proposition 4.1 ([52]). For any graph G, it holds that link(G) < tw(G) ≤ 4link(G).

In addition, Bansal et al. [7] showed how this LP can be “partially solved”, as explained in
the following subsection.

4.2 Duality of Well-Linkedness LP

Let us begin by presenting the (known) dual LP of an LP that is “nested” inside Well-
Linkedness LP. We will need to analyze this dual LP to prove both our transition from
Well-Linkedness LP to G

¯
rid Hitting LP and our transition from Pairwise-Flow Hitting

LP to Well-Linkedness LP. (In each transition, the analysis and properties exposed are dif-
ferent). First, let us explicitly state this “nested” LP. To be consistent with Bansal et al. [7],
we refer to this LP as sep-LP. In this LP, we are given a graph G, a subset S ⊆ V (G) and a
function x : V (G)→ Q+

0 . We stress that xv, for any v ∈ V (G), is not a variable. Here, we have
a variable yv for all v ∈ V (G), and a variable dSuv for all u, v ∈ S. Note that these variables have
the exact same meaning as in Well-Linkedness LP; specifically, they exhibit a 1

2 -separator Y
of S in G.

sep-LP(G,S, x):

min
∑

v∈V (G)

yv

s.t. duv ≤
∑

r∈V (P)

(xr + yr) ∀u, v ∈ S, P ∈ PG(u, v)

∑
v∈U

duv ≥ |U | −
|S|
2

∀U ⊆ S, u ∈ U

yv ≥ 0, duv ≥ 0

By sep-LP(G,S, α) where α : {xv : v ∈ V (G)} → Q+
0 , we refer to sep-LP(G,S, x′) where

x′v = α(xv) for every v ∈ V (G). The following observation is immediate given the formulations
of Well-Linkedness LP and sep-LP.

Observation 4.1. Let G be a graph, w : V (G) → Q+, α : {xv : v ∈ V (G)} → Q+
0 and t ∈ N.

Then, α can be extended to a feasible fractional solution of Well-Linkedness LP(G,w, t) if

19

and only if for every subset S ⊆ V (G), α can be extended to a feasible fraction solution of
sep-LP(G,S, α) of cost at most t.

By Bansal et al. [7] the dual of sep-LP, called flow-LP, is the LP given below. In this
LP, we are given a graph G, a subset S ⊆ V (G) and a function x : V (G) → Q+

0 . Again, we
stress that xv, for any v ∈ V (G), is not a variable. We remark that Bansal et al. [7] examined
this LP to present a result regarding the partial solution of Well-Linkedness LP (required for
rounding). We need this LP also for very different purposes (and therefore make very different
use of it in the analysis of our transitions). For our purposes, we will need to give our (rough)
intuitive interpretation of it when it is required (in Section 6.1). For now, we simply state it,
and remark that the variable set includes a variable gU,v for all U ⊆ S and v ∈ U , and a variable
fuvP for all u, v ∈ S and P ∈ P(u, v).

flow-LP(G,S, x):

max
∑
U⊆S

∑
v∈U

gU,v(|U | −
|S|
2

)−
∑
u,v∈S

∑
P∈P(u,v)

fuvP

 ∑
r∈V (P)

xr


s.t.

∑
U⊆S

s.t. u,v∈U

(gU,u + gU,v) ≤
∑

P∈P(u,v)

fuvP ∀u, v ∈ S

∑
u,v∈S

∑
P∈P(u,v)

s.t. r∈V (P)

fuvP ≤ 1 ∀r ∈ V (G)

gU,v ≥ 0, fuvP ≥ 0

From Proposition 3.2, we obtain the following observation.

Observation 4.2. Let G be a graph, S ⊆ V (G) and x : V (G) → Q+
0 . Then, the optimum of

sep-LP(G,S, x) is equal to the optimum of flow-LP(G,S, x).

The following exposition towards the statement of Proposition 4.2 will be relevant to Section
7.4 While sep-LP(G,S, x) has an exponential number of constraints, Bansal et al. [7] observed
that it can be solved in polynomial time. Roughly speaking, the idea is that explicit tests for
the satisfaction of the constraint for every individual path P ∈ PG(u, v) can be replaced by a
computation of distance (e.g., by calling Dijkstra’s algorithm), and that explicit tests for the
satisfaction of the constraints for every individual subset U ⊆ S are not required—it suffices
to make a test only for the subset U ⊆ S that includes all vertices at distance at most 1 from
the reference vertex u. Given a graph G, w : V (G) → Q+, α : {xv : v ∈ V (G)} → Q+

0 ,
t ∈ N and a subset S ⊆ V (G), if α cannot be extended to a feasible fraction solution of sep-
LP(G,S, α) of cost at most t (which can be tested in polynomial time by the discussion above),
then Observation 4.1 implies that α is infeasible for Well-Linkedness LP(G,w, t). In this
case, Bansal et al. [7] rely on the dual LP, flow-LP(G,S, x), to find a separating hyperplane
that witnesses that all extensions of α are infeasible for Well-Linkedness LP(G,w, t). We
summarize this discussion with the following proposition, whose proof can be found in [7].

Proposition 4.2 ([7]). There is a polynomial time algorithm that given a graph G, w : V (G)→
Q+, α : {xv : v ∈ V (G)} → Q+

0 , t ∈ N and a subset S ⊆ V (G), either finds (i) a separating
hyperplane witnessing that every extension of α is infeasible for Well-Linkedness LP(G,w, t),5

4Nevertheless, we give the discussion in this subsection since it concerns flow-LP(G,S, x), while in Section 7
we will not need to explicitly refer to flow-LP(G,S, x) at all.

5In this case, as shown by Bansal et al. [7], the algorithm is guaranteed to find a separating hyperplane that
assigns 0 to every variable of Well-Linkedness LP(G,w, t) that is not in {xv : v ∈ V (G)}.

20

or (ii) a feasible solution βS : {yv : v ∈ V (G)} ∪ {duv : u, v ∈ V (G)} → Q+
0 to sep-LP(G,S, α)

of cost at most t.

4.3 Grid Hitting LP and its scaling property

In Grid Hitting LP, we are given a graph G, a weight function w : V (G) → Q+ and t ∈ N.
Our objective is to hit all t× t-grids in G. Each variable xv indicates whether we delete v, and
the constraints are self-explanatory.

Grid Hitting LP(G,w, t):

min
∑

v∈V (G)

wvxv

s.t.
∑
v∈S

xv ≥ 1 ∀S ∈ Gridt(G)

xv ≥ 0

The rationale behind the definition of this LP, in the context of our work, stems from the
following known results. On the one hand, we have the following relation.

Proposition 4.3 ([23]). Let H be a graph. There exists a fixed constant c = c(H) such that
for any H-minor free graph G of treewidth lower bounded by ct, it holds that G has a t× t-grid
as a minor.

On the other hand, the following result implies that if G has a t × t-grid as a minor, then
its treewidth is lower bounded by t.

Proposition 4.4 ([15]). The treewidth of a t× t grid is exactly t.

Scaling. Grid Hitting LP is particularly useful since it allows to “convert” the cost of its
objective function to a “relaxation” of its constraints. Roughly speaking, we delete vertices at a
lower cost, but satisfy constraints that encode a larger treewidth. In particular, the tradeoff is
quadratic. Formally, Grid Hitting LP has the scaling property stated in the following lemma.

Lemma 4.1. Let α be a feasible fractional solution of Grid Hitting LP(G,w, t) for some
triple (G,w, t), and let s ∈ N (where s can depend on (G,w, t)). Define α′ by α′(xv) = α(xv)/s

2

for all v ∈ V (G). Then, α′ is a feasible fractional solution of Grid Hitting LP(G,w, s · t) such
that cost(α′) = cost(α)/s2.

Proof. To prove that α′ is a feasible fractional solution of Grid Hitting LP(G,w, st), consider
some set S ∈ Gridst(G). Then, there exists a partition S = S1 ·∪ S2 ·∪ · · · ·∪ Ss2 such that
Si ∈ Gridt(G) for all i ∈ {1, 2, . . . , s2}. (To see this, let H be a grid, such that V (H) =
{vi,j : i, j ∈ {1, 2, . . . , st} and E(H) = {{vi,j , vi′,j′} : |i − i′| + |j − j′| = 1}. Consider a
minor model ϕ of H in G. Then, for all p, q ∈ {1, 2, . . . , s}, we have that ϕ restricted to
{vi,j : i ∈ {(p−1)t+1, (p−1)t+2, . . . , pt}, j ∈ {(q−1)t+1, (q−1)t+2, . . . , qt}} is a minor model
of a t × t grid in G.) Because α is a feasible fractional solution of Grid Hitting LP(G,w, t),
we have that

∑
v∈Si α(xv) ≥ 1 for all i ∈ {1, 2, . . . , s2}. Therefore,

∑
v∈S

α′(xv) =
∑
v∈S

α(xv)/s
2 =

s2∑
i=1

(
∑
v∈Si

α(xv)/s
2) ≥

s2∑
i=1

(1/s2) = 1

21

Thus, α′ is a feasible fractional solution of Grid Hitting LP(G,w, st). Now, note that

cost(α′) =
∑

v∈V (G)

wvα
′(xv) =

∑
v∈V (G)

wvα(xv)/s
2 = cost(α)/s2.

This completes the proof.

4.4 Translation

Towards the translation of a feasible fractional solution of Well-Linkedness LP to a feasible
fractional solution of Grid Hitting LP, we need to establish several claims. For this purpose,
let us first introduce a structure that we call a fractional well-linkedness witness.

Definition 4.1. Let G be a graph and x : V (G) → Q+
0 . An (s, δ, λ)-fractional well-linkedness

witness with respect to (G, x), or simply an (s, δ, λ)-witness, is a pair (S,Q) where S ⊆ V (G),
|S| = s, and Q is a collection of paths in G that includes exactly one path in P(u, v) for each
pair of vertices u, v ∈ S, such that the following conditions hold.

1. For every path P ∈ Q, it holds that
∑

v∈V (P) xv ≤ δ.

2. For every vertex v ∈ V (G), it holds that λ · |{P ∈ Q : v ∈ V (P)}| ≤ 1.

The term (s, δ, λ)-witness with respect to (G,α), where α : {xv : v ∈ V (G)} → Q+
0 , is an

abbreviation of an (s, δ, λ)-witness with respect to (G, x′) where x′v = α(xv) for every v ∈ V (G).
Now, we show that the existence of a certain fractional well-linkedness witness guarantees that
the value of the objective function of flow-LP(G,S, x) is large. Later, in Section 6, we also show
that if the value of flow-LP(G,S, x) is large, then there exists a certain fractional well-linkedness
witness.

Lemma 4.2. Let G be a graph, S ⊆ V (G) and x : V (G) → Q+
0 . Let Q and δ be such that

(S,Q) is an (s, δ, 1/(2s))-witness. Then, there exists a feasible fractional solution α of flow-
LP(G,S, x) with cost(α) ≥ (1

8 −
δ
2)s.

Proof. For any pair of vertices u, v ∈ S, let Quv be the unique path in Q between them. Define
a function α : {gU,v : U ⊆ S, v ∈ U} ∪ {fuvP : u, v ∈ S, P ∈ P(u, v)} → Q+

0 as follows.

• For all U ⊂ S (U 6= S) and v ∈ U , define α(gU,v) = 0.

• For all v ∈ S, define α(gS,v) = 1/(4s).

• For all u, v ∈ S and P ∈ P(u, v) \ Q, define α(fuvP) = 0.

• For all u, v ∈ S and P ∈ P(u, v) ∩Q (note that P is unique), define α(fuvP) = 1/(2s).

Let us verify that α is a feasible fractional solution of flow-LP(G,S, x). We first show that∑
U⊆S

s.t. u,v∈U
(α(gU,u) + α(gU,v)) ≤

∑
P∈P(u,v) α(fuvP) for all u, v ∈ S. To this end, consider some

vertices u, v ∈ S. Then, we have that∑
U⊆S

s.t. u,v∈U

(α(gU,u) + α(gU,v)) = α(gS,u) + α(gS,v) = 1/(4s) + 1/(4s)

= 1/(2s) = α(fuvQuv) =
∑

P∈P(u,v)

α(fuvP).

22

Second, we show that
∑

u,v∈S
∑

P∈P(u,v)
s.t. r∈V (P)

α(fuvP) ≤ 1 for all r ∈ V (G). To this end, consider

some vertex r ∈ V (G). Since (S,Q) is an (s, δ, 1/(2s))-witness, we have that∑
u,v∈S

∑
P∈P(u,v)

s.t. r∈V (P)

α(fuvP) = 1/(2s) · |{P ∈ Q : r ∈ V (P)}| ≤ 1.

Thus, α is indeed a feasible fractional solution of flow-LP(G,S, x). Let us now analyze its
cost. Since (S,Q) is an (s, δ, 1/(2s))-witness, we have that

cost(α) =
∑
U⊆S

∑
v∈U

α(gU,v)(|U | −
s

2
)−

∑
u,v∈S

∑
P∈P(u,v)

α(fuvP)

 ∑
r∈V (P)

xr


=
∑
v∈S

s

2
α(gS,v)−

∑
u,v∈S

α(fuvQuv)

 ∑
r∈V (Quv)

xr


=
∑
v∈S

s

2

1

4s
− 1

2s

∑
u,v∈S

 ∑
r∈V (Quv)

xr


≤ s

8
− 1

2s

∑
u,v∈S

δ

≤ s

8
− δs

2
= (

1

8
− δ

2
)s.

This completes the proof.

By the strong duality theorem and Lemma 4.2, we show that the existence of a certain
fractional well-linkedness witness implies that a given function x : V (G)→ Q+

0 is not a feasible
fractional solution of Well-Linkedness LP(G,w, t).

Lemma 4.3. Let G be a graph, w : V (G) → Q+, α : {xv : v ∈ V (G)} → Q+
0 and t ∈ N. Let δ

be such that there exists an (s, δ, 1/(2s))-witness (S,Q) with respect to (G,α). If (1
8 −

δ
2)s > t,

then α cannot be extended to a feasible fractional solution of Well-Linkedness LP(G,w, t).

Proof. Suppose that (1
8 −

δ
2)s > t. By Lemma 4.2, there exists a feasible fractional solution β′

of flow-LP(G,S, α) with cost(β′) ≥ (1
8 −

δ
2)s > t. By Observation 4.2, this means that any

feasible fractional solution β of sep-LP(G,S, α) satisfies cost(β) > t. In turn, by Observation
4.1, this means that α cannot be extended to a feasible fractional solution of Well-Linkedness
LP(G,w, t).

Next, we show that the existence of a “light” grid implies the existence of a certain fractional
well-linkedness witness.

Lemma 4.4. Let G be a graph, x : V (G) → Q+
0 and δ ∈ Q+

0 . Let H be a t × t-grid where
V (H) = {hi,j : i, j ∈ {1, 2, . . . , t}}. Let ϕ be a minor model of H in G. Moreover,

• For i ∈ {1, 2, . . . , t}, let Ri =
⋃t
j=1 ϕ(hi,j), and suppose that

∑
v∈V (Ri)

xv < δ/2.

• For j ∈ {1, 2, . . . , t}, let Cj =
⋃t
i=1 ϕ(hi,j), and suppose that

∑
v∈V (Ci)

xv < δ/2.

Then, there exists a (t, δ, 1/(2t))-witness (S,Q) with respect to (G, x) (where |S| = t).

Proof. For all i ∈ {1, 2, . . . , t}, we arbitrarily choose some vertex in ϕ(hi,i) and denote it by
ui. Denote S = {ui : i ∈ {1, 2, . . . , t}}. Intuitively, the set S contains one vertex from each set
assigned to a vertex in the diagonal of H by ϕ. Note that |S| = t.

23

Since ϕ is a minor model of H in G, the following notation is well defined. For each pair
of vertices ui, uj ∈ U , say i < j, we define a path Qi,j as follows. First, Qi,j contains (as a
subpath) a path in G from ui to some vertex in ϕ(hi,j), say r, all of whose internal vertices

belong to
⋃j
j′=i ϕ(hi,j′). Then, Qi,j contains (as a subpath) a path in G from r to uj , all of

whose internal vertices belong to
⋃j
i′=i ϕ(hi′,j). Thus, V (Qi,j) ⊆ V (Ri) ∪ V (Cj). In particular,

this means that ∑
v∈V (Qi,j)

xv ≤
∑

v∈V (Ri)

xv +
∑

v∈V (Ci)

xv < δ/2 + δ/2 = δ.

Denote Q = {Qi,j : i, j ∈ {1, 2, . . . , t}}. Now, to show that (S,Q) is a (t, δ, 1/(2t))-witness
with respect to (G,S, x), it remains to show that for every vertex r ∈ V (G), it holds that
(1/2|S|) · |{P ∈ Q : r ∈ V (P)}| ≤ 1. To this end, consider some vertex r ∈ V (G). Let
i, j ∈ {1, 2, . . . , t}, i ≤ j, denote the integers such that r ∈ ϕ(hi,j) (if no such integers exist, then
|{P ∈ Q : r ∈ V (P)}| = 0). Note that {P ∈ Q : r ∈ V (P)} ⊆ {Qi,j′ : j′ ∈ {i, i + 1, . . . , t}} ∪
{Qi′,j : i′ ∈ {1, 2, . . . , j}}, and therefore |{P ∈ Q : r ∈ V (P)}| ≤ (t − i + 1) + j ≤ 2t. Thus,
(1/2|S|) · |{P ∈ Q : r ∈ V (P)}| ≤ 1.

We are now ready to present the translation. Here, given a feasible fractional solution of
Well-Linkedness LP, the translation entails the division of the value assigned to each variable
xv by t, along with the restriction of the result to the variable set of Grid Hitting LP. We
also pay a minor penalty of multiplying t by a fixed constant.

Lemma 4.5. There exists a fixed constant c such that for any triple (G,w, t) and feasible
fractional solution α of Well-Linkedness LP(G,w, t), the following holds. Define α′ : {xv :
v ∈ V (G)} → Q+

0 by α′(xv) = (1/t) · α(xv) for all v ∈ V (G). Then, α′ is a feasible fractional
solution of Grid Hitting LP(G,w, ct) such that cost(α′) = (1/t) · cost(α).

Proof. Let c and d be fixed constants determined later. Suppose, by way of contradiction,
that α′ is not a feasible fractional solution of Grid Hitting LP(G,w, ct). Then, there exists
a set S ∈ Gridct(G) such that

∑
v∈S α

′(xv) < 1. By the definition of α′, this means that∑
v∈S α(xv) < t.
Let H be a ct× ct-grid with V (H) = {hi,j : i, j ∈ {1, 2, . . . , ct}} and E(H) = {{hi,j , hi′,j′} :

|i − i′| + |j − j′| = 1}. Because S ∈ Gridct(G), there exists a minor model ϕ : V (H) → 2S

of H in G[S]. For every i ∈ {1, 2, . . . , ct}, denote Ri =
⋃ct
j=1 ϕ(hi,j). Similarly, for every

j ∈ {1, 2, . . . , ct}, let Cj =
⋃ct
i=1 ϕ(hi,j). Intuitively, for all i ∈ {1, 2, . . . , ct}, the set Ri captures

a “row” in the image of H in G, and for all j ∈ {1, 2, . . . , ct}, the set Cj captures a “column”
in the image of H in G.

Let I denote the set of integers i ∈ {1, 2, . . . , ct} such that
∑

v∈Ri α(xv) ≥ 2/c. Similarly, let

J denote the set of integers j ∈ {1, 2, . . . , ct} such that
∑

v∈Cj α(xv) ≥ 2/(cd). We claim that

since
∑

v∈S α(xv) < t/d, it holds that |I| < ct/2. To see this, suppose by way of contradiction

that this claim is false. Then,
∑

v∈S α(xv) ≥
∑ct

i=1

∑
v∈Ri α(xv) ≥ ct/2 · 2/(cd) = t/d, which

is a contradiction. Symmetrically, it holds that |J | < ct/2. Denote I = {1, 2, . . . , ct} \ I and
J = J . Then, |I| > ct/2 and |J | > ct/2. Let us denote VI =

⋃
i∈I Ri and VJ =

⋃
j∈J Cj .

Let H? be a (ct/2) × (ct/2)-grid with V (H?) = {h?i,j : i, j ∈ {1, 2, . . . , ct/2}} and E(H?) =
{{h?i,j , h?i′,j′} : |i− i′|+ |j − j′| = 1}. For all i ∈ {1, 2, . . . , ct/2}, let I[i] denote the i-th smallest
integer in I, and for all j ∈ {1, 2, . . . , ct/2}, let J [j] denote the j-th smallest integer in J . Define
ϕ? : V (H?) → (VI ∪ VJ) as follows. For all h?i,j ∈ V (H?), define ϕ?(h?i,j) =

⋃
({ϕ(hI[i],a) : a ∈

{J [j], J [j] + 1, . . . , J [j + 1] − 1}} ∪ {ϕ(ha,J [j]) : a ∈ {I[i], I[i] + 1, . . . , I[i + 1] − 1}}). Observe
that ϕ? is a minor model of H? in G.

Denote δ = 4/c. By Lemma 4.4, we obtain that G[VI ∪ VJ] contains a (ct/2, δ, 1/(ct/2))-
witness (S,Q) with respect to (G,α). However, by Lemma 4.3, if (1

8 −
δ
2)|S| > t, then α is

24

not a feasible fractional solution of Well-Linkedness LP(G,w, t), which is a contradiction.
Note that (1

8 −
δ
2)|S| = (1

8 −
2
c)
ct
2 = (c

16 − 1)t. Thus, by choosing c = 100 we reach the desired
contradiction.

So far, we derived that α′ is a feasible fractional solution of Grid Hitting LP(G,w, ct).
Observe that

cost(α′) =
∑

v∈V (G)

wvα
′(xv) = (1/t) ·

∑
v∈V (G)

wvα(xv) = (1/t) · cost(α).

This completes the proof.

5 From Grid Hitting LP to Pairwise-Flow Hitting LP

In this section, we translate a feasible fractional solution of Grid Hitting LP to a feasible
fractional solution of a new LP, called Pairwise-Flow LP.

5.1 (h, t)-Pairwise Flow and the Pairwise-Flow Hitting LP

For a graphG and an integer h, we let ConPart(G, h) denote the set of all tuples (X1, X2, . . . , Xh)
for which there exists X ⊆ V (G) such that X = X1 ·∪X2 ·∪ · · · ·∪Xh, and Xi is a connected set
for all i ∈ {1, 2, . . . , h}. Having this notation, we define the following notion.

Definition 5.1. A graph G has an (h, t)-pairwise flow if there exists X ∈ ConPart(G, h) such
that for all distinct i, j ∈ {1, 2, . . . , h}, the maximum number of pairwise vertex-disjoint paths
in G − (X \ (X[i] ∪ X[j])) with one endpoint in X[i] and the other endpoint in X[j] is lower
bounded by t. The maximum integer t such that G has an (h, t)-pairwise flow is denoted by
pfh(G).

In Pairwise-Flow Hitting LP, we are given a graph G that is H minor-free for a graph
H with |V (H)| = h, a weight function w : V (G) → Q+ and t ∈ N. Our objective is to
delete vertices of minimum weight so that G will not have an (h, t + 1)-pairwise flow. Each
variable xv indicates whether we delete v. For every X ∈ ConPart(G, h) and i, j ∈ {1, 2, . . . , h}
with i < j, we have variables λX,(i,j) and y

X,(i,j)
v for all v ∈ V (G). Informally, setting the

variable λX,(i,j) to 1 indicates that the maximum number of pairwise vertex-disjoint paths in
G − (X \ (X[i] ∪ X[j])) with one endpoint in X[i] and the other endpoint in X[j], after the
deletion of vertices as indicated by the variables xv for all v ∈ V (G), should be upper bounded

by t. In turn, the satisfaction of this indication is realized by using the variables y
X,(i,j)
v for

all v ∈ V (G), which specify (by setting their value to 1) which vertices hit, together with the
vertices already deleted, all paths in G− (X \ (X[i] ∪X[j])) with one endpoint in X[i] and the
other endpoint in X[j].6

6We remark that Pairwise-Flow Hitting LP(G,w, h, t) “approximates” the notion of (h, t)-pairwise flow,
but does not captures it “exactly”, in the following sense. If S ⊆ V (G) is a subset such that G−S does not have
(h, t+ 1)-pairwise flow, by setting the variables xv, v ∈ S, to 1, and xv, v /∈ S, to 0, we might not be able to set
the rest of the variables so that we obtain a feasible solution. However, our later arguments will imply that there
exists t′ close to t, such that if S ⊆ V (G) is a subset such that G−S does not have (h, t′+ 1)-pairwise flow, then
setting variables as above gives rise to a feasible solution. We can add constraints to make the LP capture the
measure precisely, but this only complicates it unnecessarily.

25

Pairwise-Flow Hitting LP(G,w, h, t):

min
∑

v∈V (G)

wvxv

s.t.

h−1∑
i=1

h∑
j=i+1

λX,(i,j) ≥ 1 ∀X ∈ ConPart(G, h)

∑
v∈V (G)

yX,(i,j)v ≤ t ∀X ∈ ConPart(G, h), i, j ∈ {1, . . . , h}, i < j

∑
v∈V (P)

(xv + yX,(i,j)v) ≥ λX,(i,j) ∀X ∈ ConPart(G, h), i, j ∈ {1, . . . , h}, i < j,

P ∈ PG−(X\(X[i]∪X[j]))(X[i], X[j])

xv ≥ 0, y
X,(i,j)
v ≥ 0, λX,(i,j) ≥ 0

The rationale behind the definition of this LP, in the context of our work, stems from the
following result.

Lemma 5.1. Let H be a graph and denote h = |V (H)|. For any graph G that is H-minor free,

it holds that pfh(G) < 5
(
h
2

)4
(tw(G) + 1).

Towards the proof of Lemma 5.1, we first establish the following simple result.

Lemma 5.2. Let G be a graph of treewidth w. Let P be a collection of t pairwise internally
vertex-disjoint paths in G between two vertices u, v ∈ V (G). Then, for any k, ` ∈ N such that
t ≥ k(3w+ 3 + 2`), there exists a subset B ⊆ V (G) of size at most k(w+ 1) such that the set of
connected components of G−B can be partitioned into k (pairwise disjoint) sets C1, C2, . . . , Ck,
with the property that for all i ∈ {1, 2, . . . , k}, the graph G[V (Ci) ∪ {u, v}] has at least ` paths
from P.

Proof. We prove the lemma by induction on k. In the basis, when k = 0, the claim (of the
lemma) is vacuously true. Now, consider some k ≥ 1, and suppose that the claim is true for
k − 1.

Since tw(G) = w, it holds that G has tree decomposition (T, β) of width w. For all b ∈ V (T),
it holds that |β(b)| ≤ w+ 1. Without loss of generality, suppose that T is binary (otherwise, we
can construct another tree decomposition of the same width where the tree is binary). Let x be
a vertex in T of maximum distance from the root of T such that G[(γ(x) \ β(x)) ∪ {u, v}] has
at least ` paths from P. (Since |P| ≥ k(3w+ 3 + 2`), |β(r)| ≤ w+ 1 for the root r of T and the
paths in P are internally vertex-disjoint, the graph G[(γ(r) \ β(r)) ∪ {u, v}] has this property,
and hence such x exists.)

Denote B′ = β(x), and let Ck be the set of connected components of G−B′ that belong to
G[γ(x)]−B′. Then, the graph G[V (Ck) ∪ {u, v}] has at least ` paths from P. By our choice of
x, it holds that for any child y of x in T (if such a child exists), G[(γ(y) \ β(y)) ∪ {u, v}] has
less than ` paths from P and |β(y)| ≤ w+ 1. Since the paths in P are internally vertex-disjoint,
this means that G[V (Ck) ∪ {u, v}] has at most 2(` + w + 1) paths from P. Moreover, at most
w + 1 paths in P include at least one vertex from B′ \ {u, v}. Therefore, if we remove from P
all paths that contain at least one vertex from (B′ ∪ V (Ck)) \ {u, v}, we are left with at least
(k− 1)(3w+ 3 + 2`) paths. Thus, by the inductive hypothesis, there exists a subset B′′ ⊆ V (G)
of size at most (k − 1)(w + 1) such that the set of connected components of G − (γ(x) ∪ B′′)
can be partitioned into k− 1 (pairwise disjoint) sets C1, C2, . . . , Ck−1, with the property that for
all i ∈ {1, 2, . . . , k − 1}, the graph G[V (Ci) ∪ {u, v}] has at least ` paths from P.

26

Now, denote B = B′ ∪ B′′. Then, |B| ≤ (w + 1) + (k − 1)(w + 1) = k(w + 1). Moreover,
C1, C2, . . . , Ck is a partition of the set of connected components of G−B with the property that
for all i ∈ {1, 2, . . . , k}, the graph G[V (Ci)∪{u, v}] has at least ` paths from P. This completes
the proof.

We need to extend Lemma 5.2 as follows.

Lemma 5.3. Let G be a graph of treewidth w. Let U = {u1, u2, . . . , uh} ⊆ V (G) be a set of
h vertices such that for all distinct ui, uj ∈ U , there exist t pairwise internally vertex-disjoint

paths in G− (U \{ui, uj}) between ui and uj. Suppose that t ≥ 5
(
h
2

)3
(w+ 1). Then, there exists

a subset B ⊆ V (G) of size at most
(
h
2

)2
(w + 1) such that the set C of connected components of

G−B has the property that for all distinct i, j ∈ {1, 2, . . . , h} there exist at least
(
h
2

)
components

C ∈ C such that G[V (C)∪{ui, uj}] has at least one path between ui and uj that does not include
any vertex from U \ {ui, uj}.

Proof. Let I = {(i, j) : i < j, i, j ∈ {1, 2, . . . , h}}. For each pair (i, j) ∈ I, let Pi,j denote a set of
t pairwise internally vertex-disjoint paths in G− (U \ {ui, uj}) between ui and uj . By Lemma

5.2 with k =
(
h
2

)
and ` =

(
h
2

)2
(w+1), and since t ≥ 5

(
h
2

)3
(w+1) ≥

(
h
2

)
(3w+3+2

(
h
2

)2
(w+1)) =

k(3w + 3 + 2`), the following claim holds. For each pair (i, j) ∈ I, there exists a subset
Bi,j ⊆ V (G) of size at most

(
h
2

)
(w + 1) such that the set of connected components of G− Bi,j

can be partitioned into
(
h
2

)
(pairwise disjoint) sets Ci,j1 , Ci,j2 , . . . , Ci,j

(h2)
, with the property that for

all q ∈ {1, 2, . . . ,
(
h
2

)
}, the graph G[V (Ci,jq) ∪ {u, v}] has at least

(
h
2

)2
(w + 1) paths from Pi,j .

Denote B =
⋃

(i,j)∈I Bi,j , and let C be the set of connected components of G − B. Then,

|B| ≤
(
h
2

)2
(w+1). Now, let D denote the set of connected components of G−B. Consider some

pair (i, j) ∈ I. Then, |B \ Bi,j | ≤ (
(
h
2

)2 − 1)(w + 1), and therefore for all q ∈ {1, 2, . . . ,
(
h
2

)
},

the graph G[(V (Ci,jq) \ B) ∪ {u, v}] has at least
(
h
2

)2
(w + 1) − |B \ Bi,j | ≥ 1 paths from Pi,j .

For all q ∈ {1, 2, . . . ,
(
h
2

)
}, the graph G[(V (Ci,jq) \ B) ∪ {u, v}] is a subgraph of G induced by

{u, v} and a distinct collection of components from C. However, this means that C has at least(
h
2

)
components C ∈ C such that G[V (C) ∪ {ui, uj}] has at least one path from Pi,j (which is a

path between ui and uj that does not include any vertex from U \ {ui, uj}). Since the choice of
(i, j) ∈ I was arbitrary, the proof is complete.

Before we turn prove Lemma 5.1, we need to state one more lemma, based on Lemma 5.3.
Later, we will actually directly use this lemma rather than Lemma 5.1, thus we need this lemma
exactly in the form below.

Lemma 5.4. Let H be a graph and denote h = |V (H)|. Let G be a graph that is H-minor
free, and let X ∈ ConPart(G, h) be such that for all distinct i, j ∈ {1, 2, . . . , h}, there exist a t
pairwise vertex-disjoint paths in G− (X \ (X[i]∪X[j])) with one endpoint in X[i] and the other

endpoint in X[j]. Then, t < 5
(
h
2

)4
(tw(G−X) + 1).

Proof. Suppose, by way of contradiction, that t ≥ 5
(
h
2

)4
(tw(G−X) + 1). Because G is H-minor

free, it does not have Kh (the clique on h vertices) as a minor. Let G′ be the graph obtained
from G by subdividing once every edge {u, v} ∈ E(G) for which there is no i ∈ {1, 2, . . . , h} such
that u, v ∈ X[i]. Note that G′ also does not have Kh as a minor, and it has the same treewidth
as G. Recall that for all i ∈ {1, 2, . . . , h}, we have that X[i] is a connected set in G and hence
also in G′, and that for all distinct i, j ∈ {1, 2, . . . , h}, we have that X[i] ∩X[j] = ∅. Thus, it
is well defined to contract in G′ each set X[i] into a new single vertex, which we denote by ui.
We let G? denote the resulting graph, that is, G? = (((G′/X[1])/X[2])/ · · ·)/X[h]. Moreover,

27

denote U = {ui : i ∈ {1, 2, . . . , h}}. Since G? is a minor of G′, we have that G? is Kh-minor
free, and tw(G?) ≤ tw(G′). Moreover, for all distinct i, j ∈ {1, 2, . . . , h}, there exist t pairwise
vertex-disjoint paths in G′−(X \(X[i]∪X[j])) with one endpoint in X[i] and the other endpoint
in X[j] and at least one internal vertex not in X. Thus, for all distinct i, j ∈ {1, 2, . . . , h}, there
exist t pairwise internally vertex-disjoint paths in G? − (U \ {ui, uj}) between ui and uj .

Denote w = tw(G?). Observe that G? − U is a minor of G′ − X, and therefore tw(G? −
U) ≤ tw(G′ − X). Moreover, as |U | =

(
h
2

)
, we have that w ≤ tw(G? − U) +

(
h
2

)
. Therefore,

w ≤ tw(G′−X)+
(
h
2

)
= tw(G−X)+

(
h
2

)
, which implies that 5

(
h
2

)3
(w+1) ≤ 5

(
h
2

)3
(w+

(
h
2

)
+1) ≤

5
(
h
2

)4
(w + 1) ≤ t. By Lemma 5.3, there exists a subset B ⊆ V (G?) of size at most

(
h
2

)2
(w + 1)

such that for all distinct ui, uj ∈ U , the graph G?−B has at least
(
h
2

)
connected components C

with the property that G?[V (C)∪{ui, uj}] has at least one path between ui and uj that does not
include any vertex from U \{ui, uj}. This means that for each pair of distinct vertices ui, uj ∈ U ,
we can choose a unique component C{i,j} in G?−B with the property that G?[V (C{i,j})∪{ui, uj}]
has at least one path between ui and uj that does not include any vertex from U \ {ui, uj}.
However, this means that G? has Kh as a minor (in fact, it even has a subdivision of Kh as a
subgraph). Thus, we have reached a contradiction.

We are now ready to prove Lemma 5.1.

Proof of Lemma 5.1. Let G be a graph that is H-minor free, and denote t = pfh(G). By the
definition of pfh(G), there exists X ∈ ConPart(G, h) such that for all distinct i, j ∈ {1, 2, . . . , h},
there exist t pairwise vertex-disjoint paths in G−(X\(X[i]∪X[j])) with one endpoint in X[i] and

the other endpoint in X[j]. By Lemma 5.4, t < 5
(
h
2

)4
(tw(G−X)+1). Since tw(G−X) ≤ tw(G),

the proof is complete.

5.2 Duality of Pairwise-Flow Hitting LP

Towards the translation of a feasible fractional solution of Grid Hitting LP to a feasible
fractional solution of Pairwise-Flow Hitting LP, we need to establish several claims. We
begin by analyzing an LP called Penalized Flow Hitting LP, which can roughly be viewed
as program nested in Pairwise-Flow Hitting LP. In Penalized Flow Hitting LP, we are
given a graph G, a penalty function x : V (G) → Q+

0 , and two disjoint subsets A,B ⊆ V (G).
We stress that xv, for any v ∈ V (G), is not a variable. Roughly speaking, the objective of the
LP can be viewed as follows. Each path P ∈ P(A,B) is already “partially hit”—specifically,
it is hit with

∑
v∈V (P) xv. Then, our objective is to choose a minimum number of vertices so

that every path P ∈ P(A,B) is “fully hit”—that is, it is hit with 1. Each variable yv indicates
whether the vertex v is chosen for this purpose.

Penalized Flow Hitting LP(G, x,A,B):

min
∑

v∈V (G)

yv

s.t.
∑

v∈V (P)

yv ≥ 1−
∑

v∈V (P)

xv ∀P ∈ P(A,B)

yv ≥ 0

First, we relate this LP to Pairwise-Flow Hitting LP as follows. We remark that the second
item in this lemma will be required only in a later section (Section 6.2).

Lemma 5.5. Let G be an H-minor free graph with h = |V (H)|, w : V (G)→ Q+, α : {xv : v ∈
V (G)} → Q+

0 and t ∈ N.

28

• On the one hand, if α cannot be extended to a feasible fractional solution of Pairwise-
Flow Hitting LP(G,w, h, t), then there exists X ∈ ConPart(G, h) such that for all
i, j ∈ {1, 2, . . . , h} with i < j, the optimum of Penalized Flow Hitting LP(G − (X \
(X[i] ∪X[j])), α,X[i], X[j]) is larger than t.

• On the one hand, if there exists X ∈ ConPart(G, h) such that for all i, j ∈ {1, 2, . . . , h} with
i < j, the optimum of Penalized Flow Hitting LP(G−(X \(X[i]∪X[j])), α,X[i], X[j])

is larger than t′ =
h(h− 1)

2
· t, then α cannot be extended to a feasible fractional solution

of Pairwise-Flow Hitting LP(G,w, h, t).

Proof. Given X ∈ ConPart(G, h), denote BX = {λX,(i,j) : i, j ∈ {1, . . . , h}, i < j} ∪ {yX,(i,j)v :
i, j ∈ {1, . . . , h}, i < j, v ∈ V (G)}. We say that an assignment β : B → Q+

0 is good for X if it
satisfies the following constraints:

•
h−1∑
i=1

h∑
j=i+1

β(λX,(i,j)) ≥ 1.

•
∑

v∈V (P)

(α(xv) + β(yX,(i,j)v)) ≥ β(λX,(i,j)) for all i, j ∈ {1, . . . , h} with i < j and P ∈

PG−(X\(X[i]∪X[j]))(X[i], X[j]).

Note that there does not exist a feasible fractional solution α′ of Pairwise-Flow Hitting
LP(G,w, h, t) that extends α if and only if there exists X ∈ ConPart(G, h) such that every

assignment β that is good for X satisfies
∑

v∈V (G) β(y
X,(i,j)
v) > t.

On the one hand, suppose that there does not exist a feasible fractional solution α′ of
Pairwise-Flow Hitting LP(G,w, h, t) that extends α. Then, every assignment β that is good

for X satisfies
∑

v∈V (G) β(y
X,(i,j)
v) > t In particular, this claim holds for every assignment β that

is good for X and such that β(λi,jv) = 1 for some i, j ∈ {1, . . . , h} with i < j and β(λi,jv) = 0
for all i′, j′ ∈ {1, . . . , h} with ′i < j′ and (i, j) 6= (i′, j′). However, this means that or all
i, j ∈ {1, 2, . . . , h} with i < j, the optimum of Penalized Flow Hitting LP(G− (X \ (X[i] ∪
X[j])), w, α,X[i], X[j]) is larger than t.

On the other hand, suppose that there exists X ∈ ConPart(G, h) such that for all i, j ∈
{1, 2, . . . , h} with i < j, the optimum of Penalized Flow Hitting LP(G − (X \ (X[i] ∪

X[j])), α,X[i], X[j]) is larger than t′ =
h(h− 1)

2
·t. Targeting a contradiction, suppose that there

exists a feasible fractional solution α′ of Pairwise-Flow Hitting LP(G,w, h, t) that extends

α. Then, there exists an assignment β that is good for X and satisfies
∑

v∈V (G) β(y
X,(i,j)
v) ≤ t.

Let i?, j? ∈ {1, 2, . . . , h} with i? < j? be such that β(λX,(i
?,j?)) ≥ 1/

(
h
2

)
= 2

h(h−1) . (Because
h−1∑
i=1

h∑
j=i+1

β(λX,(i,j)) ≥ 1, such a pair i?, j? exists.) Now, observe that
∑

v∈V (P)

(α(xv) + β(yX,(i
?,j?)

v))

≥ 2

h(h− 1)
for every P ∈ PG−(X\(X[i]∪X[j]))(X[i], X[j]). Accordingly, we define γ : {yX,(i,j)v :

i, j ∈ {1, . . . , h}, i < j, v ∈ V (G)} → Q+
0 as follows: For every y

X,(i,j)
v in the domain, define

γ(y
X,(i,j)
v) = β(y

X,(i,j)
v)/(

2

h(h− 1)
). Then, the two following properties hold:

•
∑

v∈V (G)

β(yX,(i,j)v) ≤ t′.

29

•
∑

v∈V (P)

(α(xv) + β(yX,(i
?,j?)

v)) ≥ 1 for every P ∈ PG−(X\(X[i]∪X[j]))(X[i], X[j]).

However, this implies that the optimum of Penalized Flow Hitting LP(G − (X \ (X[i] ∪
X[j])), α,X[i], X[j]) is at most t′, and hence we have reached a contradiction.

Now, to analyze Penalized Flow Hitting LP, we need to consider its dual, namely,
Penalized Flow Packing LP.

Penalized Flow Packing LP(G, x,A,B):

max
∑

P∈P(A,B)

zP (1−
∑

v∈V (P)

xv)

s.t.
∑

P∈P(A,B)
s.t. v∈V (P)

zP ≤ 1 ∀v ∈ V (G)

zP ≥ 0

From Proposition 3.2, we obtain the following observation.

Observation 5.1. Let G be a graph, x : V (G)→ Q+
0 , and A,B ⊆ V (G) be disjoint. Then, the

optimum of Penalized Flow Hitting LP(G, x,A,B) is equal to the optimum of Penalized
Flow Packing LP(G, x,A,B).

5.3 Translation

Towards the translation, we analyze Penalized Flow Packing LP. To this end, it is convenient
to rephrase Penalized Flow Packing LP in the form a well-known LP, namely, Min-Cost
Circulation LP. Here, we are given a directed graph D, a capacity function c : A(D) → N,
and a cost function k : A(D) → Q. For every arc (u, v) ∈ A(D), we have a variable f(u,v) that
specifies the amount of flow to traverse (u, v). The first set of constraints encodes the flow-
preservation requirement (we do not have any source or sink), and the second set of constraints
ensures that the flow respects the capacities of the arcs.

Min-Cost Circulation LP(D, c, k):

min
∑

(u,v)∈A(D)

k(u,v)f(u,v)

s.t.
∑

u∈Nin(v)

f(u,v) −
∑

u∈Nout(v)

f(v,u) = 0 ∀v ∈ V (D)

f(u,v) ≤ c(u,v) ∀(u, v) ∈ A(D)

f(u,v) ≥ 0

To rephrase Penalized Flow Packing LP, we will make use of the following notation. For
a path P ∈ P(A,B), we orient P from its endpoint in A to its endpoint in B. Accordingly, for
an edge an edge {u, v} ∈ E(G), we write (u, v) ∈ A(P) if {u, v} ∈ E(P) and u is closer than v
in P to the endpoint of P in A.

Let us now show that we can indeed rephrase Penalized Flow Packing LP as Min-Cost
Circulation LP. To this end, for a quadruple (G, x,A,B), we define a triple circulate(G, x,A,
B) = (D, c, k) as follows. First, set V (D) = {s, t} ∪ {vin : v ∈ V (G)} ∪ {vout : v ∈ V (G)} and
A(D) = {(t, s)} ∪ {(s, vin) : v ∈ A} ∪ {(vout, t) : v ∈ B} ∪ {(vin, vout) : v ∈ V (G)} ∪ {(uout, vin) :

30

{u, v} ∈ E(G)}. Next, define c : A(D)→ N as follows. Assign c((t, s)) = |V (G)|, and for all of
the remaining arcs in A(D) assign capacity 1. Lastly, define k : A(D) → Q as follows. Assign
k((t, s)) = −1. Then, for all v ∈ V (G), assign k((vin, vout)) = xv, and for all of the remaining
arcs in A(D) assign cost 0.

Lemma 5.6. Given a feasible fractional solution α of Penalized Flow Packing LP(G, x,A,
B), define β : {f(u,v) : (u, v) ∈ A(D)} → Q+

0 as follows.

• β(f(t,s)) =
∑

P∈P(A,B)

α(zP).

• For all v ∈ A, define β(f(s,vin)) =
∑

P∈P({v},B)

α(zP).

• For all v ∈ B, define β(f(vout,t)) =
∑

P∈P(A,{v})

α(zP).

• For all v ∈ V (G), define β(f(vin,vout)) =
∑

P∈P(A,B)
s.t. v∈V (P)

α(zP).

• For all {u, v} ∈ E(G), define β(f(uout,vin)) =
∑

P∈P(A,B)
s.t. (u,v)∈A(P)

α(zP).

Then, β is a feasible fractional solution of Min-Cost Circulation LP(D, c, k) whose cost is
−cost(α), where (D, c, k) = circulate(G, x,A,B).

Proof. To show that β is a feasible fractional solution of Min-Cost Circulation LP(D, c, k),
let us first show that

∑
u∈Nin(v) β(f(u,v)) =

∑
u∈Nout(v) β(f(v,u)) for all v ∈ V (D). We verify this

claim as follows. First, for the vertex s, we have that∑
u∈Nin(s)

β(f(u,s)) = β(f(t,s)) =
∑

P∈P(A,B)

α(zP)

=
∑
v∈A

∑
P∈P({v},B)

α(zP) =
∑
v∈A

β(f(s,vin)) =
∑

u∈Nout(s)

β(f(s,u)).

For the vertex t, we have that∑
u∈Nout(t)

β(f(t,u)) = β(f(t,s)) =
∑

P∈P(A,B)

α(zP)

=
∑
v∈B

∑
P∈P(A,{v})

α(zP) =
∑
v∈B

β(f(vout,t)) =
∑

u∈Nin(t)

β(f(u,t)).

For any vertex vin ∈ V (D), we have that∑
u∈Nout(vin)

β(f(vin,u)) = β(f(vin,vout)) =
∑

P∈P(A,B)
s.t. v∈V (P)

α(zP)

=
∑

u∈NG(v)

∑
P∈P(A,B)

s.t. (u,v)∈A(P)

α(zP) +
∑

P∈P({v},B)
if v∈A

α(zP)

=
∑

u∈Nin(vin)\{s}

β(f(u,vin)) + β(f(s,vin)) =
∑

u∈Nin(vin)

β(f(u,vin)).

31

Similarly, for any vertex vout ∈ V (D), we have that∑
u∈Nin(vout)

β(f(u,vout)) = β(f(vin,vout)) =
∑

P∈P(A,B)
s.t. v∈V (P)

α(zP)

=
∑

u∈NG(v)

∑
P∈P(A,B)

s.t. (v,u)∈A(P)

α(zP) +
∑

P∈P(A,{v})
if v∈B

α(zP)

=
∑

u∈Nout(vout)\{t}

β(f(vout,u)) + β(f(vout,t)) =
∑

u∈Nout(vout)

β(f(vout,u)).

In addition, we need to show that β(f(u,v)) ≤ c(u,v) for all (u, v) ∈ A(D). Here, we rely on the
supposition that α is a feasible fractional solution of Penalized Flow Packing LP(G, x,A,B).
First, for all (vin, vout) ∈ A(D), we have that β(f(vin,vout)) =

∑
P∈P(A,B)
s.t. v∈V (P)

α(zP) ≤ 1 = c(vin,vout).

For all (u, vin) ∈ A(D) (where possibly u = s), we have that β(f(u,vin)) ≤
∑

P∈P(A,B)
s.t. v∈V (P)

α(zP) ≤
1 ≤ c(u,vout). Similarly, for all (vout, u) ∈ A(D), we have that β(f(vout,u)) ≤

∑
P∈P(A,B)
s.t. v∈V (P)

α(zP) ≤
1 ≤ c(vout,u). Lastly, we have that β(f(t,s)) =

∑
P∈P(A,B) α(zP) ≤

∑
v∈V (G)

∑
P∈P(A,B)
s.t. v∈V (P)

α(zP) ≤
|V (G)| = c(t,s).

Finally, we verify that cost(β) = −cost(α). For this purpose, observe that

cost(β) =
∑

(u,v)∈A(D)

k(u,v)β(f(u,v))

=
∑

(vin,vout)∈A(D)

k(vin,vout)β(f(vin,vout)) + k(t,s)β(f(t,s))

=
∑

(vin,vout)∈A(D)

xvβ(f(vin,vout))− β(f(t,s))

=
∑

v∈V (G)

xv
∑

P∈P(A,B)
s.t. v∈V (P)

α(zP)−
∑

P∈P(A,B)

α(zP)

= −
∑

P∈P(A,B)

α(zP)(1−
∑

v∈V (P)

xv) = −cost(α).

This completes the proof.

To state the other direction of the relation, we first need the following folklore observation,
whose correctness immediately follows from the constraints that encode the flow-preservation
requirement.

Observation 5.2 (Folklore). Given a feasible fractional solution β of Min-Cost Circulation
LP(D, c, k), there exists a function γβ : C → Q+

0 where C is the set of all directed cycles in D,
such that for every arc (u, v) ∈ A(D), it holds that β(f(u,v)) =

∑
C∈C

s.t. (u,v)∈A(C)
γβ(C).

Now, we state the other direction.

Lemma 5.7. Let β be a feasible fractional solution of Min-Cost Circulation LP(D, c, k)
where (D, c, k) = circulate(G, x,A,B). For γ = γβ given by Observation 5.2, define α : {zP :
P ∈ P(A,B)} → Q+

0 as follows.

For every path P ∈ P(A,B), define α(zP) = γ(CP) where CP is the directed cycle
in D with arc set {(t, s)} ∪ {(vin, vout) : v ∈ V (P)} ∪ {(uout, vin) : (u, v) ∈ A(P)}.

Then, α is a feasible fractional solution of Penalized Flow Packing LP(G, x,A,B) whose
cost is upper bounded by −cost(β).

32

Proof. To show that α is a feasible fractional solution of Penalized Flow Packing LP(G, x,A,
B), we need to show that

∑
P∈P(A,B)
s.t. v∈V (P)

α(zP) ≤ 1 for all v ∈ V (G). To this end, consider some

vertex v ∈ V (G). By the capacity constraints of Min-Cost Circulation LP, we have that
β(f(vin,vout)) ≤ c(vin,vout) = 1. However, by the choice of γ, we have that

∑
C∈C

s.t. (vin,vout)∈A(C)
γ(C) =

β(f(vin,vout)), and hence
∑

C∈C
s.t. (vin,vout)∈A(C)

γ(C) ≤ 1. Here, C is the set of all directed cycles in

D. By the definition of α, we have that
∑

P∈P(A,B)
s.t. v∈V (P)

α(zP) ≤
∑

C∈C
s.t. (vin,vout)∈A(C)

γ(C). Therefore,∑
P∈P(A,B)
s.t. v∈V (P)

α(zP) ≤ 1 as required.

Observe that the only arc of negative cost (given by k) in D is (t, s), and hence the only
cycles of negative cost (in total) are the cycles CP associated with paths P ∈ P(A,B). Thus,
we have that

cost(α) =
∑

P∈P(A,B)

α(zP)(1−
∑

v∈V (P)

xv)

=
∑

P∈P(A,B)

γ(CP)(−k((t, s))−
∑

v∈V (P)

k((vin, vout)))

= −
∑

P∈P(A,B)

γ(CP)(
∑

(u,v)∈A(CP)

k((u, v))

≤ −
∑
C∈C

γ(C)(
∑

(u,v)∈A(C)

k((u, v))

= −
∑

(u,v)∈A(D)

k(u,v)β(f(u,v)) = −cost(β)

This completes the proof.

It is well known that Min-Cost Circulation LP has at least one optimal solution that is
integral, as stated in the following proposition.

Proposition 5.1 ([2]). Min-Cost Circulation LP(D, c, k) admits an optimal (feasible) frac-
tional solution that is integral.

From Proposition 5.1, by Lemmas 5.6 and 5.7, we obtain the following corollary.

Corollary 5.1. Penalized Flow Packing LP(G, x,A,B) admits an optimal (feasible) frac-
tional solution that is integral.

From Corollary 5.1, we obtain the following lemma.

Lemma 5.8. Let opt be the (fractional) optimum of Penalized Flow Packing LP(G, x,A,B).
Then, G has opt vertex-disjoint paths between A and B such that for each of these paths, say
P , it holds that

∑
v∈V (P) xv < 1.

Proof. By Corollary 5.1, Penalized Flow Packing LP(G, x,A,B) admits an integral solution
α of cost opt. If there exists a path P ∈ P(A,B) such that α(zP) > 0 and

∑
v∈V (G) xv ≥ 1,

by modifying α to assign zP the value 0 rather than α(zP), we obtain another integral solution
of the same (or better) cost. Thus, without loss of generality, assume that for every path
P ∈ P(A,B) such that α(zP) > 0, it holds that

∑
v∈V (G) xv < 1.

The constraints of the LP imply that for every path P ∈ P(A,B), either α(zP) = 0 or
α(zP) = 1, and that all paths P ∈ P(A,B) such that α(zP) = 1 are pairwise vertex-disjoint.
Let us denote P? = {P ∈ P(A,B) : α(zP) = 1}. Then, opt =

∑
P∈P?(1−

∑
v∈V (G) xv), which

means that |P?| ≥ opt.

Having Lemmas 5.5 and 5.8 at hand, the strong duality theorem leads us to the following
result.

33

Lemma 5.9. With respect to Pairwise-Flow Hitting LP(G,w, h, t), let α : {xv : v ∈
V (G)} → Q+

0 . If α cannot be extended to a feasible fractional solution of Pairwise-Flow Hit-
ting LP(G,w, h, t), then there exists X ∈ ConPart(G, h) such that for all i, j ∈ {1, 2, . . . , h}
with i < j, the graph G− (X \ (X[i] ∪X[j])) has t vertex-disjoint paths between X[i] and X[j]
such that for each of these paths, say P , it holds that

∑
v∈V (P) α(xv) < 1.

Proof. Suppose that there does not exist a feasible fractional solution of Pairwise-Flow Hit-
ting LP(G,w, h, t) that extends α. By Lemma 5.5, there exists X ∈ ConPart(G, h) such that
for all i, j ∈ {1, 2, . . . , h} with i < j, the optimum of Penalized Flow Hitting LP(G −
(X \ (X[i] ∪ X[j])), w, α,X[i], X[j]) is larger than t. By Observation 5.1, we infer that for all
i, j ∈ {1, 2, . . . , h} with i < j, the optimum of Penalized Flow Packing LP(G− (X \ (X[i]∪
X[j])), w, α,X[i], X[j]) is larger than t as well. Thus, by Lemma 5.8, for all i, j ∈ {1, 2, . . . , h}
with i < j, the graph G− (X \ (X[i]∪X[j])) has t vertex-disjoint paths between X[i] and X[j]
such that for each of these paths, say P , it holds that

∑
v∈V (P) α(xv) < 1.

We are now ready to present the translation. Here, given a feasible fractional solution
of Grid Hitting LP, the translation entails the multiplication of the value assigned to each
variable xv by O(t), along with the extension of the result to the variable set of Pairwise-Flow
Hitting LP. We also pay the penalty of multiplying t by a fixed constant.

Lemma 5.10. Let H be a graph with h = |V (H)|. There exist fixed constants c = c(H) and d =
d(H) such that for any triple (G,w, t) where G is H-minor free, and any feasible fractional solu-
tion α of Grid Hitting LP(G,w, t), the following holds. Define α′ by α′(xv) = dt ·α(xv) for all
v ∈ V (G). Then, there exists a feasible fractional solution α? of Pairwise-Flow Hitting LP(G,
w, h, ct) that extends α′ and such that cost(α?) = dt · cost(α).

Proof. Let c = c(H) and d = d(H) be fixed constants determined later. Suppose, by way of
contradiction, that there does not exist a feasible fractional solution of Pairwise-Flow Hitting
LP(G,w, h, ct) that extends α′. Then, by Lemma 5.9, there exists X ∈ ConPart(G, h) such
that for all i, j ∈ {1, 2, . . . , h} with i < j, the graph G − (X \ (X[i] ∪ X[j])) has ct vertex-
disjoint paths between X[i] and X[j] such that for each of these paths, say P , it holds that∑

v∈V (P) α
′(xv) < 1. For every choice of i, j ∈ {1, 2, . . . , h} with i < j, let Pi,j denote the

previously mentioned collection of ct paths. Moreover, let P? denote the collection of all paths
in G that belong to Pi,j for some i, j ∈ {1, 2, . . . , h} with i < j.

Let us denote U = {v ∈ V (P) : P ∈ P?} \X. Then, the paths in P? exist in G[U ∪X]. By
Lemma 5.4, this means that there exists a fixed constant a = a(H) such that tw(G[U]) > act.
From Proposition 4.3, by setting c to be c′/a where c′ = c′(H) is the constant in that proposition,
G[U] has a t× t grid as a minor.

Now, note that since
∑

v∈V (P) α
′(xv) < 1 for all P ∈ P? and |P?| =

(
h
2

)
ct, it holds that∑

v∈U α
′(xv) <

(
h
2

)
ct. By the definition of α, this means that

∑
v∈U dt ·α(xv) <

(
h
2

)
ct, and hence∑

v∈U α(xv) <
(
h
2

)
c/d. By setting d to be

(
h
2

)
c, we have that

∑
v∈U α(xv) < 1. Because G[U] has

a t× t grid as a minor, this implies that there exists S ∈ Gridt(G) such that
∑

v∈S α(xv) < 1.
However, this is a contradiction to the supposition that α if a feasible fractional solution of
Grid Hitting LP(G,w, t).

So far, we derived that there exists a solution α? of Pairwise-Flow Hitting LP(G,w, h, ct)
that extends α′. Observe that

cost(α?) = cost(α′) =
∑

v∈V (G)

wvα
′(xv) = dt ·

∑
v∈V (G)

wvα(xv) = dt · cost(α).

This completes the proof.

34

6 From Pairwise-Flow Hitting LP to Well-Linkedness LP

In this section, we translate a feasible fractional solution of Pairwise-Flow Hitting LP to a
feasible fractional solution of Well-Linkedness LP. For the sake of clarity, the translation is
divided into two main phases.

6.1 Translation, Phase I: Fractional highly connected set

The objective of Phase I is to show that, for any infeasible fractional solution of Well-Linkedness
LP, we can obtain a structured witness (based on Definition 4.1). The existence of this witness
will be the foundation of Phase II, where the actual translation is made. We begin by modifying
Definition 4.1 in two ways: first, we need to allow having, between every pair of vertices, many
fractional paths rather than only one fractional path; second, we do not obtain a clique but
only ensure that between any two large subsets of our structure, the flow is large. Formally, we
introduce the following two definitions.

Definition 6.1. Let G be a graph and x : V (G)→ Q+
0 . An (s, t, δ, κ)-fractional well-linkedness

witness with respect to (G, x), or simply an (s, t, δ, κ)-witness, is a triple (S,H,Q = {(Qe, λe) :
e ∈ E(H)}) where (i) S ⊆ V (G) is of size s, (ii) H is a graph with V (H) = S, (iii) for each
edge e = {u, v} ∈ E(H), Qe is a collection of paths in PG(u, v), and (iv) λe : Qe → Q+, such
that the following conditions hold.

1. For every edge e ∈ E(H) and P ∈ Qe, it holds that
∑

v∈V (P) xv ≤ δ.

2. For every edge e ∈ E(H), it holds that κ · (t/s2) =
∑

P∈Qe λe(P).

3. For every vertex v ∈ V (G), it holds that
∑

e∈E(H)

∑
P∈Qe

s.t. v∈V (P)
λe(P) ≤ 1.

Definition 6.2. Let G be a graph and x : V (G) → Q+
0 . An (s, t, δ, κ)-witness (S,H,Q =

{(Qe, λe) : e ∈ E(H)}) is a nice (s, t, δ, κ, η)-witness (with respect to (G, x)) if the following
condition holds: For every partition (T, T ′) of S, it holds that |EH(T, T ′)| ≥ η · |T | · |T ′|.

Similarly to Section 4.4, in the context of the definitions above, the term “with respect to
(G,α)” where α : {xv : v ∈ V (G)} → Q+

0 is an abbreviation of “with respect to (G, x′)” where
x′v = α(xv) for every v ∈ V (G). To make our goal clear, let us state one of the two main lemmas
that we intend to prove in this section.

Lemma 6.1. Let δ = 2, κ = (1−500η)2

107
and 0 < η < 1

500 . For any triple (G,w, t) and α : {xv :
v ∈ V (G)} → Q+

0 that cannot be extended to a feasible fractional solution of Well-Linkedness
LP(G,w, t), there exists a nice (s, t, δ, κ, η)-witness with respect to (G,α) for some s ∈ N.

Towards the proof of this lemma, let us first present our candidate for the subset S. Even-
tually, we will need to pick only a subset of it. To this end, we have the following corollary of
Observations 4.1 and 4.2.

Corollary 6.1. With respect to Well-Linkedness LP(G,w, t), suppose that α : {xv : v ∈
V (G)} → Q+

0 cannot be extended to a feasible fractional solution. Then, there exists a subset
S ⊆ V (G) such that the (fractional) optimum of flow-LP(G,S, α) is larger than t.

Now, we turn to analyze flow-LP(G,S, x). The following lemma reinterprets the meaning
of a feasible fractional solution (of high value) to this LP, giving us an assignment that is easier
to understand and analyze. Later, we work only with such simplified assignments. Here, it is
convenient to think of the variables as follows: for all U ⊆ S, each vertex u ∈ U sends gU,v units

of flow to each vertex v ∈ U , where each variable f
(u,U),v
P indicates how much of this flow is sent

35

via the path P ∈ PG(u, v). Roughly speaking, the conditions below will tell us that (i) a lot
of flow is circulating, (ii) we only send it to “large” sets U , (iii) for all U ⊆ S, u sends exactly
gU,v units of flow to v,7 (iv) through every vertex, at most one unit of flow passes, and (v) we
only send flow via “cheap” (in x) paths.

Lemma 6.2. Let flow-LP(G,S, x) be of (fractional) optimum t?. Then, there exists a function

β : {gU,v : U ⊆ S, v ∈ U} ∪ {f (u,U),v
P : U ⊆ S, u, v ∈ U,P ∈ PG(u, v)} → Q+

0 that has the
following properties:

1. t? ≤
∑

U⊆S
∑

u∈U β(gU,u)(|U | − 1).

2. For all u ∈ S and U ⊆ S, if β(gu,U) > 0 then |U | > |S|
2 .

3. For all U ⊆ S and distinct u, v ∈ U , it holds that
∑

P∈PG(u,v) β(f
(u,U),v
P) = β(gU,u).

4. For all r ∈ V (G), it holds that
∑

U⊆S
∑

u,v∈U
u6=v

∑
P∈PG(u,v)

s.t. r∈V (P)

(β(f
(u,U),v
P) + β(f

(v,U),u
P)) ≤ 1.

5. For all U ⊆ S, distinct u, v ∈ U and P ∈ PG(u, v), if β(f
(u,U),v
P) > 0 then

∑
r∈V (P) xr ≤ 1.

Proof. Let α be an optimal (feasible) fractional solution to flow-LP(G,S, x). Without loss of
generality, we suppose that

∑
U⊆S

s.t. u,v∈U
(α(gU,u) + α(gU,v)) =

∑
P∈P(u,v) α(fuvP), for all u, v ∈ S.

In addition, we suppose without loss of generality that if α(gu,U) > 0 then |U | > |S|
2 , for all

U ⊆ S and u ∈ U . We define β as follows. For all U ⊆ S and u ∈ U , set β(gU,u) = α(gU,u). For
all U ⊆ S, distinct u, v ∈ U and P ∈ PG(u, v), set

β(f
(u,U),v
P) =

α(gU,u)∑
U′⊆S

s.t. u,v∈U′
(α(gU ′,u) + α(gU ′,v))

· α(fuvP).

Condition 2 immediately holds. To see that Condition 1 is satisfied, note that

t? = cost(α) =
∑
U⊆S

∑
u∈U

α(gU,u)(|U | − |S|
2

) ≤
∑
U⊆S

∑
u∈U

β(gU,u)(|U | − 1).

For Condition 2, recall that
∑

U′⊆S
s.t. u,v∈U′

(α(gU ′,u) + α(gU ′,v)) =
∑

P∈P(u,v) α(fuvP), and therefore

∑
P∈PG(u,v)

β(f
(u,U),v
P) =

∑
P∈PG(u,v)

 α(gU,u)∑
U′⊆S

s.t. u,v∈U′
(α(gU ′,u) + α(gU ′,v))

· α(fuvP)


=

α(gU,u)∑
U⊆S

s.t. u,v∈U′
(α(gU,u) + α(gU,v))

·
∑

P∈PG(u,v)

α(fuvP)

= α(gU,u) = β(gU,u).

7In total, u can send more flow to v, but in the context of U , this is the amount of flow that it sends.

36

Next, for Condition 4, note that
∑

u,v∈S
u6=v

∑
P∈P(u,v)

s.t. r∈V (P)

α(fuvP) ≤ 1 (since α is feasible). Therefore,

∑
U⊆S

∑
u,v∈U
u6=v

∑
P∈PG(u,v)

s.t. r∈V (P)

(β(f
(u,U),v
P) + β(f

(v,U),u
P))

=
∑
U⊆S

∑
u,v∈U
u6=v

∑
P∈PG(u,v)

s.t. r∈V (P)

 α(gU,u) + α(gU,v)∑
U′⊆S

s.t. u,v∈U′
(α(gU ′,u) + α(gU ′,v))

· α(fuvP)


=
∑
u,v∈S
u6=v

∑
P∈PG(u,v)

s.t. r∈V (P)

∑
U⊆S

s.t. u,v∈U

 α(gU,u) + α(gU,v)∑
U′⊆S

s.t. u,v∈U′
(α(gU ′,u) + α(gU ′,v))

· α(fuvP)


=
∑
u,v∈S
u6=v

∑
P∈PG(u,v)

s.t. r∈V (P)

α(fuvP) ·

 ∑
U⊆S

s.t. u,v∈U

α(gU,u) + α(gU,v)∑
U′⊆S

s.t. u,v∈U′
(α(gU ′,u) + α(gU ′,v))


=
∑
u,v∈S
u6=v

∑
P∈PG(u,v)

s.t. r∈V (P)

α(fuvP) ≤ 1.

Lastly, consider Condition 5 with respect to some U ⊆ S, distinct u, v ∈ U and P ? ∈ PG(u, v)

such that β(f
(u,U),v
P ?) > 0. We need to show that

∑
r∈V (P ?) xr ≤ 1. Since β(f

(u,U),v
P ?) > 0, we

have that α(gU,u) > 0 (by the definition of β(f
(u,U),v
P ?)). Then, let α̂ be defined as α except that

α̂(gU,u) = 0, α̂(gU\{v},u) = α(gU\{v},u) + α(gU,u) and for all P ∈ PG(u, v),

α̂(fuvP) = α(fuvP)−
α(fuvP)∑

P ′∈PG(u,v) α(fuvP ′)
· α(gU,u).

Let us verify that α̂ is a feasible fraction solution to flow-LP(G,S, x). Since α̂(fuvP) ≤ α(fuvP)
for all P ∈ P(u, v), and all other variables fabP are assigned the same value by α and α̂, the
constraint

∑
a,b∈S

∑
P∈P(a,b)

s.t. r∈V (P)

fabP ≤ 1 is satisfied by α̂ for all r ∈ V (G). Moreover, for all a, b ∈ S
such that {a, b} 6= {u, v}, it holds that

∑
U′⊆S

s.t. a,b∈U′
(α̂(gU ′,a) + α̂(gU ′,b)) =

∑
U′⊆S

s.t. a,b∈U′
(α(gU ′,a) +

α(gU ′,b)). Thus, the only constraint whose satisfaction by α̂ is not immediate is as follows:∑
U′⊆S

s.t. u,v∈U′

(gU ′,u + gU ′,v) ≤
∑

P∈P(u,v)

fuvP .

Notice that∑
U′⊆S

s.t. u,v∈U′

(α̂(gU ′,u) + α̂(gU ′,v)) =
∑
U′⊆S

s.t. u,v∈U′

(α(gU ′,u) + α(gU ′,v))− α(gU,u)

≤
∑

P∈P(u,v)

α(fuvP)− α(gU,u)

=
∑

P∈P(u,v)

α̂(fuvP) +
∑

P∈P(u,v)

α(fuvP)∑
P ′∈PG(u,v) α(fuvP ′)

· α(gU,u)− α(gU,u)

=
∑

P∈P(u,v)

α̂(fuvP).

Now, observe that cost(α̂) > cost(α), else we contradict the optimality of α. In addition,

37

observe that

cost(α̂)− cost(α)

= (α̂(gU\{v},u)− α(gU\{v},u))(|U \ {v}| − |S|
2

) + (α̂(gU,u)− α(gU,u))(|U | − |S|
2

)

−
∑

P∈PG(u,v)

(α̂(fuvP)− α(fuvP))

 ∑
r∈V (P)

xr


= −α(gU,u) +

∑
P∈PG(u,v)

(
α(fuvP)∑

P ′∈PG(u,v) α(fuvP ′)
· α(gU,u)

)
·

 ∑
r∈V (P)

xr


= (

∑
P∈PG(u,v)

 ∑
r∈V (P)

xr

− 1) · α(gU,u).

This means that if α(gU,u) > 0 then
∑

P∈PG(u,v)

(∑
r∈V (P) xr

)
≤ 1. However, recall that indeed

α(gU,u) > 0, and therefore
∑

P∈PG(u,v)

(∑
r∈V (P) xr

)
≤ 1. This completes the proof.

We proceed to construct a “preliminary” witness. Roughly speaking, towards this goal, we
change our view of sending flow from a single vertex u to a set of vertices U , and rather think
of this scenario as if the vertices in U are all sending flow to each other via the vertex u. This
view leads us to the definition of two functions as follows.

Definition 6.3. Let flow-LP(G,S, x) be of (fractional) optimum t?. Let β be the function
given by Lemma 6.2. Define γβ : {{u, v} : u, v ∈ S, u 6= v} → Q+

0 as follows. For all distinct
u, v ∈ S,

γβ({u, v}) =
∑
U⊆S

s.t. u,v∈U

∑
w∈U\{u,v}

β(gU,w)

|U | − 2
.

In order to define the second function, let us first state the following lemma whose correctness
will follow from Condition 3 in Lemma 6.2. Here, for all distinct u, v ∈ S, P ∈ PG(u, v) (or
P ∈ WG(u, v)) and w ∈ U \ {u, v} such that w ∈ V (P), we let P [u,w] and P [w, v] denote the
subpaths (or subwalks) of P between u and w, and between w and v, respectively.

Lemma 6.3. Let flow-LP(G,S, x) be of (fractional) optimum t?. Let β be the function given by
Lemma 6.2. For all U ⊆ S and w ∈ U , there exists a function τw,Uβ :WG(U\{w}, U\{w})→ Q+

0

such that the following conditions hold.

1. For all P ∈ WG(U \ {w}, U \ {w}) such that P does not consist of two paths both having
w as an endpoint and whose other endpoints are distinct:8 τw,Uβ (P) = 0.

2. For all u ∈ U \ {w} and P ∈ PG(w, u):

β(f
(w,U),u
P) =

∑
v∈U\{w,u}

∑
P ′∈WG(u,v)

s.t. w∈V (P ′),P=P ′[u,w]

τw,Uβ (P ′).

3. For all distinct u, v ∈ U \ {w}:
∑

P∈WG(u,v)

τw,Uβ (P) = β(gU,w)/(|U | − 2).

8That is, w is visited by P exactly once, the endpoints of P are distinct, and if we traverse P from any
endpoint to w, we obtain a (simple) path.

38

Proof. Let U ⊆ S and w ∈ U . We define τw,Uβ :WG(U \ {w}, U \ {w})→ Q+
0 as follows. First,

for all P ∈ WG(U \ {w}, U \ {w}) such that P does not consist of two paths both having w as
an endpoint and whose other endpoints are distinct, define τw,Uβ (P) = 0. Thus, it is clear that
the first property is satisfied.

Next, consider two distinct vertices u, v ∈ U \ {w}. From Condition 3 in Lemma 6.2, we
know that ∑

P∈PG(w,u)

β(f
(w,U),u
P) =

∑
P∈PG(w,v)

β(f
(w,U),v
P) = β(gU,w).

The first equality in this condition implies that there exists a function τ̂u,v : PG(w, u) ×
PG(w, v)→ Q+

0 such that

• for all P ∈ PG(w, u),
∑

P ′∈PG(w,v)

τ̂u,v((P, P
′)) = β(f

(w,U),u
P)/(|U | − 2), and

• for all P ∈ PG(w, v),
∑

P ′∈PG(w,u)

τ̂u,v((P
′, P)) = β(f

(w,U),v
P)/(|U | − 2).

Thus, for each P ∈ WG(u, v) that consist of two paths both having w as an endpoint, we define
τw,Uβ (P) = τ̂u,v(P [w, u], P [w, v]).

Observe that for all u ∈ U \ {w} and P ∈ PG(w, u), we have that∑
v∈U\{w,u}

∑
P ′∈WG(u,v)

s.t. w∈V (P ′),P=P ′[u,w]

τw,Uβ (P ′) =
∑

v∈U\{w,u}

∑
P ′∈WG(u,v)
s.t. w∈V (P ′),
P=P ′[u,w],

P ′[w,v]∈PG(w,v)

τ̂u,v(P, P
′[w, v])

=
∑

v∈U\{w,u}

∑
P ′∈PG(w,v)

τ̂u,v(P, P
′)

=
∑

v∈U\{w,u}

β(f
(w,U),u
P)/(|U | − 2) = β(f

(w,U),u
P).

Thus, the second property is satisfied. For the third property, note that for all distinct u, v ∈
U \ {w}, we have that∑

P∈WG(u,v)

τw,Uβ (P) =
∑

P∈WG(u,v)
s.t. w∈V (P),
P [w,u]∈P(w,u),
P [w,v]∈P(w,v)

τ̂u,v(P [w, u], P [w, v])

=
∑

P∈PG(w,u)

∑
P ′∈PG(u,v)

τ̂u,v(P, P
′)

=
∑

P∈PG(w,u)

β(f
(w,U),u
P)/(|U | − 2)

= β(gU,w)/(|U | − 2).

This completes the proof.

In the context of Lemma 6.3, given U ⊆ S and w ∈ U with β(gU,w) > 0, we let τw,Uβ be an
arbitrarily chosen function that has the property in this observation. Now, we can present the
definition of the second function.

Definition 6.4. Let flow-LP(G,S, x) be of (fractional) optimum t?. Let β be the function
given by Lemma 6.2. Define ρ̂β : WG(S, S) → Q+

0 as follows. For all distinct u, v ∈ S and
P ∈ WG(u, v),

ρ̂β(P) =
∑
U⊆S

s.t. u,v∈U

∑
w∈U\{u,v}
s.t. w∈V (P)

τw,Uβ (P).

39

Let us now prove that these functions satisfy useful properties.

Lemma 6.4. Let flow-LP(G,S, x) be of (fractional) optimum t?. Let β be the function given
by Lemma 6.2. Then, the following conditions are satisfied.

1. t?/2 ≤
∑

u,v∈S
u6=v

γβ({u, v}).

2. For all (distinct) u, v ∈ S, it holds that γβ({u, v}) ≤ 100

|S|2
∑

u′,v′∈S
u′ 6=v′

γβ({u′, v′}).

3. For all (distinct) u, v ∈ S, it holds that
∑

P∈WG(u,v) ρ̂β(P) = γβ({u, v}).

4. For all r ∈ V (G), it holds that
∑

u,v∈S
u6=v

∑
P∈WG(u,v)

s.t. r∈V (P)

ρ̂β(P) ≤ 1.

5. For all (distinct) u, v ∈ S and P ∈ WG(u, v), if ρ̂β(P) > 0 then
∑

r∈V (P) xr ≤ 2.

Proof. To prove the inequalities and equalities that follow, we make use of conditions stated in
Lemmas 6.2 and 6.3, and of Definitions 6.3 and 6.4. First, note that∑

U⊆S

∑
w∈U

β(gU,w)(|U | − 1) =
∑
U⊆S

∑
w∈U

∑
u,v∈U\{w}

u6=v

β(gU,w)(|U | − 1)(|U |−1
2

)
= 2

∑
u,v∈S
u6=v

∑
U⊆S

s.t. u,v∈U

∑
w∈U\{u,v}

β(gU,w)

|U | − 2

= 2
∑
u,v∈S
u6=v

γβ({u, v}). (Definition 6.3)

Let us refer to the inequality above as Inequality (*).

Condition 1. Now, for Condition 1, note that

t? ≤
∑
U⊆S

∑
w∈U

β(gU,w)(|U | − 1) (Condition 1 in Lemma 6.2)

= 2
∑
u,v∈S
u6=v

γβ({u, v}). (Inequality (*))

Condition 2. For Condition 2, for all (distinct) u, v ∈ S, note that

γβ({u, v}) =
∑
U⊆S

s.t. u,v∈U

∑
w∈U\{u,v}

β(gU,w)

|U | − 2
(Definition 6.3)

≤
∑
U⊆S

s.t. |U|≥3

∑
w∈U

β(gU,w)

|U | − 2
.

40

In what follows, we suppose that |S| ≥ 3, else γβ({u, v}) = 0 and the proof of the condition is
complete. By Condition 2 in Lemma 6.2, if β(gU,w) > 0 then |U | > |S|/2. Thus,

γβ({u, v}) ≤
∑
U⊆S

s.t.|U|>|S|/2

∑
w∈U

β(gU,w)

max(|S|2 , 3)− 2

=
2

max(|S|, 6)− 4
·

∑
U⊆S

s.t.|U|>|S|/2

∑
w∈U

β(gU,w)

≤ 25(|S| − 2)

|S|2
·

∑
U⊆S

s.t.|U|>|S|/2

∑
w∈U

β(gU,w) (Since |S| ≥ 3)

=
50

|S|2
∑
U⊆S

s.t.|U|>|S|/2

∑
w∈U

β(gU,w)(
|S|
2
− 1)

≤ 50

|S|2
∑
U⊆S

∑
w∈U

β(gU,w)(|U | − 1)

=
100

|S|2
∑

u′,v′∈S
u′ 6=v′

γβ({u′, v′}). (Inequality (*))

Condition 3. For Condition 3, for all (distinct) u, v ∈ S, note that∑
P∈WG(u,v)

ρ̂β(P) =
∑

P∈WG(u,v)

∑
U⊆S

s.t. u,v∈U

∑
w∈U\{u,v}
s.t. w∈V (P)

τw,Uβ (P) (Definition 6.4)

=
∑
U⊆S

s.t. u,v∈U

∑
w∈U\{u,v}

∑
P∈WG(u,v)
s.t. w∈V (P)

τw,Uβ (P)

=
∑
U⊆S

s.t. u,v∈U

∑
w∈U\{u,v}

∑
P∈WG(u,v)

τw,Uβ (P) (Condition 1 in Lemma 6.3)

=
∑
U⊆S

s.t. u,v∈U

∑
w∈U\{u,v}

β(gU,w)

|U | − 2
(Condition 3 in Lemma 6.3)

= γβ({u, v}). (Definition 6.3)

Condition 4. For Condition 4, for all r ∈ V (G), note that∑
u,v∈S
u6=v

∑
P∈WG(u,v)

s.t. r∈V (P)

ρ̂β(P)

=
∑
u,v∈S
u6=v

∑
P∈WG(u,v)

s.t. r∈V (P)

∑
U⊆S

s.t. u,v∈U

∑
w∈U\{u,v}
s.t. w∈V (P)

τw,Uβ (P) (Definition 6.4)

=
∑
U⊆S

∑
u,v∈U
v 6=u

∑
w∈U\{u,v}

∑
P∈WG(u,v)

s.t. r,w∈V (P),
P [w,u]∈P(w,u),
P [w,v]∈P(w,v)

τw,Uβ (P) (Condition 1 in Lemma 6.3)

Rearranging the above, we obtain that it is equal to

41

∑
U⊆S

∑
w∈U

∑
u∈U\{w}

∑
P∈PG(w,u)

s.t. r∈V (P)

∑
v∈U\{w,u}

(
∑

P ′∈PG(w,v)

τw,Uβ (P)−
∑

P ′∈PG(w,v)

s.t. r∈V (P ′)

τw,Uβ (PP ′))

≤
∑
U⊆S

∑
w∈U

∑
u∈U\{w}

∑
P∈PG(w,u)

s.t. r∈V (P)

∑
v∈U\{w,u}

∑
P ′∈PG(w,v)

τw,Uβ (PP ′)

=
∑
U⊆S

∑
w,u∈U
w 6=u

∑
P∈PG(w,u)

s.t. r∈V (P)

∑
v∈U\{w,u}

(
∑

P ′∈PG(w,v)

τw,Uβ (PP ′) +
∑

P ′∈PG(u,v)

τu,Uβ (PP ′))

Renaming w to u, u to v and v to w, we obtain that the above is equal to∑
U⊆S

∑
u,v∈U
u6=v

∑
P∈PG(u,v)

s.t. r∈V (P)

∑
w∈U\{u,v}

(
∑

P ′∈PG(u,w)

τu,Uβ (PP ′) +
∑

P ′∈PG(v,w)

τv,Uβ (PP ′))

=
∑
U⊆S

∑
u,v∈U
u6=v

∑
P∈PG(u,v)

s.t. r∈V (P)

∑
w∈U\{u,v}

(
∑

P ′∈WG(v,w)
s.t. u∈V (P ′),
P=P ′[u,v]

τu,Uβ (P ′) +
∑

P ′∈WG(u,w)
s.t. v∈V (P ′),
P=P ′[u,v]

τv,Uβ (P ′)).

By making use of Condition 2 in Lemma 6.3, and then of Condition 4 in Lemma 6.2, we obtain
that the above is equal to∑

U⊆S

∑
u,v∈U
u6=v

∑
P∈PG(u,v)

s.t. r∈V (P)

(β(f
(u,U),v
P) + β(f

(v,U),u
P)) ≤ 1.

Condition 5. Lastly, for Condition 5, choose (distinct) u, v ∈ S and P ∈ PG(u, v) such that

ρ̂β(P) > 0. Note that ρ̂β(P) > 0 implies that
∑
U⊆S

s.t. u,v∈U

∑
w∈U\{u,v}
s.t. w∈V (P)

τw,Uβ (P) > 0. Thus, there exist

U ⊆ S that includes u and v, and a vertex w ∈ U \ {u, v} that belongs to V (P), such that
τw,Uβ (P) > 0. Denote P̂ = P [u,w] and P = P [w, v]. Now, recall that

β(f
(w,U),u

P̂
) =

∑
v∈U\{w,u}

∑
P ′∈PG(u,v)

s.t. w∈V (P ′),P̂=P ′[u,w]

τw,Uβ (P ′).

Since τw,Uβ (P) occurs in the right side above, we derive that β(f
(w,U),u

P̂
) > 0. Symmetrically,

β(f
(w,U),u

P
) > 0. However, β(f

(w,U),u

P̂
) > 0 implies that

∑
r∈V (P̂)

xr ≤ 1, and β(f
(w,U),u

P
) > 0

implies that
∑

r∈V (P) xr ≤ 1. Since
∑

r∈V (P) xr =
∑

r∈V (P̂)
xr +

∑
r∈V (P) xr − xw, we conclude

that
∑

r∈V (P) xr ≤ 2.

Since we would like to work with (simple) paths rather than walks, we modify Definition 6.4
as follows.

Definition 6.5. Let flow-LP(G,S, x) be of (fractional) optimum t?. Let β be the function given
by Lemma 6.2, and let ρ̂β be the function given by Definition 6.4. Let ρ′β :WG(S, S)→ PG(S, S)
be an arbitrary function with the property that every P ∈ WG(S, S), it holds that ρ′β(P) has the

same endpoints as P and V (ρ′β(P)) ⊆ V (P).9 Define ρβ : PG(S, S) → Q+
0 as follows. For all

distinct u, v ∈ S and P ∈ PG(u, v),

ρβ(P) =
∑

P ′∈ρ′−1
β (P)

ρ̂β(P ′).

9Given a path P ∈ WG(S, S), we can attain such ρ′β(P) by computing a shortest path on the graph induced
by the edges visited by P from one of its endpoint to the other.

42

Corollary 6.2. Let flow-LP(G,S, x) be of (fractional) optimum t?. Let β be the function given
by Lemma 6.2. Then, the following conditions are satisfied.

1. t?/2 ≤
∑

u,v∈S
u6=v

γβ({u, v}).

2. For all (distinct) u, v ∈ S, it holds that γβ({u, v}) ≤ 100

|S|2
∑

u′,v′∈S
u′ 6=v′

γβ({u′, v′}).

3. For all (distinct) u, v ∈ S, it holds that
∑

P∈WG(u,v) ρβ(P) = γβ({u, v}).

4. For all r ∈ V (G), it holds that
∑

u,v∈S
u6=v

∑
P∈WG(u,v)

s.t. r∈V (P)

ρβ(P) ≤ 1.

5. For all (distinct) u, v ∈ S and P ∈ WG(u, v), if ρβ(P) > 0 then
∑

r∈V (P) xr ≤ 2.

Proof. The first two conditions are stated in Lemma 6.4. Each of the other three conditions
follows from the analogous condition in Lemma 6.4, based on Definition 6.5.

We normalize our functions γ and ρ to obtain the following corollary to Corollary 6.2.

Corollary 6.3. Let flow-LP(G,S, x) be of (fractional) optimum larger than t. Then, there
exist functions γ : {{u, v} : u, v ∈ S, u 6= v} → Q+

0 and ρ : PG(S, S) → Q+
0 that satisfy the

following conditions.

1. t/2 =
∑

u,v∈S
u6=v

γ({u, v}).

2. For all (distinct) u, v ∈ S, it holds that
∑

P∈PG(u,v) ρ(P) = γ({u, v}) ≤ 50t/|S|2.

3. For all r ∈ V (G), it holds that
∑

u,v∈S
u6=v

∑
P∈PG(u,v)

s.t. r∈V (P)

ρ(P) ≤ 1.

4. For all (distinct) u, v ∈ S and P ∈ PG(u, v), if ρ(P) > 0 then
∑

r∈V (P) xr ≤ 2.

Proof. Let β be the function given by Lemma 6.2. Denote c =
2
∑

u,v∈S
u6=v

γβ({u, v})

t
. Note that

c ≥ 1. Define γ : {{u, v} : u, v ∈ S, u 6= v} → Q+
0 as follows. For all (distinct) u, v ∈ S, define

γ({u, v}) = γ({u, v})/c. Next, define ρ : PG(S, S) → Q+
0 as follows. For all P ∈ PG(S, S),

define ρ(P) = ρβ(P)/c. Then, because c ≥ 1, the correctness of the corollary directly follows
from Corollary 6.2.

We are now ready to construct the “preliminary” witness.

Lemma 6.5. Let flow-LP(G,S, x) be of (fractional) optimum larger than t. Let δ = 2 and
κ = 1

10 Then, there exists an (s, t, δ, κ, µ)-witness with respect to (G, x) where s = |S| and
|E(H)| ≥ µ · s2 for µ = 1

1000 .

Proof. Let γ and ρ be the functions whose existence is guaranteed by Corollary 6.3. We define a
triple (S,H,Q = {(Qe, λe) : e ∈ E(H)}) as follows. First, note that S ⊆ V (G) is already known.
Now, we let H be the graph with V (G) = S and E(H) = {{u, v} : u, v ∈ S, u 6= v, κ · (t/s2) ≤
γ({u, v})}. For each edge e = {u, v} ∈ E(H), we define Qe = {P ∈ PG(u, v) : ρ(P) > 0}.
Finally, for each edge e = {u, v} ∈ E(H), we define λe : Qe → Q+ as follows: For all P ∈ Qe,
set λe(P) = ρ(P).

To show that (S,H,Q) is an (s, t, δ, κ)-witness, we prove that the four conditions in Definition
6.1 are satisfied.

43

1. For every edge e ∈ E(H) and P ∈ Qe, we need to show that
∑

r∈V (P) xr ≤ δ. From
Condition 4 in Corollary 6.3 it follows that P ∈ Qe implies that ρ(P) > 0, and hence∑

r∈V (P) xr ≤ 2.

2. For every edge e = {u, v} ∈ E(H), we need to show that κ ·(t/s2) ≤
∑

P∈Qe λe(P). By the
definition of E(H), we have that κ·(t/s2) ≤ γ({u, v}). By Condition 2 in Corollary 6.3, we
have that γ({u, v}) =

∑
P∈PG(u,v) ρ(P) =

∑
P∈Qe λe(P). In case κ·(t/s2) <

∑
P∈Qe λe(P),

we can clearly decrease the values assigned by λe (while keeping them being positive) until
equality is achieved.

3. For every vertex r ∈ V (G), we need to show that
∑

e∈E(H)

∑
P∈Qe
r∈V (P)

λe(P) ≤ 1. By Condi-

tion 3 in Corollary 6.3, we have that
∑

e∈E(H)

∑
P∈Qe
r∈V (P)

λe(P) ≤
∑

u,v∈S
u6=v

∑
P∈PG(u,v)

s.t. r∈V (P)

ρ(P) ≤
1.

4. Lastly, we need to show that |E(H)| ≥ µ · s2. To this end, it is sufficient to prove that
d := |{{u, v} : u, v ∈ S, u 6= v, γ({u, v}) < κ · (t/s2)}| <

(
s
2

)
− µ · s2 = (1

2 − µ)s2 − s
2 .

By Condition 1 in Corollary 6.3, we have that t/2 =
∑

u,v∈S
u6=v

γ({u, v}). Moreover, by

Condition 2 in Corollary 6.3, for all distinct u, v ∈ S, it holds that γ({u, v}) ≤ 50 · (t/s2).
Thus, it holds that t/2 < d·κ·(t/s2)+(

(
s
2

)
−d)·50(t/s2), that is, s2 < 2(κ−50)d+100

(
s
2

)
<

2(κ− 50)d+ 50s2. Thus, d < 49s2/(100− 2κ) = 49s2/(100− 1
5) < 498

1000s
2 = (1

2 − µ)s2 − s
(for sufficiently large s).

This completes the proof.

To construct a nice witness, we need to modify our “preliminary” witness. To this end, we
utilize the following lemma and its corollary, which will also be useful later in Section 6.2.

Lemma 6.6. Let 0 < η < 1 and 0 < µ < 1. Let G be a graph with |E(G)| ≥ µn2 (where
n = |V (G)|). Then, there exists a set of edges U ⊆ E(G) of size at most η

2n
2 and a connected

component C of G− U on vertex set S such that

• |S| ≥ (µ− η
2)n.

• For any partition (T, T ′) of S, it holds that |EG[S](T, T
′)| ≥ η · |T | · |T ′|.

Proof. The proof is based on the usage of a potential function. Let G contains all undirected
graphs. Given a graph H ∈ G, let CH denote its set of connected components. We define a po-
tential function ϕ : G → N0 as follows. Given a graph H ∈ G, we define ϕ(H) =

∑
C∈CH |V (C)|2.

Initialize U1 := E(G) and i := 1. Now, as long as there exists a connected component
Ci ∈ CG[Ui] and a partition (Ti, T

′
i) of V (Ci) such that |ECi(Ti, T ′i)| < η · |Ti| · |T ′i |, we up-

date Ui+1 := Ui \ ECi(T, T ′) and increment i by 1. Let U? denote the set Ui obtained at the
end of this process, that is, for the last index i.

In iteration i, the value of the potential function is ϕ(G[Ui]). Clearly, the process terminated
before the value of the potential function becomes non-positive. In each iteration i, the value
of the potential function decreases by ϕ(G[Ui]) − ϕ(G[Ui+1]) = |V (Ci)|2 − (|Ti|2 + |T ′i |2) =
(|Ti| + |T ′i |)2 − (|Ti|2 + |T ′i |2) = 2|Ti||T ′i |, while the number of edges decreases by at most
|Ui| − |Ui+1| < η|Ti||T ′i |. In particular, since the initial value of the potential is at most n2,
we have that

∑
i 2|Ti||T ′i | ≤ n2 (where i ranges over all indices considered during the process).

Therefore, the total number of edges removed is smaller than
∑

i η|Ti||T ′i | ≤
η
2n

2. This means
that the number of edges we are left with is |U?| > |E(G)| − η

2n
2 ≥ (µ− η

2)n2.
Let C be the largest connected component in CG[U?], and define S = V (C). Clearly,

by the condition of termination of our process, for any partition (T, T ′) of S, it holds that

44

|EG[S](T, T
′)| > η · |T | · |T ′|. The average degree of a vertex in G[U?] is

|U?|
n

>
(µ− η

2)n2

n
=

(µ− η
2

)n. Therefore, there exists a vertex in G[U?] of degree larger than (µ− η
2)n, which means

that |S| > (µ− η
2)n.

Corollary 6.4. Let (S,H,Q = {(Qe, λe) : e ∈ E(H)}) be an (s, t, δ, κ)-witness with respect to
(G, x) for some graph G and x : V (G) → Q+

0 , such that |E(H)| ≥ µ · s2 for µ = 1
1000 . Let

0 < η < 1 satisfy µ − η
2 > 0. For some s′ ≥ (µ − η

2)s, δ′ = δ and κ′ = (µ − η
2)2κ, there exists

S′ ⊆ S such that (S′, H ′ := H[S′],Q′ = {(Qe, λe) : e ∈ E(H ′)}) is a nice (s′, t, δ′, κ′, η)-witness
with respect to (G, x).

Proof. Apply Lemma 6.6 on H with µ and η, and let S′ be the set that it outputs. Then,
|S′| = s′ ≥ (µ − η

2)s, and the satisfaction of the condition in Definition 6.2 (by (S′, H ′,Q′))
follows immediately from Lemma 6.6. Moreover, since H ′ and Q′ are restrictions of H and Q,
respectively, it is immediate that Conditions 1 and 3 in Definition 6.1 are satisfied. Finally,
note that for every edge e ∈ E(H), it holds that κ · (t/s2) =

∑
P∈Qe λe(P). Then, (S′, H ′,Q′)

is a nice (s′, t, δ, κ̂, µ′, η)-witness for κ̂ = κ(s′/s)2. Observe that κ̂ = κ(s′/s)2 ≥ (µ− η
2)2κ (since

s′ ≥ (µ − η
2)s and µ − η

2 > 0). Thus, by the definition of κ′, Condition 2 is satisfied as well.
(More precisely, it is satisfied with = replaced by ≤. However, equality is easily ensured by
decreasing values assigned by the functions λe.)

We are ready to conclude the proof of Lemma 6.1. For the sake of clarity, we restate it.

Lemma 6.1. Let δ = 2, κ = (1−500η)2

107
and 0 < η < 1

500 . For any triple (G,w, t) and α : {xv :
v ∈ V (G)} → Q+

0 that cannot be extended to a feasible fractional solution of Well-Linkedness
LP(G,w, t), there exists a nice (s, t, δ, κ, η)-witness with respect to (G,α) for some s ∈ N.

Proof. By Corollary 6.1, there exists a subset S ⊆ V (G) such that the (fractional) optimum
of flow-LP(G,S, α) is larger than t. By Lemma 6.5, there exists an (s, t, 2, 1

10)-witness with
respect to (G, x), where s = |S| and |E(H)| ≥ µ · s2 for µ = 1

1000 . Thus, by Lemma 6.6 and

since (1
1000 −

η
2)2 · 1

10 = (1−500η)2

107
, there exists a nice (s′, t, 2, (1−50η)2

1000 , η4 , η)-witness with respect
to (G, x) for some s′ ≥ (1

1000 −
η
2)s.

Before we turn to consider the second main result of this section, let us establish a lemma
that concerns the result of applying Lemma 6.6 for special input graphs. Indeed, later we will
be repeatedly modifying our graph, and would like it to still have the property (concerning
the existence of many edges crossing any partition) in Lemma 6.6 while also ensuring a certain
condition relating to deleted edges. Roughly speaking, in the following lemma we consider a
graph G? that already has the property described in Lemma 6.6, and delete a “small” set of
edges, D, from it. Then, we identify a set S within the resulting graph G, so that G[S] also has
this property, and so that “many” edges from D have at least one endpoint in S.

Lemma 6.7. Let 0 < η < η? < 1, 0 < µ < 1 and 0 < ξ < 1 such that
√

(ξ+ η
2

)

η? < µ − η
2 and

√
2ξ − 2ξ > η. Let G? be a graph with |E(G?)| ≥ (µ + ξ)n2, so that for any partition (T, T ′)

of V (G?), it holds that |EG?(T, T ′)| ≥ η? · |T | · |T ′|. Let D ⊆ E(G) have size at most ξn2, and
denote G = G? − D. Then, there exists a set of edges U ⊆ E(G) of size at most η

2n
2 and a

connected component C of G− U on vertex set S such that the following two conditions hold.

1. Let ξ̂n2 be the number of edges in D with exactly one endpoint in S. Then,

|S| ≥ (1−

√
(ξ̂ + η

2)

η?
)n.

45

2. For any partition (T, T ′) of S, it holds that |EG[S](T, T
′)| ≥ η · |T | · |T ′|.

Proof. By Lemma 6.6, there exists a set of edges U ⊆ E(G) of size at most η
2n

2 and a connected
component C of G− U on vertex set S such that

• |S| ≥ (µ− η
2)n.

• For any partition (T, T ′) of S, it holds that |EG[S](T, T
′)| ≥ η · |T | · |T ′|.

Let ξ̂n2 be the number of edges in D with exactly one endpoint in S. To complete the proof,

let us show that |S| ≥ (1−

√
(ξ̂ + η

2)

η?
)n. Denote |S| = αn and R = V (G?) \ S (note that

V (G?) = V (G)). Then, η? · |S| · |R| ≤ |EG?(S,R)|, and hence η? · αn · (1− α)n ≤ |EG?(S,R)|.
Since C is a connected component of G−U and |U | ≤ η

2n
2, we have that |EG(S,R)| ≤ η

2n
2, which

means that |EG?(S,R)| ≤ (ξ̂ + η
2)n2. Thus, α(1 − α) ≤ (ξ̂+ η

2
)

η? . Let β = min{α, 1 − α}. Then,

β ≤
√

(ξ̂+ η
2

)

η? . However, α ≥ µ− η
2 (because |S| ≥ (µ− η

2)n). Since

√
(ξ̂+ η

2
)

η? ≤
√

(ξ+ η
2

)

η? < µ− η
2 ,

this means that β = 1− α, and therefore α ≥ 1−
√

(ξ̂+ η
2

)

η? as required.

Let us also phrase this lemma in terms of witnesses.

Corollary 6.5. Let (S,H,Q = {(Qe, λe) : e ∈ E(H)}) be a nice (s, t, δ, κ, η)-witness with
respect to (G, x) for some graph G and x : V (G)→ Q+

0 . Let D ⊆ E(H) have size at most ξn2.

Let 0 < η′ < η satisfy ξ + η′

2 +

√
(ξ+ η′

2
)

η < |E(H)|/s2. Then, there exists S′ ⊆ S such that

(S′, H ′ := (H −D)[S′],Q′ = {(Qe, λe) : e ∈ E(H ′)}) is a nice (s′, t, δ, κ, η′)-witness with respect

to (G−D,x) such that s′ ≥ (1−

√
(ξ̂ + η′

2)

η
)s where ξ̂s2 is the number of edges in D that have

exactly one endpoint in S′.

Proof. The corollary directly follows from Lemma 6.7 when applied on the graph H.

In order to present the second main result of this section, we introduce the following defini-
tion. Here, we consider any large enough subsets of S (but which may not form a partition of
S), and state that there is large flow between them that passes through “short paths”, and so
that no vertex is used “too much” by these paths.

Definition 6.6. Let G be a graph and x : V (G)→ Q+
0 . A nice (s, t, δ, κ, η)-witness (S,H,Q =

{(Qe, λe) : e ∈ E(H)}) (with respect to (G, x)) is (γ, ρ, ν, ζ)-useful if for any two subsets X,Y ⊆
S such that |X|, |Y | ≥ γ|S|, there exists a set of paths W from PH(X,Y), such that

• Any path in W contains at most ν edges.

• |W| ≥ γρ
2 n

2.

• For any edge e ∈ E(G), it holds that ζ · |{W ∈ W : e ∈ E(W)}| ≤ 1.

Finally, we show that for the appropriate choice of parameters, a nice witness is in fact also
a useful witness. This claim will follow as a corollary to the following general lemma.

Lemma 6.8. Let 0 < η < 1, 0 < γ < 1. Denote ρ =
γη

2
, ζ = (

2

ρ
)ν−1 and ν =

4

ηγ
. Let

G be a graph that has the following property: for every partition (A,B) of V (G), it holds that
|EG(A,B)| ≥ η · |A| · |B|. Then, for any two subsets X,Y ⊆ V (G) such that |X|, |Y | ≥ γn
(where n = |V (G)|), there exists a set of paths from PG(X,Y) such that

46

• Any path in W contains at most ν edges.

• |W| ≥ γρ
2 n

2.

• For any edge e ∈ E(G), it holds that |{W ∈ W : e ∈ E(W)}| ≤ ζ.

Proof. Let us perform the following procedure. Initialize i := 0 and X0 := X. Additionally,
initialize W1 to be the multiset of paths that, for every vertex v ∈ X, contains ρn copies of the
path on the single vertex v. Note that X0 is a set. We will ensure that during the execution of
the procedure, the following properties hold for any i corresponding to an earlier iteration:

1. |Xi| ≥ (γ + i · γη
4

)n.

2. Every edge in E(G[Xi]) occurs in at most (
2

ρ
)i−1 paths in Wi.

3. Each path in Wi contains at most i edges.

4. Endpoints. The paths in Wi satisfy the following properties.

(a) Every path in Wi has a vertex in X as an endpoint.

(b) For any vertex x ∈ X, there exist exactly ρn paths (including copies) in Wi whose
only vertex is x.

(c) For any vertex x ∈ Xi \X, there exist at least ρn paths (including copies) inWi such
that x is an endpoint of that path.

Now, as long as there exist more than |Y |/2 vertices y ∈ Y such that y /∈ Xi, we execute
the following steps:

1. Let Bi denote the bipartite graph with bipartition (Xi, V (G) \Xi) and whose edge set is
EG(Xi, V (G) \Xi).

2. Let Ni denote the set of vertices in V (G)\Xi whose degree in Bi is at least ρn. Accordingly,
denote B′i = Bi[Xi ∪Ni].

3. For each vertex x ∈ Xi, let Pxi denote the multiset that consists of 1/ρ copies of each
occurrence of a path P ∈ Wi that has x as an endpoint and whose other endpoint (in case
|V (P)| ≥ 2) belongs to X.

4. Let fi : E(B′i) →
⋃
x∈Xi P

x
i be an arbitrarily chosen injective function such that for each

edge e = {x, y} ∈ E(B′i) where x ∈ Xi and y ∈ Ni, the path fi(e) belongs to Pxi . Such a
function fi exists because (i) every vertex x ∈ Xi is incident to fewer than n vertices in
B′i (where n = |V (G)|), while (ii) |Pxi | ≥ n because Wi contains at least ρn occurrences
of paths P that have x as an endpoint and whose other endpoint (in case |V (P)| ≥ 2)
belongs to X (under the assumption that invariant 4 is satisfied with respect to i), and
each such occurrence gives rise to 1/ρ copies in Pxi .

5. For each edge e ∈ E(B′i), let gi(e) denote the path obtained by extending fi(e) with the
edge e.

6. Update Xi+1 := Xi ∪ Ni, and Wi+1 := Wi ∪ {gi(e) : e ∈ E(B′i)} where the number of
occurrence of a path P in Wi+1 is equal to its number of occurrences of P in Wi plus the
number of edges e ∈ E(B′i) such that gi(e) = P .

7. Increment i by 1.

47

Let us now show that the properties stated earlier are indeed preserved. This is proved by
induction on i. The basis, where i = 0, is trivially true. In particular, invariant 1 holds since
|X| ≥ γn. Now, suppose that the properties hold for i, and let us prove them for i+ 1.

By the inductive hypothesis, it is immediate that invariants 3 and 4 are satisfied. In par-
ticular, invariant 4 is satisfied because every vertex in Ni has at least ρn neighbors in B′i and
hence becomes the endpoint of at least ρn new paths added to Wi+1. It is also easy to see that

invariant 2 is satisfied. Indeed, since every edge in E(G[Xi]) occurs in at most (
2

ρ
)i−1 paths in

Wi, and every newly added path (toWi+1) consists of one out of 1/ρ copies of a path inWi and
a unique new edge from E(B′i), the following holds: For any edge e ∈ E(G[Xi+1]), the number
of paths in Wi+1 that contain e is either exactly 1 (if the edge belongs to E(B′i)) or at most

(1 +
1

ρ
) times the number of paths in Wi that contain it (if the edge belongs to E(G[Xi])). The

latter number is upper bounded by (1 +
1

ρ
) · (2

ρ
)i−1 ≤ (

2

ρ
)i.

Now, we turn to prove invariant 1. By the inductive hypothesis, |Xi| ≥ (γ + i · γη4)n.
Thus, to obtain the bound |Xi+1| ≥ (γ + (i + 1) · γη4)n, it suffices to show that |Ni| ≥ γη

4 n
(since |Xi+1 \ Xi| = |Ni|). Since the process has not yet terminated, it holds that there are
more than |Y |/2 vertices y ∈ Y such that y /∈ Xi. By Condition 4 and since |Y | ≥ γ

2n, this
means that |V (G) \ Xi| ≥ γ

2n. Towards the proof that |Ni| ≥ γη
4 n, let us denote |Xi| = βn.

Then, |V (G) \ Xi| = (1 − β)n. Due to the property of G stated in the lemma, we have that
|E(Xi, V (G) \Xi)| ≥ ηβ(1 − β)n2. Thus, there exist at least η

2 (1 − β)n vertices in V (G) \Xi

such that each one among them has at least ηβ
2 n neighbors in Xi, since otherwise we obtain a

contradiction to the inequality |E(Xi, V (G)\Xi)| ≥ ηβ(1−β)n2 as follows: |E(Xi, V (G)\Xi)| <
((1− η

2)(1−β)n) · ηβ2 n+ (η2 (1−β)n) ·βn = (
1− η

2
2 + 1

2) · (ηβ(1−β)n2) = (1− η
4) · (ηβ(1−β)n2) <

ηβ(1 − β)n2. Since β ≥ γ and (1 − β) ≥ γ
2 , we get that there exists at least γη

4 n vertices in
V (G) \Xi such that each one among them has at least γη

2 n neighbors in Xi. Because ρ = γη
2 ,

this precisely means that |Ni| ≥ γη
4 n. This completes the proof that all conditions are preserved.

Notice that invariant 1 implies that the largest value i reaches is upper bounded by ν = 4
ηγ .

Let X? and W? be the set of vertices and set of paths obtained at the last iteration. Then,
since invariants 2, 3 and 4 are satisfied, we know that

1. Every edge in E(G) occurs in at most (
2

ρ
)ν−1 paths in W?. In particular, this means that

for any edge e ∈ E(G), it holds that |{W ∈ W? : e ∈ E(W)}| ≤ ζ.

2. Each path in W? contains at most ν edges.

3. Endpoints. The paths in W? satisfy the following properties.

(a) Every path in W? has a vertex in X as an endpoint.

(b) For any vertex x ∈ X, there exist exactly ρn paths (including copies) in W? whose
only vertex is x.

(c) For any vertex x ∈ X? \ X, there exist at least ρn paths (including copies) in W?

such that x is an endpoint of that path.

We now proceed to define our candidate for the set W required to complete the proof of the
lemma. Let Y ? be the set of vertices y ∈ Y such that y ∈ X?. Then, |Y ?| ≥ |Y |/2 ≥ γ

2n. For
each vertex y ∈ Y ?, let Py be the set of paths in W? that have y as an endpoint. Note that for
all y ∈ Y ?, it holds that |Py| ≥ ρn. Now, we defineW =

⋃
y∈Y ? Py. SinceW ⊆W?, to conclude

the proof, it remains to show that |W| ≥ γρ
2 n

2. To this end, note that |W| ≥
∑

y∈Y ? |Py| ≥
|Y ?| · ρn ≥ γρ

2 n
2, and thus the proof is complete.

48

Corollary 6.6. Let (S,H,Q = {(Qe, λe) : e ∈ E(H)}) be a nice (s, t, δ, κ, η)-witness with respect
to (G, x) for some graph G and x : V (G)→ Q+

0 . Then, for any 0 < γ < 1, it holds that (S,H,Q)

is (γ, ρ, ν, ζ)-useful where ρ =
γη

2
, ζ = (

2

ρ
)ν−1 and ν =

4

ηγ
.

Proof. The corollary directly follows from Lemma 6.8 when applied on the graph H.

6.2 Translation, Phase II: Iterative route detection

In this phase, we first describe a procedure whose starting point is Lemma 6.1 (the procedure
also makes repeated calls to Corollary 6.4). During the execution of this procedure, we construct
sets called X1, X2, . . . , Xh and S1, S2, . . . , Sh with special properties discussed later. Afterwards,
we further utilize Corollary 6.6 to transfer flow between every pair of sets Xi and Xj via (subsets
of) Si and Sj . Then, we will turn to present the translation itself.

Towards the Construction of X and S. The description of the promised procedure requires
to establish several lemmas. To this end, we first need to define what is a one (or two) sided
capacitated flow. We do not cap the flow passing through any vertex, but only the flow passing
through each designated vertex when its serves as the target endpoint of the flow-path (the
necessity of having sources and targets will be cleared when we prove Lemma 6.11 later). The
reason why we need to cap flow will also be cleared later (when we reach Lemma 6.14). Here,
the notation POG (A,B) refers to the set of paths in G oriented from an endpoint a ∈ A to an
endpoint in b ∈ B. Note that if a, b ∈ A ∩ B (a 6= b), then a path oriented from a to b differs
from the path on the same vertex set and edge set but with orientation from b to a.

Definition 6.7. Let G be a graph and x : V (G)→ Q+
0 . Let A,B ⊆ V (G). A pair (F , f), where

F is collection of oriented paths in POG (A,B) and f : F → Q+, is an (A,B)-flow if for every
vertex v ∈ V (G), it holds that

∑
F∈F

s.t. v∈V (F)
f(F) ≤ 1.

• The power of (F , f) is
∑

F∈F f(F).

• We say that (F , f) is C-cheap if for each path F ∈ F , it holds that
∑

v∈V (F) xr ≤ C.

• We say that (F , f) is K-capacitated if for each vertex v ∈ B, it holds that
∑

F∈F∩POG (A,v) f(F) ≤
K.10

Now, we proceed to define what is a terminal set, and in particular what is an inclusion-wise
minimal terminal set, with respect to Definition 6.7. This definition will be the basis of how
our procedure will select the Xi’s.

Definition 6.8. Let G be a graph and x : V (G) → Q+
0 . Let S ⊆ V (G). We say that a set

X ⊆ V (G) is a (P,C,K)-terminal set w.r.t. S if (i) G[X] is a connected graph and (ii) there
exists an (X,S)-flow (F , f) of power P that is C-cheap and K-capacitated.

We say that X is inclusion-wise minimal if there does not exist a strict subset X ′ ⊂ X that
is a (P,C,K)-terminal set w.r.t. S.

Let us now show that an inclusion-wise minimal terminal set exists.

Lemma 6.9. Let (S,H,Q = {(Qe, λe) : e ∈ E(H)}) be a nice (s, t, δ, κ, η)-witness with respect

to (G, x) for some graph G and x : V (G) → Q+
0 . Let 0 < P ≤ K · s, C = δ and K = κ · t(s−1)

s2
.

Then, there exists an inclusion-wise minimal (P,C,K)-terminal set w.r.t. S.

10Note that paths where v occurs as an internal vertex are not counted in this summation.

49

Proof. To show that there exists an inclusion-wise minimal (P,C,K)-terminal set w.r.t. S, it
suffices to show that there exists an (P,C,K)-terminal set w.r.t. S, because minimality can be
ensured by removing vertices one-by-one as long as we still have an (P,C,K)-terminal set w.r.t. S
at hand.

Notice that because (S,H,Q) is nice, it holds that H is a connected graph. Since κ > 0, for
every edge {u, v} ∈ E(H), there exists a path in G between u and v. Thus, we have that S is
a subset of the vertex set of a single connected component, say C, of G. Then, let us denote
X = V (C). We claim that X is a (P,C,K)-terminal set w.r.t. S. Clearly, G[X] is a connected
graph. Now, we define an (X,S)-flow (F , f) of power P that is C-cheap and K-capacitated as
follows. For each vertex v ∈ S, we insert into F the path whose single vertex is v. Then, for
each path P ∈ F , we define f(P) = K. With this definition, it is immediate that (F , f) has
power P and that it is K-capacitated. To show that it is C-cheap, it suffices to show that xv ≤ δ
for any v ∈ S. However, since H is connected and for every edge e ∈ E(H) and P ∈ Qe (where
Qe 6= ∅), it holds that

∑
v∈V (P) xv ≤ δ, the claim follows.

Next, we argue that because of the minimality of a terminal set, the removal of its vertices
only “eliminates” little flow compared to the total amount of flow that realizes a fractional
well-linkedness witness. To this end, we present a lemma that will help us to prove this claim.

Lemma 6.10. Let G be a graph. Let (F , f) be an (A,B)-flow for subsets A,B ⊆ V (G). Let
X ⊆ V (G) such that

∑
F∈F

s.t. X∩V (F)6=∅
f(F) ≥ P. Then, there exists an (X,B)-flow (F ′, f ′) of

power at least P and a surjective (w.r.t. F ′) function g : F → F ′ ∪ {nil} such that

• For any path P ∈ F , it holds that g(P ′) is either nil or a subpath of P oriented in the
same direction and with the same target vertex.

• For any path P ′ ∈ F ′, it holds that f ′(P ′) =
∑

P∈g−1(P ′) f(P).

Moreover, if (F , f) is C-cheap and K-capacitated, then so is (F ′, f ′).

Proof. For every vertex v ∈ X, let Fv denote the set of paths P ∈ F such that v ∈ V (P).
Now, for each vertex v ∈ X, select some subset F?v ⊆ Fv, so that

⋃
v∈X F?v =

⋃
v∈X Fv, and

F?v ∩ F?u = ∅ for all distinct u, v ∈ X. For every vertex v ∈ X, define F̂v and a function
f̂v : F̂v → Q+ as follows.

• We iterate over the paths P ? ∈ F?v in some (arbitrary) order. For each path P ? ∈ F?v ,
execute the following steps:

– Let P̂ be the subpath of P ? oriented from v to an endpoint, which is the target, of
P ? (in the same direction in which P ? is oriented).

– If P̂ has not been already inserted into F̂v, then we insert it and set f̂v(P̂) := f(P ?).

– Otherwise, update f̂v(P̂) := f̂v(P̂) + f(P ?).

Now, we define F ′ =
⋃
v∈X F̂v. In addition, we define f ′ : F ′ → Q+ as follows: For every v ∈ X

and F ∈ F?v , we define f ′(F) = f̂v(F). Then, since (F , f) is an (A,B)-flow, it is immediate
that (F ′, f ′) is an (X,B)-flow as well. We define the function g : F → F ′ ∪ {nil} as follows.
For every P ? ∈ F , if V (P) ∩X = ∅, then g(P) = nil, and otherwise, let v be the vertex in X
such that P ? ∈ F?v , and let g(P ?) be the subpath P̂ of P ? defined in the iteration where P ? was
considered. Note that the power of (F ′, f ′) equals

∑
F∈F

s.t. X∩V (F)6=∅
f(F). Then, our construction

immediately implies that g is surjective and satisfies the two properties in the lemma. In turn,
the existence of this function g directly implies that if (F , f) is C-cheap and K-capacitated,
then so is (F ′, f ′): the cheapness of (F ′, f ′) follows from the cheapness of (F , f) as well as the

50

fact that g is surjective and the first property that it satisfies, while the capacitation of (F ′, f ′)
follows from the capacitation of (F , f) as well as the fact that g is surjective and both of the
properties that it satisfies.

We now proceed to prove that the removal of an inclusion-wise minimal terminal set indeed
“eliminates” little flow.

Lemma 6.11. Let (S,H,Q = {(Qe, λe) : e ∈ E(H)}) be a nice (s, t, δ, κ, η)-witness with respect
to (G, x) for some graph G and x : V (G)→ Q+

0 . Let X be an inclusion-wise minimal (P,C,K)-

terminal set w.r.t. S, where 0 < P ≤ K · s, C = δ and K = κ · t(s−1)
s2

. Then, it holds that∑
e∈E(H)

∑
Q∈Qe

s.t. X∩V (Q)6=∅
λe(Q) < P + 1.

Proof. Suppose, by way of contradiction, that
∑

e∈E(H)

∑
Q∈Qe

s.t. X∩V (Q)6=∅
λe(Q) ≥ P + 1. Let Q

be the set of paths Q ∈
⋃
e∈E(H)Qe such that X ∩V (Q) 6= ∅. Orient each path in Q arbitrarily.

For each path Q ∈ Q, define q(Q) = λe(Q) where e ∈ E(H) is the edge whose endpoints are the
endpoints of Q. Since for every vertex v ∈ V (G), it holds that

∑
e∈E(H)

∑
P∈Qe

s.t. v∈V (P)
λe(P) ≤ 1,

we derive that (Q, q) is an (S, S)-flow. Since
∑

e∈E(H)

∑
Q∈Qe

s.t. X∩V (Q)6=∅
λe(Q) =

∑
Q∈Q q(Q), we

derive that (Q, q) has power at least P+ 1. Since for every edge e ∈ E(H) and P ∈ Qe, it holds
that

∑
v∈V (P) xv ≤ δ, we derive that (Q, q) is C-cheap. Lastly, since for every edge e ∈ E(H),

it holds that κ · (t/s2) =
∑

P∈Qe λe(P), we also derive that (Q, q) is K-capacitated. By Lemma
6.10, this means that there exists an (X,S)-flow (F , f) of power P + 1 that is C-cheap and
K-capacitated.

Because G[X] is a connected graph, we can arbitrarily choose a spanning tree T of G[X].
Let ` be some leaf of T . Now, denote X ′ = X \ {`}, F ′ = F ∩ POG (X ′, S) and f ′ = f |F ′ .
Then, G[X ′] is a connected graph, and it is clear that (F ′, f ′) is an (X ′, S)-flow that is C-
cheap and K-capacitated. Since X is inclusion-wise minimal, this means that (F ′, f ′) has
power smaller than P, that is,

∑
F∈F ′ f(F) < P. Moreover, since (F , f) is an (X,S)-flow, it

holds that
∑

F∈F
s.t. `∈∩V (F)

f(F) ≤ 1. Therefore, the power of (F , f), which equals
∑

F∈F ′ f(F) +∑
F∈F

s.t.X∩V (F)6=∅
f(F), is smaller than P + 1. Thus, we have reached a contradiction.

Since only little flow is eliminated in the settings of Lemma 6.11, we can maintain our witness
so that is stays a fractional well-linkedness witness (with worse parameters) after the removal
of an inclusion-wise minimal terminal set. Towards this, let us first show that only “few” edges
lose “a lot” of flow when the terminal set is removed.

Lemma 6.12. Let (S,H,Q = {(Qe, λe) : e ∈ E(H)}) be a nice (s, t, δ, κ, η)-witness w.r.t. (G, x)
for some graph G and x : V (G)→ Q+

0 . Let X be an inclusion-wise minimal (P,C,K)-terminal

set w.r.t. S, where 0 < P ≤ K · s, C = δ and K = κ · t(s−1)
s2

. Let ∆ > 0. Denote

D = {e ∈ E(H) :
∑
Q∈Qe

s.t. X∩V (Q)6=∅

λe(Q) >
∆(P + 1)

|E(H)|
}.

Then, it holds that |D| < |E(H)|/∆.

51

Proof. By Lemma 6.11, it holds that
∑

e∈E(H)

∑
Q∈Qe

s.t. X∩V (Q)6=∅

λe(Q) < P + 1. Therefore, we have that

P + 1 >
∑

e∈E(H)

∑
Q∈Qe

s.t. X∩V (Q)6=∅

λe(Q)

=
∑
e∈D

∑
Q∈Qe

λe(Q) +
∑

e∈E(H)\D

∑
Q∈Qe

s.t. X∩V (Q) 6=∅

λe(Q)

≥
∑
e∈D

∑
Q∈Qe

λe(Q)

> |D| · ∆(P + 1)

|E(H)|
.

Thus, |D| < |E(H)|/∆.

Let us now show how to maintain our fractional well-linkedness witness. To this end, we
have the following implication of Corollary 6.5. By Lemma 6.12, if we choose ∆ to be large,
then we lose only few edges, but the cap of the flow per edge decreases more.

Lemma 6.13. Let (S,H,Q = {(Qe, λe) : e ∈ E(H)}) be a nice (s, t, δ, κ, η)-witness w.r.t. (G, x)
for some graph G and x : V (G)→ Q+

0 . Let X be an inclusion-wise minimal (P,C,K)-terminal

set w.r.t. S, where 0 < P ≤ K·s, C = δ and K = κ· t(s−1)
s2

. Let ∆ > 0 such that ∆(P+1)
|E(H)| ≤ κ(t/s)2.

Denote

D = {e ∈ E(H) :
∑
Q∈Qe

s.t. X∩V (Q)6=∅

λe(Q) >
∆(P + 1)

|E(H)|
}.

Denote ξs2 = |D|. Let 0 < η′ < η satisfy ξ + η′

2 +

√
(ξ+ η′

2
)

η < |E(H)|/s2. Then, there exists

S′ ⊆ S\X such that (S′, H ′ := (H−D)[S′],Q′ = {(Qe, λe) : e ∈ E(H ′)}) is a nice (s′, t, δ, κ′, η′)-
witness w.r.t. (G−X,x|V (G)\X) as follows:

• s′ ≥ (1−

√
ξ̂ + η′

η
)s where ξ̂s2 is the number of edges in D with exactly one endpoint in S′;

• κ′ = (1−

√
ξ + η′

η
)(κ− ∆P

|E(H)|t/s2
).

Proof. By Corollary 6.5, there exists S′ ⊆ S such that (S′, H ′ := (H −D)[S′],Q′ = {(Qe, λe) :
e ∈ E(H ′)}) is a nice (s′, t, δ, κ, η′)-witness with respect to (G − D,x) such that s′ ≥ (1 −√

(ξ̂+ η′
2

)

η)s ≥ (1 −
√

(ξ̂+η′)
η)s where ξ̂s2 denotes the number of edges in D with exactly one

endpoint in S′. Note that all of the edges in E(H) that are incident to vertices in X ∩ S must
belong to D. Thus, we can assume that S′ ∩X = ∅. For every edge e ∈ E(H ′), let us denote
Q̂e = {Q ∈ Qe : X ∩ V (Q) = ∅}, and λ̂e = λe|Q̂e . Let us denote |E(H)| = µs2. Since none of
the edges in D belongs to E(H ′), it follows that for every edge e ∈ E(H ′), it holds that

52

∑
P∈Q̂e

λe(P) =
∑
P∈Qe

λe(P)−
∑
P∈Qe

s.t. X∩V (P)6=∅

λe(P)

≥
∑
P∈Qe

λe(P)− ∆(P + 1)

|E(H)|

= κ · (t/s2)− ∆(P + 1)

µs2

=
s′2

s2
(κ− ∆(P + 1)

µt
) · (t/s′2)

≥ (1−

√
ξ + η′

η
)2(κ− ∆(P + 1)

µt
) · (t/s′2)

≥ (1−

√
ξ + η′

η
)(κ− ∆P

µt
) · (t/s′2).

To achieve equality, it is clear that we can simply reduce values assigned by the functions λ̂e.
This implies (S′, H ′, Q̂ = {(Q̂e, λ̂e) : e ∈ E(H ′)}) is a nice (s′, t, δ, κ′, η′)-witness with respect to

(G−X,x|V (G)\X) where κ′ = (1−
√

ξ+η′

η)(κ− ∆P
µt).

The reason why we have not substituted ξ̂ by the upper bound ξ in the lemma above to
lower bound s′ is that this lower bound would not be good enough on its own. Specifically, if s′

is as small as the size we get after substitution, we will need to resort to a lower bound on ξ̂ in
order to say that we still have large flow from X to S′.

Procedure to Construct X and S. We are now ready to describe the procedure, called
ConstructSetsAlg, to “construct” X1, X2, . . . , Xh and S1, S2, . . . , Sh. More precisely, we only
show the existence of the desired sets. Here, we suppose that we have a triple (G,w, t) where G
is an H-minor free graph, h = |V (H)|, and a function α : {xv : v ∈ V (G)} → Q+

0 that cannot
be extended to a feasible fractional solution of Well-Linkedness LP(G,w, t). (The procedure
will also construct a set Sh+1, which will be convenient to use in the analysis.)

1. By Lemma 6.1 with η1 = 1
103

, there exists an (s1, t, δ = 2, κ1 = 1
4·107

, η1)-witness with
respect to (G, x) for some s1 ∈ N. Let (S1, H1,Q1) be such a witness.

2. Denote G1 := G and x1 := x.

3. For i = 1, 2, . . . , h:

(a) Denote µi = |E(Hi)|/s2
i . Note that ηi/4 ≤ µi ≤ 1/2 (the first inequality follows since

(Si, Hi,Qi) is nice).

(b) Denote Pi = pi · κi · ηi · µ2
i · t where pi =

p8i−1η
12
i µ

16
i

1020
. By Lemma 6.9, there exists an

inclusion-wise minimal (Pi, δ, κi · (si−1)t
s2i

)-terminal set w.r.t. Si in Gi. Let Xi be such

a witness.

(c) Let (Fi, fi) be an (Xi, Si)-flow in Gi of power Pi that is δ-cheap and κi · (si−1)t
s2i

-

capacitated.

(d) Let Yi ⊆ Si denote the set that contains every vertex that is the target of at least
one path in Fi.

(e) Let ∆i = 1/(2 · pi · ηi · µi).

53

(f) Let Di = {e ∈ E(Hi) :
∑
Q∈Qe

s.t. X∩V (Q)6=∅

λe(Q) >
∆i(Pi + 1)

µis2
i

=
κi
2
· t
s2
i

+
1

2piηiµ2
i s

2
i

} with

respect to Qi.

(g) Denote ξi = |Di|/si2. By Lemma 6.12, ξi ≤ µi
∆i

= 2 · pi · ηi · µ2
i .

(h) Denote Gi+1 := G−Xi and xi+1 := xi|V (Gi+1).

(i) By Lemma 6.13, there exists a nice (si+1, t, δ, κi+1, ηi+1)-witness with respect to
(Gi+1, xi+1), say (Si+1, Hi+1,Qi+1), such that

• ηi+1 := p2
i ·η3

i ·µ4
i /100. Then, the condition ξi+

ηi+1

2 +

√
(ξi+

ηi+1
2

)

ηi
< µi of Lemma

6.13 is satisfied. Indeed, because µi ≤ 1/2, we have that ξi+
ηi+1

2 +

√
(ξi+

ηi+1
2

)

ηi
≤

2piηiµ
2
i + p2

i η
3
i µ

4
i /200 +

√
2piµ2

i + p2
i η

2
i µ

4
i /200 < µi.

• Si+1 ⊆ Si \Xi,

• si+1 ≥ (1−

√
ξ̂i + ηi+1

ηi
)si = (1−

√
ξ̂i
ηi

+ p2
i η

2
i µ

4
i /100)si such that ξ̂i = |D̂i|/s2

i

where D̂i is the set of edges in Di with exactly one endpoint in Si+1.

Note that si+1 ≥ (1−

√
ξi
ηi

+ p2
i η

2
i µ

4
i /100)si ≥ (1− 2µi

√
pi)si.

• κi+1 := (1−
√

ξi+ηi+1

ηi
)2κi ≥ (1− 2µi

√
pi)

2κi ≥ (1−√pi)2κi ≥ 1
2κi,

Finally, denote X? = X1 ∪X2 ∪ · · · ∪Xh, and for any i ∈ {1, 2, . . . , h}, denote X<i =
⋃i−1
j=1Xj ,

X>i =
⋃h
j=i+1Xj , and Xi = X? \Xi. For convenience, denote X<h+1 = X?.

We will later require the following observation.

Observation 6.1. For all i ∈ {1, 2, . . . , h}, it holds that
κi+1 · (si+1−1)t

s2i+1

κi · (si−1)t
s2i

≤ 1.

Proof. Consider some i ∈ {2, 3, . . . , h+ 1}. Then, we have that

κi+1 ·
(si+1 − 1)t

s2
i+1

= (1−

√
ξi + ηi+1

ηi
)2 · κi ·

(si+1 − 1)t

s2
i+1

< (1−

√
ξi + ηi+1

ηi
)2 · κi ·

((1−
√

ξi+ηi+1

ηi
)si − 1)t

(1−
√

ξi+ηi+1

ηi
)2s2

i

≤ κi ·
(si − 1)t

s2
i

.

Flow Between Pairs of Sets in X. We proceed to further analyze the sets X1, X2, . . . , Xh

and S1, S2, . . . , Sh that we have at hand. First, due to our capping, each set Xi does not only
send large flow to Si, but it sends this large flow to a linear fraction of Si. However, we need
a slightly stronger statement from this, namely, that each set Xi sends large flow to a linear
fraction of Si such that every vertex in this linear fraction is the target of “large” flow (rather
than just nonzero flow). To this end, we have the following definition and corollary (that follows
from the lemma given after the definition).

54

Definition 6.9. Consider the settings of an execution of ConstructSetsAlg. For any i ∈
{1, 2, . . . , h}, define

Ỹi = {y ∈ Yi :
∑

F∈Fi∩POGi (Xi,y)

fi(F) ≥ Pi/(2si)}.

Lemma 6.14. Let G be a graph. Let (F , f) be a K-capacitated (A,B)-flow of power at least P

for A,B ⊆ V (G). Denote B̃ = {b ∈ B :
∑

F∈F∩POG (A,b)

f(F) ≥ Pi/(2|B|)}. Then, |B̃| ≥ P/(2K).

Proof. Since (F , f) has power P, it holds that∑
F∈F

f(F) ≥ P.

Moreover, since (F , f) is K-capacitated, for each vertex b ∈ B, it holds that∑
F∈F∩POG (A,b)

f(F) ≤ K.

However, note that∑
F∈F f(F) =

∑
b∈B\B̃

∑
F∈F∩POG (A,b)

f(F) +
∑
b∈B̃

∑
F∈F∩POG (A,b)

f(F)

< |B \ B̃| · P/(2|B|) + |B̃| · K
≤ P/2 + |B̃| · K.

From the first and third inequalities, we derive that P/(2K) ≤ |B̃|. This completes the proof.

Corollary 6.7. Consider the settings of an execution of ConstructSetsAlg. For any i ∈

{1, 2, . . . , h}, it holds that |Ỹi| ≥
piηiµ

2
i

2
· si.

Proof. By Lemma 6.14, we have that

|Ỹi| ≥ Pi/(2κi ·
(si − 1)t

s2
i

)

= (pi · κi · ηi · µ2
i · t)/(2κi ·

(si−1)t
s2i

)

≥ piηiµ
2
i

2
· si.

This completes the proof.

Now, we show that Xi does not only have large flow to Si, but it even has large flow to Si+1.
Here we will make use of the tradeoff provided by the parameter ξ̂i–namely, either ξ̂i itself is
large or Si+1 is large.

Lemma 6.15. Consider the settings of an execution of ConstructSetsAlg. For any i ∈
{1, 2, . . . , h}, there exist a subset Z?i ⊆ Si+1 and an (Xi, Z

?
i)-flow (F?i , f?i) in Gi with the three

following properties.

1. |Z?i | ≥
p2
i η

3
i µ

4
i

400
· si.

2. (F?i , f?i) is δ-cheap and κi ·
(si − 1)t

s2
i

-capacitated.

55

3. For every vertex z ∈ Z?i , it holds that
∑

F∈F?i ∩POGi (Xi,z)

f?i (F) ≥ p2
iκiη

3
i µ

4
i

400
· t

si+1
.

Proof. By Corollary 6.7, we know that

|Ỹi| ≥
piηiµ

2
i

2
· si.

Additionally, recall that

si+1 ≥ (1−

√
ξ̂i
ηi

+ p2
i η

2
i µ

4
i /100)si.

In light of these inequalities, we consider two cases as follows.

Case 1. First, suppose that ξ̂i ≤ p2
i η

3
i µ

4
i /100. In this case,

si+1 ≥ (1−

√
p2
i η

3
i µ

4
i /100

ηi
+ p2

i η
2
i µ

4
i /100)si

≥ (1− 1

9
p2
i η

2
i µ

4
i)si.

Therefore, |Ỹi ∩ Si+1| ≥
1

4
piηiµ

2
i · si. Accordingly, we denote Z?i = Ỹi ∩ Si+1, F?i = Fi ∩

PGi(Xi, Z
?
i) and f?i = fi|F?i . Because (Fi, fi) is δ-cheap and κi ·

(si − 1)t

s2
i

-capacitated, so is

(F?i , f?i). Moreover, the satisfaction of Condition 3 in the lemma follows from the definition of

Ỹi because Pi/(2si) ≥
p2
iκiη

3
i µ

4
i

400
· t

si+1
.

Case 2. Second, suppose that ξ̂i > p2
i η

3
i µ

4
i /100, that is, |D̂i| >

p2
i η

3
i µ

4
i

100
s2
i . In other words,

there are more than
p2
i η

3
i µ

4
i

100
s2
i edges e ∈ D̂i ⊆ E(Hi) that have exactly one endpoint in Si+1

and such that ∑
Q∈Qe

s.t. Xi∩V (Q) 6=∅

λe(Q) >
κi
2
· t
s2
i

+
1

2piηiµ2
i s

2
i

.

Note that for e ∈ E(Hi), by Qe we refer to the set corresponding to the fractional well-linkedness
witness associated with Si. Let Q be the set of paths Q ∈

⋃
e∈D̂i Qe. Orient each path in Q

towards its endpoint in Si+1. For each path Q ∈ Q, define q(Q) = λe(Q) where e ∈ D̂i is the
edge whose endpoints are the endpoints of Q. Notice that (Q, q) is an (Si, Si+1)-flow that is

δ-cheap and κi · (si−1)t
s2i

-capacitated. By Lemma 6.10, there exists an (Xi, Si+1)-flow (F̃i, f̃i) of

power larger than P̂ = |D̂i| · (κi2 ·
t
s2i

+ 1
2piηiµ2i s

2
i
) that is δ-cheap and κi · (si−1)t

s2i
-capacitated. Let

us denote
Z?i = {v ∈ Si+1 :

∑
F∈F̃i∩POGi (Xi,v)

f̃i(F) ≥ P̂/(2si+1)}.

By Lemma 6.14, we have that

56

|Z?i | ≥ P̂/(2κi ·
(si − 1)t

s2
i

)

= |D̂i| · (
κi
2
· t
s2
i

+
1

2piηiµ2
i s

2
i

)/(2κi ·
(si − 1)t

s2
i

)

≥ |D̂i| ·
κi
2
· t
s2
i

/(2κi ·
(si − 1)t

s2
i

)

≥ |D̂i|/(4si)
= ξ̂isi/4

≥ p2
i η

3
i µ

4
i

400
· si.

Accordingly, we denote F?i = F̃i ∩ PGi(Xi, Z
?
i) and f?i = f̃i|F?i . Because (F̃i, f̃i) is δ-cheap and

κi ·
(si − 1)t

s2
i

-capacitated, so is (F?i , f?i). To see that Condition 3 in the lemma it satisfied, note

that for every z ∈ Z?i , it holds that∑
F∈F̃i∩POGi (Xi,v)

f̃i(F) ≥ P̂/(2si+1)

≥ |D̂i| · κi2 ·
t
s2i
/(2si+1)

= ξ̂iκit/(4si+1)

≥ p2
iκiη

3
i µ

4
i

400
· t

si+1
.

This completes the proof.

Due to the special way in which we chose the sizes of the sets X1, X2, . . . , Xh (specifically,
each set Xi is substantially larger than each set Xj for j > i) and because each set Xi was
computed in the absence of all sets Xj for j < i, we can show that each set Xi sends large
(cheap and capacitated) flow to Si+1 even when all of the other Xj ’s are removed.

Lemma 6.16. Consider the settings of an execution of ConstructSetsAlg. For all i, j ∈
{1, 2, . . . , h}, i ≤ j, there exist a subset Z̃?i,j ⊆ Sj+1 and an (Xi, Z̃

?
i,j)-flow (F̃?i,j , f̃?i,j) in G −

(X<j+1 \Xi) with the three following properties where ` = max(i, j).

1. |Z̃?i,j | ≥
p2
`η

3
`µ

4
`

400
· s`.

2. (F̃?i,j , f̃?i,j) is δ-cheap and κ` ·
(s` − 1)t

s2
`

-capacitated.

3. For every vertex z ∈ Z̃?i,j, it holds that
∑

F∈F̃?i,j∩POG−(X<j+1\Xi)
(Xi,z)

f̃?i,j(F) ≥
p2
`κ`η

3
`µ

4
`

400
· t

s`+1
.

Proof. The proof is by induction on j.

Basis. In the basis, j ≤ i. Let Z?i ⊆ Si+1 ⊆ Sj+1 and (F?i , f?i) be the subset and (Xi, Z
?
i)-flow

(in Gi) whose existence is guaranteed by Lemma 6.15. Then, the following three properties are
satisfied.

1. |Z?i | ≥
p2
i η

3
i µ

4
i

400
· si.

57

2. (F?i , f?i) is δ-cheap and κi ·
(si − 1)t

s2
i

-capacitated.

3. For every vertex z ∈ Z?i , it holds that
∑

F∈F?i ∩POGi (Xi,z)

f?i (F) ≥ p2
iκiη

3
i µ

4
i

400
· t

si+1
.

Observe that none of the paths in F?i intersects X<j+1 \ Xi since X<j+1 \ Xi ⊆ X<i and

Gi = G−X<i. Thus, by setting Z̃?i,j = Z?i , and (F̃?i,j , f̃?i,j) = (F?i , f?i), the proof of the basis is
complete.

Step. Now, suppose that the claim holds for j − 1, and let us prove it for j ≥ i + 1. By the
inductive hypothesis, there exist a subset Z̃?i,j−1 ⊆ Sj and an (Xi, Z̃

?
i,j−1)-flow (F̃?i,j−1, f̃

?
i,j−1) in

G− (X<j \Xi) with the three following properties.

1. |Z̃?i,j−1| ≥
p2
j−1η

3
j−1µ

4
j−1

400
· sj−1.

2. (F̃?i,j−1, f̃
?
i,j−1) is δ-cheap and κj−1 ·

(sj−1 − 1)t

s2
j−1

-capacitated.

3. For every vertex z ∈ Z̃?i,j−1,
∑

F∈F̃?i,j−1∩POG−(X<j\Xi)
(Xi,z)

f̃?i,j−1(F) ≥
p2
j−1κj−1η

3
j−1µ

4
j−1

400
· t
sj

.

Note that the power of (F̃?i,j−1, f̃
?
i,j−1(F)) can be bounded from below as follows.

∑
F∈F̃?i,j−1

f̃?i,j−1(F) ≥ |Z̃?i,j−1| ·
p2
j−1κj−1η

3
j−1µ

4
j−1

400
· t
sj

≥
p2
j−1η

3
j−1µ

4
j−1

400
· sj−1 ·

p2
j−1κj−1η

3
j−1µ

4
j−1

400
· t
sj

= p4
j−1 ·

κj−1η
6
j−1µ

8
j−1

16 · 104
· sj−1

sj
· t.

We now modify f̃?i,j−1 to h as follows. Denote α =
κj · (sj−1)t

s2j

κj−1 · (sj−1−1)t

s2j−1

. Then, for every path F ∈

F̃?i,j−1, let h(F) = α·f̃?i,j−1(F). By Observation 6.1, it holds that α ≤ 1, and therefore (F̃?i,j−1, h)

is an (Xi, Z̃
?
i,j−1)-flow. Moreover, it is clear that (F̃?i,j−1, h) is δ-cheap and that for every vertex

z ∈ Z̃?i,j−1, it holds that
∑

F∈F̃?i,j−1∩POG−(X<j\Xi)
(Xi,z)

h(F) ≥ α ·
∑

F∈F̃?i,j−1∩POG−(X<j\Xi)
(Xi,z)

f̃?i,j−1(F).

The main property that we have achieved by rescaling that flows is that (F̃?i,j−1, h) (unlike

necessarily (F̃?i,j−1, f̃
?
i,j−1)) is κj ·

(sj − 1)t

s2
j

-capacitated.

In order to proceed with the proof, let us first remark that we can assume without loss of
generality that none of the paths in F̃?i,j−1 contains any vertex from Xi as an internal vertex,
because otherwise we can remove the beginning of the paths so that it will still be a path from a
vertex in Xi to a vertex in Sj while all of the conditions mentioned earlier will still be satisfied.

Moreover, since all of the paths in F̃?i,j−1 are oriented towards Sj and Sj ∩ Xi = ∅ (because

58

Sj ⊆ V (Gj) and j ≥ i+ 1), we derive that any path in F̃?i,j−1 only has its first vertex belong to
Xi.

Let us denote

F = {F ∈ F̃?i,j−1 : V (F) ∩Xj = ∅}, and F = F̃?i,j−1 \ F .

Havin the definitions of F and F at hand, we first argue that
∑
F∈F

h(F) < Pj + 1. To this end,

targeting a contradiction, suppose that
∑
F∈F

h(F) ≥ Pj + 1. Then, by Lemma 6.10, there exists

an (Xj , Sj)-flow of power at least Pj +1 that is δ-cheap and κj · (sj−1)t

s2j
-capacitated. In this case,

we can show that Xj \{`} is a (Pj , δ, κj · (sj−1)t

s2j
)-terminal set in Gj with respect to Sj where ` is

any leaf of any spanning tree of Gj [Xj] (as in the proof of Lemma 6.11), which contradicts the

minimality of Xj . We remark that here, to argue that Xj \ {`} is a (Pj , δ, κj · (sj−1)t

s2j
)-terminal

set in Gj rather than only G− (X<j \Xi) (note that Gj = G−X<j), we rely on the fact that

any path in F̃?i,j−1 only has its first vertex belong to Xi. Thus, we conclude that∑
F∈F

h(F) < Pj + 1.

Therefore, we derive that the power of (F , h|F), which we denote by Ph, can be bounded
from below as follows.∑

F∈F
h(F) =

∑
F∈F̃?i,j−1

h(F)−
∑
F∈F

h(F)

> α ·
∑

F∈F̃?i,j−1

f̃?i,j−1(F)− (Pj + 1)

≥
κj · (sj−1)t

s2j

κj−1 · (sj−1−1)t

s2j−1

· p4
j−1

κj−1η
6
j−1µ

8
j−1

16 · 104
· sj−1

sj
· t− (pjκjηjµ

2
j · t+ 1)

≥
s3
j−1

s3
j

· p4
j−1

κjη
6
j−1µ

8
j−1

16 · 104
· t− (pjκjηjµ

2
j · t+ 1)

≥ 1

(1− 2µj−1
√
pj−1)3

· p4
j−1

κjη
6
j−1µ

8
j−1

16 · 104
· t− 2pjκjηjµ

2
j · t

≥ p4
j−1

κjη
6
j−1µ

8
j−1

106
· t− 2pjκjηjµ

2
j · t

≥ (p4
j−1

η5
j−1µ

6
j−1

106
− 2pj) · κjηjµ2

j · t.

Towards the definition of Z̃?i,j , we first define

Zi,j = {z ∈ Z̃?i,j−1 :
∑

F∈F∩PO
G−(X<j+1\Xi)

(Xi,z)

h(F) ≥ Ph/(2|Z̃?i,j−1|)}.

By Lemma 6.14, we have that |Zi,j | ≥ Ph/(2κj ·
(sj−1)t

s2j
). Now, we define

Z̃?i,j = Zi,j ∩ Sj+1.

59

Additionally, we define F̃?i,j = F ∩ PO
G−(X<j+1\Xi)(Xi, Z̃

?
i,j), and f̃?i,j = h|F̃?i,j .

We proceed to verify that Z̃?i,j and (F̃?i,j , f̃?i,j) satisfy the three conditions in the lemma. First,

because (F , h|F) is an (Xi, Z̃
?
i,j−1)-flow in G− (X<j+1 \Xi) that is δ-cheap and κ` ·

(s` − 1)t

s2
`

-

capacitated, it is immediate that (F̃?i,j , f̃?i,j) is (Xi, Z̃
?
i,j)-flow in G− (X<j+1 \Xi) that is δ-cheap

and κ` ·
(s` − 1)t

s2
`

-capacitated. In particular, Condition 2 is satisfied.

For Condition 3, note that be the definition of Zi,j , for every vertex z ∈ Z̃?i,j , it holds that∑
F∈F∩PO

G−(X<j+1\Xi)
(Xi,z)

h(F) ≥ Ph/(2|Z̃?i,j−1|)

≥

(
(p4
j−1

η5
j−1µ

6
j−1

106
− 2pj) · κjηjµ2

j · t

)
/

(
p2
j−1η

3
j−1µ

4
j−1

400
· sj−1

)

≥
16 · 104 · (p4

j−1

η5j−1µ
6
j−1

106
− 2pj)

p2
j−1η

3
j−1µ

4
j−1 · p2

jη
2
jµ

2
j

·
p2
jκjη

3
jµ

4
j

400
· t

sj−1

≥ (1− 2µi
√
pi)

2 ·
16 · (p4

j−1

η5j−1µ
6
j−1

100 − 105pj)

p2
j−1η

3
j−1µ

4
j−1 · p2

jη
2
jµ

2
j

·
p2
jκjη

3
jµ

4
j

400
· t

sj+1

≥
p4
j−1η

5
j−1µ

6
j−1 − 107pj

100 · p2
j−1η

3
j−1µ

4
j−1 · p2

jη
2
jµ

2
j

·
p2
jκjη

3
jµ

4
j

400
· t

sj+1
.

Thus, to conclude the proof of Condition 3, it suffices to show that
p4
j−1η

5
j−1µ

6
j−1 − 107pj

100 · p2
j−1η

3
j−1µ

4
j−1 · p2

jη
2
jµ

2
j

≥ 1.

To this end, notice that pj ≤ p4
j−1η

5
j−1µ

6
j−1/(2 · 107). Thus,

p4
j−1η

5
j−1µ

6
j−1 − 107pj

100 · p2
j−1η

3
j−1µ

4
j−1 · p2

jη
2
jµ

2
j

≥

p2
j−1η

2
j−1µ

2
j−1

200p2
jη

2
jµ

2
j

≥
pj−12

200p2
j

≥ 1.

It remains to prove that Condition 1 is satisfied. That is, we need to show that |Z̃?i,j | ≥
p2
jη

3
jµ

4
j

400
· sj . To this end, notice that |Z̃?i,j | ≥ |Zi,j | − (sj − sj+1). Now, recall that sj+1 ≥

(1 − 2µj
√
pj)sj . Thus, |Z̃?i,j | ≥ |Zi,j | − 2µj

√
pjsj . Next, recall that |Zi,j | ≥ Ph/(2κj ·

(sj−1)t

s2j
).

Therefore, we have that

|Z̃?i,j | ≥ Ph/(2κj ·
(sj−1)t

s2j
)− 2µj

√
pjsj

≥
(

(p4
j−1

η5j−1µ
6
j−1

106
− 2pj) · κjηjµ2

j · t
)
/

(
2κj · (sj−1)t

s2j

)
− 2µj

√
pjsj

≥
(
p4
j−1η

5
j−1µ

6
j−1 · ηjµ2

j

)
/

(
107 · (sj−1)

s2j

)
− 2µj

√
pjsj

≥
(
p4j−1η

5
j−1µ

6
j−1·ηjµ2j

107
− 2
√
pj

)
· sj .

60

Notice that pj ≤
p8j−1η

10
j−1µ

12
j−1·η2jµ4j

1020
≤ 1

4

(
p4j−1η

5
j−1µ

6
j−1·ηjµ2j

107

)2

. Thus,

|Z̃?i,j | ≥
p4
j−1η

5
j−1µ

6
j−1 · ηjµ2

j

2 · 107
· sj

≥
p4
j−1

p2
j

·
η3
j−1µ

4
j−1

105
·
p2
jη

3
jµ

4
j

400
· sj

≥
p2
jη

3
jµ

4
j

400
· sj .

This completes the proof.

As a corollary of Lemma 6.16, we derive the following result.

Corollary 6.8. Consider the settings of an execution of ConstructSetsAlg. Suppose that
t ≥ 1/(phκhηhµ

2
h). For any i ∈ {1, 2, . . . , h}, there exist a subset Z̃?i ⊆ Sh+1 and an (Xi, Z̃

?
i)-

flow (F̃?i , f̃?i) in G−Xi with the three following properties.

1. |Z̃?i | ≥
p2
hη

3
hµ

4
h

400
· sh.

2. (F̃?i , f̃?i) is δ-cheap and κh ·
(sh − 1)t

s2
h

-capacitated.

3. For every vertex z ∈ Z̃?i , it holds that
∑

F∈F̃?i ∩POG−Xi
(Xi,z)

f̃?i (F) ≥
p2
hκhη

3
hµ

4
h

400
· t

sh+1
.

Furthermore, we show that also large enough subsets of each set Sh can send to each other
large (cheap and capacitated) flow to Sh+1 even when all of the Xi’s are removed. Here we will
make use of Corollary 6.6.

Lemma 6.17. Let 0 < γ < 1. Consider the settings of an execution of ConstructSetsAlg.
For any disjoint subsets A,B ⊆ Sh+1 such that |A|, |B| ≥ γsh+1, there exists an (A,B)-flow
(FA,B, fA,B) in G−X? with the four following properties.

1. The power of (FA,B, fA,B) is at least κh+1(
γηh+1

4
)

4
γηh+1

+1 · t.

2. For every vertex a ∈ A, it holds that
∑

F∈FA,B∩POG−X? (a,B)

fA,B(F) ≤ κh+1 · (t/sh+1).

3. For every vertex b ∈ B, it holds that
∑

F∈FA,B∩POG−X? (A,b)

fA,B(F) ≤ κh+1 · (t/sh+1).

4. (FA,B, fA,B) is
4δ

γ · ηh+1
-cheap.

Proof. Let A,B ⊆ Sh+1 be such that |A|, |B| ≥ γsh+1. Recall that (Sh+1, Hh+1,Qh+1) is a
nice (sh+1, t, δ, κh+1, ηh+1)-witness with respect to (Gh+1, xh+1). By Corollary 6.6, it is also

(γ, ρ, ν, ζ)-useful where ρ =
γηh+1

2
, ζ = (

2

ρ
)ν−1 and ν =

4

γηh+1
.

By Definition 6.6, there is a set of paths P? ⊆ PHh+1
(A,B) with the following properties.

• Any path in P? contains at most
4

γ · ηh+1
edges.

61

• |P?| ≥ γρ
2 · s

2
h+1 =

γ2ηh+1

4 · s2
h+1.

• For any edge e ∈ E(Hh+1), it holds that |{P ∈ P? : e ∈ E(P)}| ≤ (
2

ρ
)ν−1 ≤ (

4

γηh+1
)

4
γηh+1 .

Because (Sh+1, Hh+1,Qh+1) is an (sh+1, t, δ, κh+1, ηh+1)-witness, the following condition holds:
for every edge e ∈ E(Hh+1), it holds that κh+1 · (t/s2

h+1) =
∑

Q∈Qe λe(Q) where Qe ∈ Qh+1.
Therefore, for every path P ? ∈ P? with endpoints u ∈ A and v ∈ B, there exist a set of walks
WP ? ⊆ WGh+1

(u, v) and a function fP ? :WP ? → Q+ such that

•
∑

W∈WP?

fP ?(W) = κh+1 · (t/s2
h+1), and

• for every vertex w ∈ V (Gh+1),
∑

W∈WP?
s.t. w∈V (W)

fP ?(W) ≤
∑

e∈E(P)

∑
Q∈Qe

s.t. w∈V (Q)

λe(Q). Here, we use

the supposition that A ∩ B = ∅ since then every path in P? has at least one edge, which
ensures that the “contribution” of its endpoints is taken into account.

Since every walk contains a path with the same endpoints, for every path P ∈ P? with endpoints
u ∈ A and v ∈ B, there exist a set of paths P̂P ? ⊆ PGh+1

(u, v) and a function f̂P ? : P̂P ? → Q+

such that

•
∑

P∈P̂P?

f̂P ?(P) = κh+1 · (t/s2
h+1), and

• for every vertex w ∈ V (Gh+1),
∑

P∈P̂P?
s.t. w∈V (P)

f̂P ?(P) ≤
∑

e∈E(P ?)

∑
Q∈Qe

s.t. w∈V (Q)

λe(Q).

We define FA,B =
⋃
P ?∈P? P̂P ? . For every path F ∈ FA,B, let g(F) denote the set of paths

P ? ∈ P? such that F ∈ P̂P ? , and define

fA,B(F) = α ·
∑

P ?∈g(F)

f̂P ?(F), where α = (
γηh+1

4
)

4
γηh+1 .

Let us first show that (FA,B, fA,B) is an (A,B)-flow. Because V (Gh+1) ∩X? = ∅, is clear that
every path in FA,B belongs to PG−X?(A,B). Moreover, for every vertex v ∈ V (Gh+1), it holds
that ∑

F∈FA,B
s.t. v∈V (F)

fA,B(F) ≤ α ·
∑

F∈FA,B
s.t. v∈V (F)

∑
P ?∈g(F)

f̂P ?(F)

= α ·
∑

P ?∈P?

∑
P∈PP?

s.t. v∈V (P)

f̂P ?(F)

≤ α ·
∑

P ?∈P?

∑
e∈E(P ?)

∑
Q∈Qe

s.t. v∈V (Q)

λe(Q)

= α ·
∑

e∈E(Hh+1)

∑
P?∈P?

s.t. e∈E(P?)

∑
Q∈Qe

s.t. v∈V (Q)

λe(Q)

≤ α · (4

γηh+1
)

4
γηh+1 ·

∑
e∈E(Hh+1)

∑
Q∈Qe

s.t. v∈V (Q)

λe(Q)

=
∑

e∈E(Hh+1)

∑
Q∈Qe

s.t. v∈V (Q)

λe(Q) ≤ 1.

62

Let us now show that the four properties in the lemma are satisfied. For the first property,
note that the power of (FA,B, fA,B) can be lower bounded as follows.∑

F∈FA,B

fA,B(F) = α ·
∑

F∈FA,B

∑
P ?∈g(F)

f̂P ?(F)

= α ·
∑

P ?∈P?

∑
F∈P̂P?

f̂P ?(F)

= α ·
∑

P ?∈P?
κh+1 · (t/s2

h+1)

= (
γηh+1

4
)

4
γηh+1 · |P?| · κh+1 · (t/s2

h+1)

≥ (
γηh+1

4
)

4
γηh+1 · γ

2ηh+1

4
· s2
h+1 · κh+1 · (t/s2

h+1)

≥ κh+1(
γηh+1

4
)

4
γηh+1

+1 · t.

For the fourth property, recall that every path in P? contains at most
4

γ · ηh+1
edges. This

means that every path in FA,B is the concatenation of at most
4

γ · ηh+1
paths from

⋃
Qh+1. By

Condition 1 in Definition 6.1, for every edge e ∈ E(H) and P ∈ Qe, it holds that
∑

v∈V (P) xv ≤ δ.

From this, we conclude that (FA,B, fA,B) is
4δ

γ · ηh+1
-cheap.

It remains to prove the the second and third properties are satisfied. Since their proofs
are symmetric, we only show that the second property is satisfied. To this end, consider some

vertex a ∈ A. Then, we need to show that
∑

F∈FA,B∩POG−X? (a,B)

fA,B(F) ≤ κh+1 · (t/sh+1). For

this purpose, note that∑
F∈FA,B∩POG−X? (a,B)

fA,B(F) = α ·
∑

F∈FA,B∩POG−X? (a,B)

∑
P ?∈g(F)

f̂P ?(F)

= α ·
∑

P ?∈P?∩PHh+1(a,B)

∑
P∈PP?

f̂P ?(F)

≤ α ·
∑

e∈E(Hh+1)

s.t. a∈e

∑
P?∈P?

s.t. e∈E(P?)

∑
P∈PP?

f̂P ?(F)

≤ α ·
∑

e∈E(Hh+1)

s.t. a∈e

∑
P?∈P?

s.t. e∈E(P?)

κh+1 · (t/s2
h+1)

≤ (
γηh+1

4
)

4
γηh+1 ·

∑
e∈E(Hh+1)

s.t. a∈e

(
4

γηh+1
)

4
γηh+1 · κh+1 · (t/s2

h+1)

≤ (
γηh+1

4
)

4
γηh+1 · sh+1 · (

4

γηh+1
)

4
γηh+1 · κh+1 · (t/s2

h+1)

= κh+1 · (t/sh+1).

This completes the proof.

Let us extend Lemma 6.17 to the case where A and B may not be disjoint.

Lemma 6.18. Let 0 < γ < 1. Consider the settings of an execution of ConstructSetsAlg. For
any subsets A,B ⊆ Sh+1 such that |A|, |B| ≥ γsh+1, there exists an (A,B)-flow (FA,B, fA,B) in
G−X? with the four following properties.

1. The power of (FA,B, fA,B) is at least κh+1(
γηh+1

8
)

8
γηh+1

+1 · t.

63

2. For every vertex a ∈ A, it holds that
∑

F∈FA,B∩POG−X? (a,B)

fA,B(F) ≤ κh+1 · (t/sh+1).

3. For every vertex b ∈ B, it holds that
∑

F∈FA,B∩POG−X? (A,b)

fA,B(F) ≤ κh+1 · (t/sh+1).

4. (FA,B, fA,B) is
8δ

γ · ηh+1
-cheap.

Proof. We consider two cases as follows. In the first case, suppose that |A∩B| ≤ γ
2sh+1. Then,

lemma follows by a direct application of Lemma 6.17 with A′ = A\B, B′ = B \A and γ′ = γ/2.
In the second case, suppose that |A ∩ B| ≥ γ

2sh+1. Then, let FA,B be the set of every
path that consists of only one vertex and this single vertex belongs to A ∩ B. For every path
F ∈ FA,B, define fA,B(F) = κh+1 · (t/sh+1). Then, it is immediate that (FA,B, fA,B) is an
(A,B)-flow in G−X? and that the second and third properties in the lemma are satisfied. For
the first property, note that the power of (FA,B, fA,B) is exactly |A∩B| · κh+1 · (t/sh+1), which
is lower bounded by κh+1

γ
2 · t. Thus, the first property is satisfied as well.

Finally, for the fourth property, it suffice to show that xv ≤ 8δ
γ·ηh+1

for every vertex v ∈
A ∩ B. Recall that (Sh+1, Hh+1,Qh+1) is a nice (sh+1, t, δ, κh+1, ηh+1)-witness with respect to
(Gh+1, xh+1). By Corollary 6.6, it is also (γ, ρ, ν, ζ)-useful where ρ, ν, ζ > 0. In particular,
this means that there exists an edge e ∈ E(Hh+1) that is incident to v. Moreover, because
κ · (t/s2) =

∑
P∈Qe λe(P), we have that there exists at least one path P in Qe. Then, it holds

that
∑

v∈V (P) xv ≤ δ. In particular, this means that xv ≤ δ (which is upper bounded by 8δ
γ·ηh+1

).

This completes the proof.

Now, in order to send large flow from some set Xi to some set Xj while avoiding all of

the other Xt’s, we are going to send flow first (i) from Xi to Z̃?i ⊆ Sh+1, then (ii) from Z̃?i to

Z̃?j ⊆ Sh+1, and finally (iii) from Z̃?j to Xj . To this end, we will make use of Corollary 6.8 and
Lemma 6.18. In particular, we need to “connect” the paths realizing the three different parts
above. This goal is achieved in the following lemma, which is the main result of this section.
This lemma will be the crux of the translation ahead.

Lemma 6.19. Let H be a graph with |V (H)| = h. There exists a fixed constant d = d(H) > 0
such that for any instance of Well-Linkedness LP, say Well-Linkedness LP(G,w, t), where
G is H-minor free and t ≥ 1/d5, and for any assignment α : {xv : v ∈ V (G)} → Q+

0 that cannot
be extended to a feasible fractional solution, the following condition is satisfied:

There exists X ∈ ConPart(G, h) such that for all distinct i, j ∈ {1, 2, . . . , h}, there
exists an (X[i], X[j])-flow (Fi,j , fi,j) in G−(X\(X[i]∪X[j])) (where X =

⋃h
`=1X[`])

of power at least (
d11

104
)
104

d10
+2 · t and which is

104

d10
+ 4-cheap.

Proof. Notice that there exists a fixed constant 0 < d = d(H) < 1 such that for any instance
of Well-Linkedness LP, say Well-Linkedness LP(G,w, t), where G is H-minor free, and
for any assignment α : {xv : v ∈ V (G)} → Q+

0 that cannot be extended to a feasible fractional
solution, it holds that d ≤ min{ph, κh, ηh, µh} where ph, κh, ηh, µh are the values that arise in
the execution of ConstructSetsAlg with respect to this input. In what follows, we work with
the constant d, and consider some instance of Well-Linkedness LP, say Well-Linkedness
LP(G,w, t), where G is H-minor free and t ≥ 1/d5. Moreover, we consider some assignment
α : {xv : v ∈ V (G)} → Q+

0 that cannot be extended to a feasible fractional solution. Consider
an execution of ConstructSetsAlg with respect to this input. In what follows, we use the

64

notation corresponding to this execution. In particular, let X1, X2, . . . , Xh and S1, S2, . . . , Sh
be its output.

Notice that t ≥ 1/d5 ≥ 1/(phκhηhµ
2
h). Then, by Corollary 6.8, there exist a subset Z̃?i ⊆ Sh+1

and an (Xi, Z̃
?
i)-flow (F̃?i , f̃?i) in G−Xi with the three following properties.

1. |Z̃?i | ≥
p2
hη

3
hµ

4
h

400
· sh ≥

d9

400
· sh.

2. (F̃?i , f̃?i) is 2-cheap.

3. For every vertex z ∈ Z̃?i ,
∑

F∈F̃?i ∩POG−Xi
(Xi,z)

f̃?i (F) ≥
p2
hκhη

3
hµ

4
h

400
· t

sh+1
≥ d10

400
· t

sh+1
.

Moreover, there exist a subset Z̃?j ⊆ Sh+1 and an (Xj , Z̃
?
j)-flow (F̃?j , f̃?j) in G−Xj that satisfies

the three properties analogous to those above.
By Lemma 6.18, there exists a (Z̃?i , Z̃

?
j)-flow (F̂i,j , f̂i,j) in G − X? with the four following

properties with γ = d9

400 .

1. The power of (F̂i,j , f̂i,j) is at least κh+1(
γηh+1

8
)

8
γηh+1

+1 · t ≥ (
d11

104
)
104

d10
+1 · t.

2. For every vertex a ∈ Z̃?i , it holds that
∑

F∈F̂i,j∩POG−X? (a,Z̃?j)

f̂i,j(F) ≤ κh+1 · (t/sh+1).

3. For every vertex b ∈ Z̃?j , it holds that
∑

F∈F̂i,j∩POG−X? (Z̃?i ,b)

f̂i,j(F) ≤ κh+1 · (t/sh+1).

4. (F̂i,j , f̂i,j) is
16

γ · ηh+1
-cheap. Thus, it is

104

d10
-cheap.

We define (F̂?i,j , f̂?i,j) by setting F̂?i,j = F̂i,j and f̂?i,j(F) =
d10

400 · κh+1
· f̂i,j(F) for all F ∈ F̂?i,j .

Note that d10

400·κh+1
≤ 1, and hence (F̂?i,j , f̂?i,j) is a (Z̃?i , Z̃

?
j)-flow. Furthermore, it satisfies the

following properties.

1. The power of (F̂?i,j , f̂?i,j) is at least
d10

400 · κh+1
· (d

11

104
)
104

d10
+1 · t ≥ (

d11

104
)
104

d10
+2 · t.

2. For every vertex a ∈ Z̃?i , it holds that
∑

F∈F̂?i,j∩POG−X? (a,Z̃?j)

f̂?i,j(F) ≤ d10

400
· t

sh+1
.

3. For every vertex b ∈ Z̃?j , it holds that
∑

F∈F̂?i,j∩POG−X? (Z̃?i ,b)

f̂?i,j(F) ≤ d10

400
· t

sh+1
.

4. (F̂?i,j , f̂?i,j) is
104

d10
-cheap.

Having (F̂?i,j , f̂?i,j), (F̃?i , f̃?i) and (F̃?j , f̃?j) at hand, we can construct an (Xi, Xj)-flow (Fi,j , fi,j)
in G− (X? \ (Xi ∪Xj)) of the same power as (F̂i,j , f̂i,j) and whose cheapness is upper bounded

the summation of the cheapness of(F̂?i,j , f̂?i,j), (F̃?i , f̃?i) and (F̃?j , f̃?j). To see this, first use the

entire power of the flow (F̂?i,j , f̂?i,j) to transmit flow between Z̃?i and Z̃?j . Now, recall that for

65

every vertex z ∈ Z̃?i ,
∑

F∈F̃?i ∩POG−Xi
(Xi,z)

f̃?i (F) ≥ d10

400
· t

sh+1
. Thus, we can use (part of the

power of) the flow (F̃?i , f̃?i) to send all of the flow transmitted by (F̂?i,j , f̂?i,j) to Z̃?i back to

Xi. Symmetrically, we can use (part of the power of) the flow (F̃?j , f̃?j) to send all of the flow

transmitted by (F̂?i,j , f̂?i,j) to Z̃?j back to Xj . Since every walk contains a path with the same
endpoints, this results in an (Xi, Xj)-flow (Fi,j , fi,j) as required.

Translation. Finally, we present the translation. Here, given a feasible fractional solution of
Pairwise-Flow Hitting LP, the translation entails the multiplication of the value assigned to
each variable xv by a fixed constant, along with the extension of the result to the variable set
of Well-Linkedness LP. We also pay the penalty of multiplying t by a fixed constant.

For the proof of the correctness of our translation, we need the following lemma, which
asserts that a cheap (A,B)-flow of large power witnesses that Penalized Flow Packing
LP(G, x,A,B) has a large optimum.

Lemma 6.20. Let Penalized Flow Packing LP(G, x,A,B) be an instance of Penalized
Flow Packing LP. Suppose that G has an (A,B)-flow (F , f) of power larger than h(h − 1)t
and which is 1/2-cheap. Then, the optimum of Penalized Flow Packing LP(G, x,A,B) is

larger than h(h−1)
2 t.

Proof. With respect to Penalized Flow Packing LP(G, x,A,B), we define an assignment
α : {zP : P ∈ PG(A,B)} → Q+

0 as follows. For every P ∈ PG(A,B),

• if P ∈ F , then α(zP) = f(P), and

• otherwise, α(zP) = 0.

We now argue that α is a feasible solution for Penalized Flow Packing LP(G, x,A,B).
To show this, consider some vertex v ∈ V (G). Then, we need to show that α satisfies the

constraint
∑

P∈P(A,B)
s.t. v∈V (P)

zP ≤ 1. For this purpose, note that

∑
P∈P(A,B)
s.t. v∈V (P)

α(zP) ≤
∑
F∈F

s.t. v∈V (P)

f(F) ≤ 1.

Here, the last inequality follows from the fact that (F , f) is a valid flow.
Because α is a feasible solution for Penalized Flow Packing LP(G, x,A,B), to conclude

the proof, it suffices to show that
∑

P∈PG(A,B)

α(zP)(1−
∑

v∈V (P)

xv) ≥
h(h− 1)

2
t. To this end, note

that F ⊆ PG(A,B). Therefore,∑
P∈PG(A,B)

α(zP)(1−
∑

v∈V (P)

xv) =
∑
F∈F

f(F)(1−
∑

v∈V (F)

xv).

Now, because f is 1/2-cheap, it holds that
∑

v∈V (F) xv ≤ 1/2 for any F ∈ F . Therefore,∑
F∈F

f(F)(1−
∑

v∈V (F)

xv) ≤
1

2

∑
F∈F

f(F).

Recall that (F , f) has power larger than h(h− 1)t, and hence
∑
F∈F

f(F) ≥ h(h− 1)t. Thus, we

conclude that indeed
∑

P∈PG(A,B)

α(zP)(1−
∑

v∈V (P)

xv) ≥
h(h− 1)

2
t.

66

Let us now conclude our translation.

Lemma 6.21. Let H be a graph with h = |V (H)|. There exist fixed constants c = c(H)
and d = d(H) such that given any triple (G,w, t) where G is H-minor free, and given any
feasible fractional solution α of Pairwise-Flow Hitting LP(G,w, h, t), the following claim
holds. Define α′ : {xv : v ∈ V (G)} → Q+

0 by α′(xv) = d · α(xv) for all v ∈ V (G). Then, there
exists a feasible fractional solution α? of Well-Linkedness LP(G,w, ct) that extends α′ and
such that cost(α?) = d · cost(α).

Proof. Let ` = `(H) be the constant given in Lemma 6.19. Let c = 2h(h− 1)(
104

104`11
)
104

`10
+2 and

d = 2(
104

`10
+ 4). Suppose, by way of contradiction, that there does not exist a feasible fractional

solution α? of Well-Linkedness LP(G,w, ct) that extends α′.
Note that ct ≥ 1/`5. Therefore by Lemma 6.19 with respect to α′, there exists X ∈

ConPart(G, h) such that for all distinct i, j ∈ {1, 2, . . . , h}, there exists an (X[i], X[j])-flow

(Fi,j , fi,j) in G− (X \ (X[i]∪X[j])) (where X =
⋃h
`=1X[`]) of power at least (

`11

104
)
104

`10
+2 · ct >

h(h − 1)t and which is
104

`10
+ 4-cheap with respect to α′. By the definition of α′, we have

that, for all distinct i, j ∈ {1, 2, . . . , h}, (Fi,j , fi,j) is 1/2-cheap with respect to α|{xv :v∈V (G)}.
Therefore by Lemma 6.20, for all i, j ∈ {1, 2, . . . , h} with i < j, the optimum of Penalized

Flow Packing LP(G − (X \ (X[i] ∪ X[j])), α,X[i], X[j]) is larger than h(h−1)
2 t. Then, by

Observation 5.1, for all i, j ∈ {1, 2, . . . , h} with i < j, the optimum of Penalized Flow Hitting

LP(G − (X \ (X[i] ∪ X[j])), α,X[i], X[j]) is larger than h(h−1)
2 t. In turn, by Lemma 5.5, this

means that α|{xv :v∈V (G)} cannot be extended to a feasible fractional solution of Pairwise-Flow
Hitting LP(G,w, h, t). However, this is a contradiction as α is an extension of α|{xv :v∈V (G)}
that is a feasible fractional solution of Pairwise-Flow Hitting LP(G,w, h, t).

So far, we derived that there exists a solution α? of Well-Linkedness LP(G,w, h, ct) that
extends α′. Observe that

cost(α?) = cost(α′) =
∑

v∈V (G)

wvα
′(xv) = d ·

∑
v∈V (G)

wvα(xv) = d · cost(α).

This completes the proof.

7 Rounding the Well-Linkedness LP

In this section we prove the following theorem.

Theorem 2.1. There is a polynomial time algorithm that, for any graph H, takes as input
an H-minor free graph G, a weight function w : V (G) → Q+, and an integer t, and outputs
a vertex set S such that tw(G) ≤ O(t) and w(S) is at most O(log n) times the optimum of
Well-Linkedness LP(G,w, t). That is, w(S) ≤ O(log n · opt(G,w, t)).

Notice that Theorem 2.1 establishes that the integrality gap of Well-Linkedness LP(G,w, t)
is at most O(log n), at least in the “bicriteria” sense where we are willing to round a frac-
tional solution of Well-Linkedness LP(G,w, t) to an integral solution of Well-Linkedness
LP(G,w,O(t)).

Another important aspect of Theorem 2.1 that is algorithmic—given the graph as input
it produces the rounded solution (an assignment to the x-variables) in polynomial time. This
is non-trivial because Well-Linkedness LP(G,w,O(t)) has an exponential number of both
variables and constraints, and so there is no time to actually solve the LP in the process of
constructing an integral solution to it. We overcome this problem in the same way as Bansal et
al. [7], by appealing to the “round or separate” framework (based on Proposition 4.2).

67

Bounded distance decompositions. A crucial ingredient of our rounding procedure is the
(by now) classic technique of region-decompositions, which have found numerous applications
for “cut”-like problems, see e.g. [12, 27, 36, 41].

Let G be a graph, w : V (G)→ Q+ be a weight function on V (G), and α : V (G)→ Q+
0 be an

assignment of non-negative values to the vertices of G. We define cost(α) =
∑

v∈V (G)w(v)α(v).
This reflects that α will typically be an assignment to the variables of an LP whose objective
function is to minimize the sum of these variables (weighted by w).

Let d : V (G) × V (G) → Q+
0 be the shortest path metric of G with vertex “lengths” given

by α. In other words, d(u, v) is equal to the minimum over all u− v paths P of
∑

p∈V (P) α(p).
The weak diameter of a set X ⊆ V (G) is maxu,v∈X d(u, v). Notice that here we are taking

the distances in G, so the shortest paths between u and v may use vertices outside of X. In
particular, the weak diameter of S is not necessarily the same as the diamter of G[X].

Let γ be a positive real, a distance-γ-decomposition of (G,w, α) is a set S ⊆ V (G) together
with a partition of V (G) \ S into X1, . . . , X` such that every Xi has weak diameter at most γ
and satisfies N(Xi) ⊆ S. The cost of a distance-γ-decomposition is

∑
v∈S w(v). We will rely on

the following result of Klein, Plotkin and Rao [45].

Proposition 7.1 ([45]). There is a polynomial time algorithm that, for any graph H, takes as
input an H-minor free graph G, a weight function w : V (G)→ Q+, an assignment α : V (G)→
Q+

0 , and a positive rational γ ∈ Q+, and outputs a distance-γ-decomposition (S,X1, . . . , X`) of

G of cost at most cost(α) · O(|V (H)|3
γ).

We remark that in Proposition 7.1 as stated in [45], the weights w and assignment α are to
the edges of G rather than the vertices, and the set S is a set of edges rather than a vertex set.
Further, the result is stated without the weight function w and the “length” assignment α, it is
just said that the result may be generalized to weights and lengths by appropriately subdividing
and copying edges.

The proofs of Klein, Plotkin and Rao [45] and also Fakcharoenphol and Talwar [28] of
the unweighted edge version of Proposition 7.1 carry over without modification to prove the
unweighted vertex version of Proposition 7.1. However, to prove the weighted vertex version (as
stated in this paper) we may not just copy vertices and then apply the un-weighted version of
the proposition to the unweighted graph with multiple copies of each vertex. The reason for
this is that copying vertices may destroy the property of G being H-minor free.

Nevertheless, the proofs of Klein Plotkin and Rao [45] and Fakcharoenphol Talwar [28] of
the unweighted edge version of Proposition 7.1 carry over with slight modification to prove
Proposition 7.1. All that is required is to replace the BFS-layering of G with a layering of G
into layers of width O(γ

|V (H)|3) in the metric d, and replacing the deletion of a BFS-layer with

an application of max-flow/min-cut to the layer in the metric that is being deleted.

7.1 Balanced Separators

Throughout this section, let H be a graph, G be an H-minor free graph, w : V (G) → Q+ be
a weight function on the vertices, and t be an integer. Let α : {xv : v ∈ V (G)} → Q+

0 be an
assignment. For the sake of brevity, we sometimes treat α as if it is a function from V (G) to
Q+

0 (where α(v) = α(xv) for every vertex v ∈ V (G)). We say that a vertex v has large weight if
w(v) · t

cost(α) ≥ 1.

Lemma 7.1. There exists a polynomial time algorithm that given G, w, t, α, and a subset
S ⊆ V (G), finds either

• a separating hyperplane witnessing that α is infeasible for Well-Linkedness LP(G,w, t), or

68

• a subset X ⊆ V (G) of O(t|V (H)|3) vertices of large weight, and a subset Y ⊆ V (G) of
weight w(Y) ≤ O(cost(α)|V (H)|3) that contains no vertices of large weight, such that
every connected component of G− (X ∪ Y) contains no more than 4

5 |S| vertices of S.

Proof. The algorithm applies Proposition 4.2 with respect to Well-Linkedness LP(G,w, t) and
the subset S ⊆ V (G), and finds either a separating hyperplane witnessing that α is infeasible
for Well-Linkedness LP(G,w, t) or a feasible assignment βS : {yv : v ∈ V (G)} ∪ {duv : u, v ∈
V (G)} → Q+ to sep-LP(G,S, α) of cost at most t. In the first case, we are done. Now, we
proceed with the second case.

Let α′(v) = α(v) + βS(v) for every v ∈ V (G), and let d′(uv) = βS(duv) be the shortest path
metric of G with respect to the vertex lengths given by α′(v). Observe that since βS is a feasible
solution to sep-LP(G,S, α), it follows that∑

v∈U
d′(uv) ≥ |U | − |S|

2

for every choice of U ⊆ S and u ∈ U .
Furthermore, let w′(v) = min(1, w(v) · t

cost(α)). Note that w′(v) = 1 if and only if v has
large weight. Additionally, notice that∑

v∈V (G)

w′(v)α′(v) ≤
∑

v∈V (G)

(
w(v) · t

cost(α)
· α(v) + βS(v)

)
≤ 2t.

We apply the algorithm of Proposition 7.1 to G with weight function w′, assignment α′,
and γ = 1

10 . This algorithm outputs a bounded distance decomposition (Z,C1, C2, . . . , Cr) of G
such that ∑

v∈Z
w′(v) =

∑
v∈V (G)

w′(v)α′(v)O(|V (H)|3) ≤ O(t · |V (H)|3).

Further, the weak diameter of each Ci with respect to d′ is at most 1/10.
We claim that for every Ci, |Ci ∩ S| ≤ 4

5 |S|. Suppose not, and let U = Ci ∩ S and u ∈ U .
We have that

|U |
10
≥
∑
v∈U

d′(uv) ≥ |U | − |S|
2
≥ 4

5
|S| − 1

2
|S|,

which is a contradiction.
We partition Z into X and Y as follows X = {v ∈ Z : w′(Z) = 1} and Y = Z \X. Since

a vertex has large weight if and only if w′(v) = 1, it follows that X contains only vertices
of large weight, and Y contains only vertices that do not have large weight. Further, since∑

v∈Z w
′(v) = O(t · |V (H)|3), it follows that |X| = O(t · |V (H)|3) and

w(Y) ≤ O(t · |V (H)|3) · cost(α)

t
≤ O(cost(α) · |V (H)|3).

This concludes the proof.

We will apply Lemma 7.1 in a recursive fashion, following Robertson and Seymour’s approx-
imation algorithm for treewidth [53], or rather the way it is adapted by Bansal et al. [7]. We
will need our recursion tree to have logarithmic depth, thus we will need to evenly split both the
entire vertex set of the graph and the current “root bag” of the decomposition.

We will need the following simple observation.

Observation 7.1. Let Z = {z1, . . . , z`} be a set of positive reals such that
∑

i zi = 1 and zi ≤ 4
5 .

Then, there exists a partition of Z into two sets, Z1 and Z2, where
∑

zj∈Zi zj ≤
9
10 for each

i ∈ {1, 2}.
69

Proof. Initially, set Z1 = Z2 = ∅. Then, for every zi ∈ Z, add it to Z1 unless doing so would
increase

∑
zj∈Z1

zj above 9
10 . In that case, add zi to Z2. Clearly, Z1 and Z2 form a partition

of Z. Further, Z1 ≤ 9
10 by construction. Hence Z2 is not empty. Let zi ∈ Z2, and observe that

when zi was inserted into Z2, inserting zi into Z1 would have made
∑

zj∈Z1
zj bigger than 9

10 .

Since zi ≤ 8
10 , it follows that

∑
zj∈Z1

zj >
1
10 , which implies

∑
zj∈Z2

zj ≤ 9
10 .

Lemma 7.2. For every graph H, there exists a constant c = O(|V (H)|3) and a polynomial time
algorithm that given an H-minor free graph G, w, t, α, and a subset Ŝ ⊆ V (G), outputs either

• a separating hyperplane witnessing that α is infeasible for Well-Linkedness LP(G,w, t), or

• a subset X ⊆ V (G) of at most ct vertices of large weight together with a subset Y ⊆ V (G)
such that w(Y) ≤ c · cost(α) and Y contains no vertices of large weight, and a partition
of V (G) \ (X ∪ Y) into four sets Z1, Z2, Z3, Z4 such that for every i, N(Zi) ⊆ (X ∪ Y),
|Zi| ≤ 9

10n, and |Zi ∩ Ŝ| ≤ 9
10 |Ŝ|.

Proof. The algorithm first applies Lemma 7.1 with S = V (G), and obtains either a separating
hyperplane witnessing that α is infeasible for Well-Linkedness LP(G,w, t) (which the algo-
rithm then outputs and terminates), or a set XV of O(t|V (H)|3) vertices of large weight, and
a set YV such that w(YV) ≤ O(cost(α)|V (H)|3), YV contains no vertices of large weight, and
every connected component of G− (XV ∪ YV) contains no more than 4

5n vertices of V (G).
Apply Observation 7.1 to the (sizes of) the connected components of G−(XV ∪YV) (relative

to the total number of vertices in them) to obtain a partition of the connected components of
G− (XV ∪ YV) in two sets, ZL and ZR, each of size at most 9

10n.

Now, apply Lemma 7.1 with S = Ŝ, and obtain either a separating hyperplane witnessing
that α is infeasible for Well-Linkedness LP(G,w, t) (which the algorithm then outputs and
terminates), or a set XS of O(t|V (H)|3) vertices of large weight, and a set YS such that w(YS) ≤
O(cost(α)|V (H)|3), YS contains no vertices of large weight, and every connected component of

G− (XS ∪ YS) contains no more than 4
5 |̂S| vertices of Ŝ.

We set X = XV ∪XS and Y = YV ∪ YS , and observe that |X| = O(|V (H)|3t) and w(Y) =
O(|V (H)|3 · cost(α)). Further, X only contains vertices of large weight and Y only contains
vertices of small weight.

Consider the connected components C1, . . . , C` of G[ZL] − (XS ∪ YS). Applying Observa-
tion 7.1 to |Ci ∩ Ŝ|/|Ŝ ∩ (ZL \ (XS ∪ YS))| we can partition the components Ci into two sets
Z1 and Z2 such that for every i ∈ {1, 2}, |Zi ∩ Ŝ| ≤ 9

10 |Ŝ|. Similarly, partition the connected
components of G[ZR] − (XS ∪ YS) and into two sets Z3 and Z4 such that for every i ∈ {3, 4},
|Zi ∩ Ŝ| ≤ 9

10 |Ŝ|. Since each Zi is a subset of either ZL or ZR, |Zi| ≤ 9
10n, concluding the

proof.

7.2 Rounding Algorithm

Before we turn to describe the main rounding algorithm, we may delete all vertices that have
been “picked” to extent at least 1

logn , that is, all vertices v ∈ V (G) with α(xv) ≥ 1
logn . The next

lemma essentially proves Theorem 2.1 under the assumption that there are no vertices picked
to extent at least 1

logn .

Lemma 7.3. For any graph H, there exists a constant c and a polynomial time algorithm that
takes as input an H-minor free graph G, a weight function w : V (G) → Q+, an integer t, a
vertex set Ŝ ⊆ V (G) of size at most ct, and an assignment α : V (G)→ Q+

0 such that α(v) ≤ 1
logn

for every v ∈ V (G), and outputs either

• a separating hyperplane witnessing that α is infeasible for Well-Linkedness LP(G,w, t), or

70

• a vertex set Y and a tree-decomposition of G − Y of width at most 2ct such that Ŝ is
the root bag; furthermore, w(Y) ≤ O(log n · cost(α)) and Y contains no vertices of large
weight.

Proof. Weight reduction. The requirement that Y should contain no vertices of large weight
will allow us to work with a modified weight function where all vertices of large weight have
weight upper bounded by cost(α)

t . More precisely, we define the weight function w? : V (G)→ Q+

as follows. For every vertex v ∈ V (G), let w?(v) = min{w(v), cost(α)
t }. Clearly, modification of

weights does not affect the feasibility of a solution. We denote the cost of α with respect to w?

by cost?. The definition of vertices with large weight does not change, that is, vertices of large
weight remains those of weight at least cost(α)

t . The new weight function w? will only be useful
when we will make recursive calls.

Basis. Our algorithm is a recursive algorithm that works as follows. In the basis, if G already
has at most 2ct vertices, then the algorithm returns Y = ∅ and a tree decomposition that
contains two bags, the root bag Ŝ with one child whose bag is V (G).

Step. Now, suppose that G has more than 2ct vertices. Then, the algorithm applies Lemma 7.2
to G,w, t, α, Ŝ and obtains either (i) a separating hyperplane witnessing that α is infeasible for
Well-Linkedness LP(G,w, t), or (ii) a set X of at most O(t) vertices of large weight together
with a set Ŷ such that w(Ŷ) ≤ O(cost(α)) and Ŷ contains no vertices of large weight, and a
partition of V (G) \ (X ∪ Ŷ) into four sets Z1, Z2, Z3, Z4 such that for every i, N(Zi) ⊆ (X ∪ Ŷ),
|Zi| ≤ 9

10n, and |Zi ∩ Ŝ| ≤ 9
10 |Ŝ|. In the first case, the algorithm outputs this hyperplane and

terminates, while in the second case, it proceeds as follows.
The algorithm calls itself recursively on G[Zi ∪ X] for every i ∈ {1, 2, 3, 4}, with the “top

bag” set Ŝi of the recursive call on G[Zi ∪ X] being Ŝi = X ∪ (Ŝ ∩ Zi). The weight function
wi and assignment αi to Zi ∪ X in the i-th recursive call are the restrictions of w? and α,
respectively, to Zi ∪ X. Notice that here, we make use of w? rather than w, which will be
essential for correctness later. We observe that |Ŝi| ≤ |X| + 9

10 |Ŝ| ≤ ct, assuming that the
constant c is large enough compared to the constant hidden in the O(t) upper bound on |X|
in Lemma 7.2. Furthermore, α(v) ≤ 1

logn ≤
1

log |Zi∪S| , and hence the premises for running the

algorithm recursively on G[Zi ∪X] are satisfied.
If at least one of the four recursive calls returns a separating hyperplane witnessing that αi is

infeasible for Well-Linkedness LP(G[Zi∪X], wi, t), then the same hyperplane witnesses that α
is infeasible for Well-Linkedness LP(G,w?, t) (and hence for Well-Linkedness LP(G,w, t)).
Indeed, this statement holds because deleting vertices from G and restricting a feasible solu-
tion to Well-Linkedness LP(G,w?, t) accordingly cannot turn the feasible solution into an
infeasible solution (though it can turn an infeasible solution to a feasible one). In this case, the
algorithm outputs this hyperplane and terminates.

Suppose now that each of the four recursive calls returns with a set Yi, and a tree-decomposition
of G[(Zi ∪ X)] − Yi of width at most 2ct, with X ∪ (Ŝ ∩ Zi) as the top bag. We then set
Y = Ŷ ∪

⋃4
i=1 Yi, and construct a tree-decomposition of G − Y by making a root bag Ŝ, with

one child Ŝ∪X. This child, in turn, has four children—the roots of the four tree decompositions
of G[(Zi ∪ X)] − Yi, i ∈ {1, 2, 3, 4}. Recall that the root bag of each of these decompositions
is X ∪ (Ŝ ∩ Zi). Thus, it is easy to verify that the constructed decomposition is indeed a tree
decomposition of G − Y . Further, |Ŝ| ≤ ct and |X| ≤ c

10 t, and hence both of the new bags of
the tree decomposition have size at most 2ct. Hence the width of this tree decomposition is at
most 2ct, as claimed.

Correctness. The algorithm clearly terminates in polynomial time. Moreover, recall that
Y = Ŷ ∪

⋃4
i=1 Yi, and that Ŷ does not have vertices of large weight. Moreover, the weight of

71

every vertex in Yi, i ∈ {1, 2, 3, 4}, is not large with respect to wi, and hence it is upper bounded

by cost?(αi)
t ≤ cost?(α)

t ≤ cost(α)
t . Therefore, the set Y does not contain vertices of large weight.

Hence, all that remains to prove is that w(Y) = O(log n · cost(α)). To this end, we let
ζ(α̂, n) be the largest weight of a set Y output by the algorithm when run on a graph with n
vertices and an assignment α with cost α̂. We would like to prove that there exists a constant ρ
such that ζ(α̂, n) ≤ ρ · log n · α̂. For this purpose, we further let ζd(`, α̂, n) be the largest weight
of a set Y output by a recursive call to the algorithm that is made at depth d in the recursion
tree, where the recursive call is made on a graph with ` ≤ n vertices and an assignment α with
cost α̂, and the initial call is made on a graph with n vertices. We prove by induction on ` that
there exists a constant ρ such that

ζd(`, α̂, n) ≤ (
log n− 4c

log n
)d · ρ · log n · α̂.

In the initial call, d = 0 and ` = n, and thus it would follows that ζ(α̂, n) ≤ ρ · log n · α̂.
In the base case, where ` ≤ 2ct, Y = ∅ and the inequality follows for any d and n.
For the inductive step, consider an integer ` > 2ct, a value α̂ and and integer n, and consider

the instance G, Ŝ, w, α, t on ` vertices with cost(α) = α̂ that maximizes w(Y) for the output
set Y . Assume now that the statement has been proved for all graphs on less than ` vertices.

The algorithm will perform four recursive calls to G[Zi ∪X] and output Y = Ŷ ∪ (
⋃4
i=1 Yi).

By Lemma 7.2, we have that w(Ŷ) ≤ c′ · α̂ for a constant c′ that depends only on H. Let αi
be the restriction of α to G[Zi ∪ X]. From the inductive hypothesis and because Y does not
contain vertices of large weight, we have that w(Yi) = w?(Yi) ≤ (logn−4c

logn)d+1 ·ρ · log n ·cost?(αi).
Hence, we have that

w(Y) ≤ w(Ŷ) +

4∑
i=1

w(Yi) ≤ c′ · α̂+ (
log n− 4c

log n
)d+1 · ρ · log n ·

4∑
i=1

cost?(αi).

Now, observe that
∑4

i=1 cost
?(αi) ≤ α̂ + 3

∑
v∈X w

?(v)α(v), because the vertices of X are

the only ones that appear in more than one of the instances. Furthermore, w?(v) ≤ cost(α)
t

for all vertices v ∈ V (G). Since α(v) ≤ 1
logn for every vertex v ∈ V (G), we have that

3
∑

v∈X w
?(v)α(v) ≤ 3|X| · α̂

t logn ≤
3cα̂
logn . In the latter inequality, we used the fact that |X| ≤ ct.

Hence, we have that

w(Y) ≤ c′ · α̂+ (
log n− 4c

log n
)d+1 · ρ · log n ·

4∑
i=1

cost?(αi)

≤ c′ · α̂+ (
log n− 4c

log n
)d+1 · ρ · log n · (α̂+ 3

∑
v∈X

w?(v)α(v))

≤ c′ · α̂+ (
log n− 4c

log n
)d+1 · ρ · log n · (α̂+

3cα̂

log n
)

≤ (
log n− 4c

log n
)d ·
(

(
log n

log n− 4c
)d · c′ · α̂+

log n− 4c

log n
· ρ · log n · (α̂+

3cα̂

log n
)

)
.

Notice that the depth of the recursion is upper bounded by c̃ · log n for some constant c̃ inde-
pendent of the input (because each recursive call decreases the number of vertices by a constant
fraction of n, namely, 1

10n). Thus, (logn
logn−4c)

d ≤ (logn
logn−4c)

c̃ logn = 1/(1 − 4c
logn)c̃ logn ≤ e4cc̃.

Denote ĉ = e4cc̃ · c′. Then,

w(Y) ≤ (
log n− 4c

log n
)d ·
(
ĉ · α̂+ ρ · (log n− 4c) · (α̂+

3cα̂

log n
)

)
.

72

Thus, to prove that w(Y) ≤ (logn−4c
logn)d · ρ · log n · α̂, it suffices to assert that

ĉ · α̂+ ρ · (log n− 4c) · (α̂+
3cα̂

log n
) ≤ ρ · log n · α̂.

To this end, note that

ĉ · α̂+ ρ · (log n− 4c) · (α̂+
3cα̂

log n
) ≤ ρ · log n · α̂+ ĉ · α̂− ρ · α̂.

Thus, the proof is complete by selecting ρ = ĉ.

As we have already mentioned above, the correctness of Theorem 2.1 readily follows from
Lemma 7.3. To see this, consider an execution of the ellipsoid algorithm where instead of the
standard use of a separation oracle, we call the algorithm in Lemma 7.3 with Ŝ = ∅. If the
algorithm returns a subset Y ⊆ V (G), then tw(G−Y) ≤ O(t) and w(S) ≤ O(log n·opt(G,w, t)),
and hence we are done. Else, we resume the execution of the ellipsoid algorithm with the
separating hyperplane. As the number of times separating hyperplanes can be discovered is
polynomial (by the correctness of the ellipsoid algorithm), the theorem follows.

8 Proof of the Scaling Lemma and its Extensions

We are now ready to prove Lemma 1.1, we re-state it here for convenience.

Lemma 1.1. (Scaling Lemma) There exists an algorithm that given an H-minor free graph
G, a weight function w : V (G)→ Q+, and positive integers t and s, in polynomial time outputs
a subset S ⊆ V (G) of weight at most d log n · opt(G,w, t)/s such that tw(G− S) ≤ c · st. Here,
d and c are fixed constants that depend only on H, tw(G − S) is the treewidth of G − S, and
opt(G,w, t) is the minimum weight of a subset U ⊆ V (G) such that tw(G− U) ≤ t.

Proof. Given an input (G,w, t), we describe a polynomial time algorithm with the claimed
properties. Let c1, c2, d1, d2 be some fixed constants that only depend on H, which are implicitly
determined by the analysis below. Towards the description of the algorithm, consider the
following hypothetical steps (that the algorithm does not execute).

Step A. Let α be an optimal fractional solution of Well-Linkedness LP(G,w, t).

Step B. Translate α into a fractional solution α1 of Grid Hitting LP(G,w, c1t) such that
cost(α1) = (1/t) · cost(α). (Lemma 2.2.)

Step C. Then, scale the feasible solution α1 of Grid Hitting LP(G,w, c1t) to get a feasible
fractional solution α2 of Grid Hitting LP(G,w, s·c1t) such that cost(α2) = cost(α1)/s2.
(Lemma 2.1.)

Step D. Now, given a feasible fractional solution α2 of Grid Hitting LP(G,w, s·c1t) such that
cost(α2) = cost(α1)/s2, we obtain a feasible fractional solution α? of Well-Linkedness
LP(G,w, s · c2c1t) of cost d1st · cost(α2). (Lemmas 2.4 and 2.5.)

Step E. Finally, apply Theorem 2.1 to obtain a vertex set S such that tw(G− S) ≤ c · st and
w(S) is at most O(log n) times the optimum of Well-Linkedness LP(G,w, s · c2c1t). As
the optimum of Well-Linkedness LP(G,w, s · c2c1t) is upper bounded by cost(α?), we

73

have that

w(S) ≤ d2 log n · cost(α?)

≤ d2 log n · d1st · cost(α2)

≤ d2 log n · d1st ·
cost(α1)

s2

≤ d2 log n · d1st ·
cost(α)

s2t

= d2 log n · d1 ·
cost(α)

s

≤ d2 log n · d1 ·
opt(G,w, t)

s
.

Our algorithm only executes the last step. That is, it calls the algorithm in Theorem 2.1 to
obtain a vertex set S such that tw(G−S) ≤ c·st and w(S) is at most O(log n) times the optimum
of Well-Linkedness LP(G,w, s · c2c1t). By the analysis above, w(S) ≤ d log n · opt(G,w, t)/s
for a fixed constant d. Note that c and d depend only on H, and since the algorithm in
Theorem 2.1 runs in polynomial time, so does our algorithm. This concludes the proof.

Given Lemma 1.1 we now prove Lemma 1.3.

Lemma 1.3. There exists an algorithm that given an H-minor free graph G, a weight function
w : E(G) → Q+, and positive integers t and s, in polynomial time outputs a subset S ⊆ E(G)
of weight at most d log n · optE(G,w, t)/s such that tw(G − S) ≤ c · st. Here, d and c are
fixed constants that depend only on H, and optE(G,w, t) is the minimum weight of a subset
U ⊆ E(G) such that tw(G− U) ≤ t.

Proof. It is sufficient to transform the edge weighted input instance (G,w) to a vertex weighted
instance (G′, w′) where G′ is equal to G with all edges subdivided, and w′ assigns weight
2
∑

e∈E(G)w(e) (which essentially plays the role of ∞) to vertices of G′ that correspond to

vertices of G, and for every vertex xe ∈ V (G′) that corresponds to an edge e ∈ E(G) we set
w′(xe) = w(e).

It is well-known that the size of the largest clique minor of a graphG can not grow when edges
of G are subdivided, hence G′ excludes the complete graph on |V (H)| vertices as a minor. We
apply Lemma 1.1 toG′, w′ and obtain a set S′ ⊆ V (G′) such that w′(S′) ≤ d log n·opt(G′, w′, t)/s
such that tw(G′ − S′) ≤ c · st. Here c and d are constants that depend only on |V (H)|.

Without loss of generality S′ does not contain any vertices of G′ that are also vertices
of G. Otherwise w(S′) ≥ 2

∑
e∈E(G)w(e). On the other the set S∗ = {xe : e ∈ E(G)}

satisfies w(S∗) =
∑

e∈E(G)w(e) and tw(G′ − S∗) = 0 so we can choose S′ = S∗ instead. Define

S = {e ∈ E(G) : xe ∈ S′}. We claim that S satisfies the statement of the lemma.
First we have that tw(G − S) ≤ tw(G′ − S′) ≤ c · st because G − S is a minor of G′ − S′.

Second we have that optE(G,w, t) ≤ opt(G′, w′, t′) using the same reasoning. Specifically, let
X ′ ⊆ E(G′) be the minimum weight set such that tw(G′ −X ′) ≤ t. Without loss of generality
X ′ ⊆ S∗, and X = {e ∈ E(G) : xe ∈ X ′} satisfies w(X) = w′(X ′) = opt(G′, w′, t′) and
tw(G−X) ≤ tw(G′−X ′) ≤ t. We conclude that optE(G,w, t) ≤ opt(G′, w′, t′), as claimed. By
definition of S′ and S we have

w(S) = w′(S′) ≤ d log n · opt(G′, w′, t)/s ≤ d log n · opt(G,w, t)/s

This concludes the proof.

Given Lemma 1.3 we prove Lemma 1.4.

74

Lemma 1.4. There exists an algorithm that given a graph G of genus g, a weight function
w : V (E) → Q+, and positive integers t and s, in polynomial time outputs a subset S ⊆ E(G)
of weight at most d log n · optEC(G,w, t)/s such that tw(G/S) ≤ c · st. Here, d and c are
fixed constants that depend only on g and optEC(G,w, t) is the minimum weight of a subset
U ⊆ E(G) such that tw(G/U) ≤ t.

Proof. We shall use the following facts about graphs embedded in a surface of genus g.

1. Every graph G embedded in a surface of genus g has a dual graph G∗ which is also
embedded in the same surface.

2. The dual of G∗ is G.

3. There is a one-to-one correspondence between the edges of G and the edges of the dual
G∗. For every edge set S ⊆ E(G) the dual of G/S is G∗ − S.

4. tw(G)− g − 1 ≤ tw(G∗) ≤ tw(G) + g + 1.

The first three are standard facts shown in the book of Mohar and Thomassen [51], while the
last was proved by Mazoit [50].

We apply Lemma 1.3 to G∗ and obtain a set S such that w(S) ≤ d log n · optE(G∗, w, t +
g+ 1)/s and tw(G∗−S) ≤ c ·s(t+g+ 1). We claim that S satisfies the statement of the lemma.

We have that tw(G − S) ≤ tw(G∗ − S) + g + 1 ≤ c · s(t + g + 1) + g + 1 ≤ c′ · st where c′

is chosen such that the last inequality holds (choosing c′ = c · 3(g + 1) suffices). Further, we
have that w(S) ≤ d log n ·optE(G∗, w, t+ g+ 1)/s ≤ d log n ·optEC(G,w, t)/s because every set
X ⊆ E(G) that satisfies tw(G/X) ≤ t satisfies tw(G∗ −X) ≤ t+ g + 1 as well. This concludes
the proof.

8.1 Non-Constructive Scaling Lemma for Vertex Contraction

In this subsection we will prove Lemma 1.5. We restate the lemma here for ease of reference.

Lemma 1.5. There exists an algorithm that given a graph G of genus g, a weight function
w : V (G) → Q+, positive integers t and s, and a subset U ⊆ V (G) such that tw(G/U) ≤ t,
in polynomial time outputs a subset S ⊆ V (G) of weight at most d log n · w(U)/s such that
tw(G/S) ≤ c · st. Here, d and c are fixed constants that depend only on g.

For our proof we will first need to prove a property of apex-minor free graphs. Towards this,
we need the following equivalent characterization of minors.

Proposition 8.1 ([24]). A graph H is a minor of G if and only if there is a map φ : V (H)→
2V (G) such that for every vertex v ∈ V (H), G[φ(v)] is connected, for every pair of vertices
v, u ∈ V (H), φ(u)∩φ(v) = ∅, and for every edge uv ∈ E(H), there is an edge u′v′ ∈ E(G) such
that u′ ∈ φ(u) and v′ ∈ φ(v).

Grids and triangulated grids. Given a positive integer t, we denote by �t the t × t grid.
Recall that, for a positive integer t, a t× t grid �t is a graph H whose vertex set can be denoted
by {vi,j : i, j ∈ {1, 2, . . . , t}} so that E(H) = {{vi,j , vi′,j′} : |i− i′|+ |j − j′| = 1}. For an integer
t > 0, the graph Γt is obtained from the grid �t by adding, for all 1 ≤ x, y ≤ t − 1, the edge
{vx+1,y, vx,y+1}, and additionally making vertex vt,t adjacent to all the other vertices vx,y with
x ∈ {1, t} or y ∈ {1, t}, i.e., to the whole border of �t. Graph Γ6 is shown in Fig. 1.

Lemma 8.1 ([30]). For every apex graph H, there is a cH > 0 such that every connected
H-minor-free graph of treewidth at least cH · k contains Γk as a contraction.

75

Figure 1: Graph Γ6.

In the next lemma we show that if G excludes an apex graph as a minor and we contract
vertex disjoint starts in G to get G? then, up to constant factors, the treewidth of G is at most
the treewidth of G?.

Lemma 8.2. Let H be an apex graph and let G be an H-minor free graph. Furthermore, let
S1, . . . , S` be the vertex sets of pairwise vertex-disjoint stars in G, and let G? be the graph
obtained by contracting the edges of G[S1], . . . , G[S`]. Then, tw(G) ≤ cH · (β · tw(G?) + 10).
Here β = 100.

Proof Sketch. Let k = β ·tw(G?) and ` = tw(G?). For our proof we will demonstrate a �` in G?.
Towards a contradiction assume that tw(G) > cH · (k+ 10). Then by Lemma 8.1, we have that
G contains Γk+10 as a contraction. We view Γk+10 as follows; φ : V (Γk+10) → 2V (G) such that
for every vertex v ∈ V (Γk+10), G[φ(v)] is connected, for every pair of vertices v, u ∈ V (Γk+10),
φ(u) ∩ φ(v) = ∅, and for every edge uv ∈ E(Γk+10), there is an edge u′v′ ∈ E(G) such that
u′ ∈ φ(u) and v′ ∈ φ(v). Let ∆k denote the induced subgraph of Γk obtained by deleting first 5
outer layers of it. That is, we get an insulation of 5 layers around the boundary of ∆k. Now let
the rows of ∆k be denoted by R1, . . . , Rk. That is, Ri consists of {v5+i,j | j ∈ {6, . . . , k + 5}}.
Similarly, the columns of ∆k is denoted by C1, . . . , Ck. That is, Cj consists of {vi,5+j | i ∈
{6, . . . , k + 5}}.

For sake of brevity, we assume that the vertices in ∆k are named wi,j where 1 ≤ i, j ≤ k.
Now let �` be an `× ` grid. Furthermore, assume that the vertices in �` are named xi,j , where
1 ≤ i, j ≤ `. We associate xi,j to the vertex wi′,j′ where i′ = (i− 1)β + 1 and i′ = (j − 1)β + 1.
Now we take a 3× 3 grid around wi′,j′ and denote it by Ti′,j′ . For every vertex xi,j we associate
a vertex subset Vi,j = ∪v∈V (Ti′,j′)φ(v). Observe that for every 1 ≤ i, j ≤ `, G[Vi,j] is connected.
Furthermore for two distinct vertices xi,j and xi′,j′ we have that Vi,j and Vi′,j′ are pairwise
disjoint. Now for every edge e ∈ �` we will associate a vertex subset. Let e = xi,jxa,b. Take
the canonical straight line path from wi′,j′ and wa′,b′ in ∆k and let Pi′,j,a′,b′ denote the segment
of this path that starts after the last vertex from Ti′,j′ and ends before the first vertex from
Ta′,b′ . By our choice of β we have that Pi′,j,a′,b′ contains at least 5 vertices. Now with the edge e
we associate the vertex subset V (e) = ∪v∈Pi′,j,a′,b′φ(v). Again observe that for every e we have
that G[V (e)] is connected and for any two distinct edges e, e′ we have that V (e) ∩ V (e′) = ∅.
Similarly, for every vertex and edge the corresponding vertex subsets are disjoint.

Let G? be the graph obtained by contracting the edges of S1, . . . , S`. Now using the earlier
association we will associate a vertex subsets of G? for vertices and edges in �`, which will
imply a grid minor of size k in G? and hence will imply that the treewidth of G? is strictly more
than k a contradiction. For a vertex v ∈ V (G) let star(v) denote the set of vertices that have
been contracted together in G?. We can similarly define the notion of star of a vertex subset of
V (G). Notice that G?[star(Vi,j)] and G?[star(V (e))] are connected. Since the vertices associated
to xi,j , where 1 ≤ i, j ≤ ` are far apart we have that star(Vi,j) are also pairwise disjoint. For the
same reason we can show that for every e1, e2, star(V (e1)∩ starV (e2) = ∅. However, for an edge

76

e = xi,jxa,b, star(V (e) could intersect with starVi,j or starVa,b. Let wfirst and wlast denote the first
and the last vertices of Pi′,j,a′,b′ , respectively. Observe that because of our choice of β, the star of
sets associated by φ for wfirst and wlast can only intersect with starVi,j and starVa,b, respectively.
This implies that after we remove the vertices of star(Vi,j) and star(Va,b) from star(V (e)) we
will get a connected component of that has neighbor to both star(Vi,j) and star(Va,b). Thus,
for an edge e associate the connected component of star(V (e)) \ (star(Vi,j)∪ star(Va,b)) that has
neighbor in both star(Vi,j) and star(Va,b). This concludes the sketch of the proof.

In what follows we show how to use Lemma 8.1 for our purposes. We will need the following
transformation.

Transformation A: For the transformation we are given a graph G, a weight
function w : V (G)→ Q+ and a solution Z. That is, Z ⊆ V (G) such that tw(G/S) ≤
η. The graph G remains the same. The weight function w′ on E(G) is defined as
follows. Fix a spanning forest T of G[Z]. Now root each tree of T at some node r.
Now orient every edge in T away from the roots. Now for every arc (u, v) in T , we
define w′(uv) as w(v). That is, an edge takes the weight of the vertex it points to.
For every other edge uv that do not appear in T we set w′(uv) =∞ (that is, some
large weight).

Next we describe a simple property of this transformation.

Lemma 8.3. Let G be a graph excluding an apex graph H as a minor, w : V (G)→ Q+ be a a
weight function, Z ⊆ V (G) be a vertex set. Furthermore, let (G,w′) be an instance obtained by
applying Transformation A on G, w and Z. Then, there exists an edge set S ⊆ E(G) such
that tw(G/S) ≤ tw(G/Z) and w′(S) ≤ w(Z), and such a set can be obtained from G, Z and w
in polyomial time.

Proof. Let S be the set of all edges e such that w′(e) 6=∞. Then w′(S) ≤ w(Z) by construction
and tw(G/S) = tw(G/Z) because G/S = G/Z.

For us it is important is that a ”reverse direction” of Lemma 8.3 also holds when the input
graph excludes an apex graph H as a minor, and that this holds for every subset of the edges
of finite weight.

Lemma 8.4. Let G be a graph excluding an apex graph H as a minor, w : V (G) → Q+ be a
a weight function, and let Z ⊆ V (G) be a vertex set. Furthermore, let (G,w′) be the instance
obtained by applying Transformation A on G, w and Z. Then, for every W ⊆ E(G) such
that w′(W) is finite there exist a set C ⊆ V (G) such that w(C) ≤ w′(W) and tw(G/C) ≤
c? · tw(G/W). Here, c? depends on H. Furthermore, there is a polynomial time algorithm to
compute C from G,Z,w,w′, and W .

Proof. Let T be the spanning forest defined in Transformation A. Since w′(W) is finite we
have W ⊆ E(T). We shall abuse notation and refer to W both as an edge set and as a graph.
Since W ⊆ E(T) we have that W is a forest. Consider the components W1, . . . ,W` of W that
contain at least one edge. Every tree Wi is a subtree of some rooted tree Ti in the forest T . Let
ri be the vertex in Wi closest to the root of Ti in the tree Ti. Define the vertex set Ci to be
V (Wi) \ ri, and Si to be ri together with the neighbors of ri in Wi. Let C =

⋃`
i=1Ci. We claim

that C satisfies the statement of the lemma.
First, observe that w(C) ≤ w′(W), because for every vertex c ∈ C the edge from c to the

parent of c in T is in W . Second, define S =
⋃`
i=1E(W [Si]). We have that G/W = (G/C)/S.

In particular S1, . . . S` are a collection of vertex disjoint stars, and therefore, by Lemma 8.2 we
obtain that tw(G/C) ≤ cH · (100 · tw(G/W) + 10).

77

Now we are ready to prove Lemma 1.5

Proof of Lemma 1.5. The algorithm takes G, w and U and applies Transformation A with
Z = U . Let w′ be the resulting weight function on E(G). By Lemma 8.3 we have that
optEC(G,w′, t) ≤ w(U). By Lemma 8.3 we obtain an edge set W such that w′(W) ≤ d log n ·
optEC(G,w′, t)/s ≤ d log n · w(U)/s and tw(G/W) ≤ c · st. Applying Lemma 8.4 on W we
obtain a vertex set C such that w(C) ≤ d′ ·w′(W) ≤ d′′ log n ·w(U)/s and tw(G/C) ≤ cH · (100 ·
tw(G/W) + 10) ≤ cH · (100 · c · st+ 10) ≤ c′ · st. Here choosing c′ = 200 · ch · c suffices. We have
proved that C satisfies the statement of the lemma (for the set S), concluding the proof.

9 Constant factor approximation algorithm for
Weighted Treewidth-η Vertex Contraction

In this section we give a constant factor approximation algorithm for the following problem on
H-minor free graphs.

Weighted Treewidth-η Vertex Contraction
Instance: A graph G, and a weight function w : V (G)→ Q+.

Objective: Find a minimum weight set S ⊆ V (G) such that tw(G/S) ≤ η.

Theorem 1.4. For every fixed constant η ∈ N and graph H there exists a constant factor
approximation algorithm for Weighted Treewidth-η Vertex Contraction on H-minor-
free graphs. The approximation ratio and the multiplicative constant of the running time of the
algorithm depend on H and η, while the degree of the running time does not11.

We define opt(G,w, η) to be the (unknown) minimum weight of a subset U ⊆ V (G) such
that tw(G/U) ≤ η. Note that opt is well defined in Theorem 1.4 because there exists a subset
U ⊆ V (G) such that tw(G/U) ≤ η (e.g., select U = V (G)). To prove this theorem, we would like
to deal with the problem of eliminating large grids as minors rather than a direct computation
of treewidth. More precisely, we will focus on the proof of the following lemma.

Lemma 9.1. Let γ ∈ N \ {1} be a fixed constant. There exists a polynomial-time algorithm
that given an H-minor free graph G, and a weight function w : V (G) → Q+

0 , outputs a subset
S ⊆ V (G) of weight at most d · opt(G,w, γ) such that G/S has no γ × γ-grid minor. Here, d
is a fixed constant that depends only on H and γ, and opt(G,w, γ) is the (unknown) minimum
weight of a subset U ⊆ V (G) such that G/U has no γ × γ-grid minor. The degree of the
polynomial in the running time of the algorithm is independent of H and γ.

Note that opt is well defined in Lemma 9.1 because there exists a subset U ⊆ V (G) such
that G/U has no γ×γ-grid minor (e.g., choose U = V (G)). Before we turn to prove Lemma 9.1,
let us show why it implies Theorem 1.4. Towards this proof we will need the following variant
of Courcelle’s theorem by Arnborg et al. [3] (see also [15]).

Proposition 9.1 ([3]). Let ϕ be a formula in monadic second order logic (MSO2) with a free
variable S. Suppose that we are give a vertex-weighted (possibly boundaried)12 graph G on n
vertices, together with a tree decomposition of width t. Moreover, suppose that we are equipped
with the evaluation of all the free variables of ϕ except for X. Then, there exists an algorithm
that in time f(||ϕ||, t) ·n, for some computable function f , finds a subset S ⊆ V (G) of minimum
weight such that ϕ(S) is true (if one exists).

11That is, the time complexity is of the form f(H, η) · ns where s is independent of H and η.
12We remark that the statement of this proposition works for structures more general than graphs that capture

boundaried graphs, that is, our phrasing is an implication of the proposition in its full generality that is suitable
for our purpose.

78

We are now ready to prove Theorem 1.4.

Proof of Theorem 1.4. To distinguish opt and d in Lemma 9.1 from opt and d in the theorem,
we refer to the former opt and d by opt′ and d′, respectively. Given an H-minor free graph G,
a weight function w : V (G)→ Q+

0 , we call the algorithm in Lemma 9.1 with γ = η+ 1 to obtain
a subset S ⊆ V (G). Then, the weight of S can be upper bounded as follows.

w(S) ≤ d′ · opt′(G,w, η + 1)
≤ d′ · opt(G,w, η)

Here, the first inequality follows from Lemma 9.1 and because γ = η + 1, and the second
inequality follows from Proposition 4.4: since a graph of treewidth at most η cannot have an
(η+ 1)× (η+ 1)-grid as a minor (because the treewidth of an (η+ 1)× (η+ 1)-grid is η+ 1 and
the treewidth of a graph is as least as large as the treewidth of any graph that it has a minor),
it follows that opt′(G,w, η + 1) ≤ opt(G,w, η).

Now, we consider the treewidth of G/S. Because G/S has no (η + 1) × (η + 1)-grid as a
minor, Proposition 4.3 implies that the treewidth of G/S is smaller than c′ · (η + 1) ≤ 2c′ · η
where c′ (which depends on H) is the constant in the proposition.

Let S′ be the set of vertices in G/S that are the result of contracting one or more vertices
of S. Consider now the instance (G/S,w′, η) of the Weighted Treewidth-η Vertex Con-
traction problem where w′(v) = w(v) for every vertex that is not in S′, and w′(v) = 0 for
every vertex in S′. For every subset X of V (G/S)\S′ we have that (G/S)/(S′∪X) = G/(S∪X).
Therefore, since w′(S′) = 0 we have that opt(G/S,w′, η) ≤ opt(G,w, η).

For every fixed η the predicate tw(G/(S′ ∪ X)) ≤ η can be formulated in monadic second
order logic (MSO2). Thus, by Proposition 9.1 a set X of minimum weight (with respect to
the weight function w′) such that tw((G/S)/(S′ ∪X)) ≤ η can be found in time f(η, 2c′ · η)n
for some function f . The algorithm outputs the set X ∪ S as its solution. We have that
tw(G/(S ∪X)) = tw((G/S)/(S′ ∪X)) ≤ η, and that

w(X ∪ S) ≤ w(S) + w′(X) ≤ (d′ + 1) · opt(G,w, η)

Thus, the statement of theorem is satisfied with d = d′ + 1.

The proof of Lemma 9.1 consists of three parts. First, we will show that given an H-minor
free graph G of treewidth larger than η, we can find (in polynomial time) an induced subgraph
G[R] of G that has a γ × γ-grid minor but whose treewidth is upper bounded by a function of
H and γ, and whose neighborhood in G is upper bounded by a function of H and γ as well.
Then, in the second part, we will give a simple rule to process the graph, after which we are
able to find a set of vertices in G whose size is upper bounded by a function of H and γ, such
that the weight of every vertex in this set can be decreased by ε > 0, and as a result of this
modification opt(G,w, γ) decreases proportionally. Having this result at hand, in the third part
we will easily prove Lemma 9.1 by repeatedly applying this result.

9.1 Computing an Induced Subgraph of Moderate Treewidth and Small
Neighborhood

The computation in this subsection will rely on the following known result.

Proposition 9.2 ([32]). For any ε < 1, there is α = α(ε) such that for any H-minor free graph
and X ⊆ V (G) with tw(G − X) ≤ η, there is X ′ ⊆ X satisfying |X ′| ≤ ε|X| and for every
connected component C of G −X ′, we have |V (C) ∩X| ≤ α and |NG(V (C))| ≤ α. Moreover,

79

X ′ can be computed from G and X in polynomial time, where the polynomial is independent of
ε, α and η.13

Having this proposition at hand, we turn to present the computation of the induced subgraph
mentioned earlier, stated in the following lemma.

Lemma 9.2. Let γ ∈ N be a fixed constant. There exists a polynomial-time algorithm that
given an H-minor free graph G such that tw(G) ≥ p, outputs a subset R ⊆ V (G) such that the
three following properties are satisfied.

1. G[R] has a γ × γ grid as a minor.

2. tw(G[R]) ≤ q.

3. |NG(R)| ≤ r.

Here, p, q and r are fixed constants that depend only on H and γ. The degree of the polynomial
in the running time of the algorithm is independent of H and γ.

Proof. Given H-minor free graph G such that tw(G) ≥ p, we compute R ⊆ V (G) as follows.
First, we select ε = 1

2 and η = c · γ, where c = c(H) is the constant in Proposition 4.3.
Additionally, fix p = η + 1, q = η + α and r = α, where α = α(1

2) is the fixed constant in
Proposition 9.2. Now, we initialize X = V (G). Then, it clearly holds that tw(G−X) = 0 ≤ η.
Now, we proceed as follows.

1. We apply Proposition 9.2 to obtain (in polynomial time) a subset X ′ ⊆ X satisfying
|X ′| ≤ 1

2 |X| and for every connected component C of G − X ′, we have |V (C) ∩ X| ≤ α
and |NG(V (C))| ≤ α.

2. We test whether tw(G−X ′) ≤ η in time 2O(η3 log η)n by using the algorithm of Bodlaender
[10] to compute the treewidth of a (general) graph.

3. If tw(G−X ′) ≤ η, then update X to X ′ and return to the first step.

4. Else, there exists a connected component C? of G−X ′ such that tw(C?) > η. We output
R = V (C?) and terminate.

In each iteration, the size of X decreases by at least 1 because |X ′| ≤ 1
2 |X| and X 6= ∅

(since X = ∅ implies that tw(G) ≤ η although we know that tw(G) ≥ p > η). Thus, at most
O(n) iterations are executed, and since each one of them can be executed in polynomial time,
the total running time of the algorithm is polynomial in the input size (where the degree of the
polynomial is independent of H and γ).

Now, we prove that the output R = V (C?) has the three properties in the statement of
the lemma. The satisfaction of the third property is immediate because for every connected
component C of G − X ′, we have that |NG(V (C))| ≤ α. For the second property, note that
tw(G − X) ≤ η and hence tw(C? − X) ≤ η, and |V (C?) ∩ X| ≤ α. Thus, since tw(C?) ≤
tw(C? − X) + |V (C?) ∩ X| ≤ η + α = q, the second property is satisfied. Lastly, for the first
property, recall that tw(C?) > η = c · γ. In turn, by Proposition 4.3, this implies that G[R] has
a γ × γ grid as a minor. Thus, the proof is complete.

13This result was phrased (in [32]) for any hereditary class of graphs of truly sublinear treewidth with parameter
λ > 0. For us, it is only important to note that the class of H-minor free graphs is a hereditary class of graphs
of truly sublinear treewidth with parameter 1

2
.

80

9.2 Reduction of Weights of Vertices

The purpose of this subsection is to find a subset of vertices in G whose weights can be decreased.
Formally, we seek a subset with the properties in the following definition.

Definition 9.1. Let γ ∈ N, G be a graph, and w : V (G)→ Q+
0 be a weight function. A subset

X ⊆ V (G) is s-reducible if it satisfies the following properties, where ε = minv∈X{w(v)}.

1. ε > 0.

2. |X| ≤ s.

3. Among all subsets U ⊆ V (G) of minimum weight such that G/U has no γ×γ-grid minor,
there exists at least one whose intersection with X is not empty.

Additionally, we would like to work with graphs where the set of vertices of weight 0 is an
independent set. To this end, for a graph G and a weight function w : V (G)→ Q+

0 , we say that
(G,w) is nice if {v ∈ V (G) : w(v) = 0} is an independent set in G. Later, we will account for
this assumption. Specifically, we will prove the following result.

Lemma 9.3. Let γ ∈ N be a fixed constant. There exists a polynomial-time algorithm that
given an H-minor free graph G such that (G,w) is nice and tw(G) ≥ p, and a weight function
w : V (G) → Q+

0 , outputs a subset X ⊆ V (G) that is s-reducible. Here, p and s are fixed
constants that depend only on H and γ. The degree of the polynomial in the running time of
the algorithm is independent of H and γ.

In addition to Lemma 9.2, the proof of Lemma 9.3 will rely on several other results. Specif-
ically, the outline of the rest of this subsection is as follows. First, we will show how to easily
ensure that the set vertices of weight 0 is an independent set. Secondly, consider the induced
subgraph G[R] and its neighborhood (viewed as a boundaried graph with the neighborhood
as the boundary) given by Lemma 9.3. Then, for every subset F of boundaried graphs of
“small” size (and restricted labels) that contains the unboundaried γ × γ-grid, we will compute
a minimum-weight subset of vertices of R and its neighborhood whose contraction results in a
boundaried graph whose folio excludes all boundaried graphs in F . Thirdly, we will argue that
there exists an optimal solution that selects all of the vertices of at least one of the subsets of
minimum weight that we have already computed. Furthermore, we will argue that each of these
subsets has at least one vertex whose weight is not 0. Lastly, we will pick one vertex of positive
weight from each one of these subsets and argue that this results in a set that is s-reducible.

Eliminating Edges Between 0-Weight Vertices. For a graph G, a weight function w :
V (G) → Q+

0 , and a set Z = {v ∈ V (G) : w(v) = 0}, we denote by wZ the weight function
wZ : V (G/Z)→ Q+

0 obtained by restricting w to V (G/Z)∩V (G) and assigning 0 to each vertex
in V (G/Z) \ V (G) (which originated from the contraction of a connected subset of Z). Then,
we have the following simple result. Here, the notation opt refers to the one defined in Lemma
9.3.

Lemma 9.4. Let γ, d ∈ N, G be a graph, and w : V (G) → Q+
0 be a weight function. Let Z =

{v ∈ V (G) : w(v) = 0}. Let S′ ⊆ V (G/Z) be a set of weight (by wZ) at most d ·opt(G/Z,wZ , γ)
such that (G/Z)/S′ has no γ × γ-grid minor. Then, S = (S′ ∩ V (G))∪Z is a set of weight (by
w) at most d · opt(G,w, γ) such that G/S has no γ × γ-grid minor.

Proof. Notice that G/S is a minor of (G/Z)/S′ (these two graphs are equal if S′ contains all
vertices that originated from the contraction of Z). Thus, because (G/Z)/S′ has no γ × γ-grid
as a minor, so does G/S. Towards the proof that w(S) ≤ d · opt(G,w, γ), let U ⊆ V (G) be a

81

subset of weight opt(G,w, γ) such that G/U has no γ × γ-grid as a minor. Now, observe that
U ′ = (U ∩V (G/Z))∪(V (G/Z)\V (G)) is a subset of V (G/U) of the same weight as U such that
(G/Z)/U ′ has no γ×γ-grid as a minor. Therefore, wZ(S′) ≤ d ·opt(G/Z,wZ , γ) ≤ d ·wZ(U ′) =
d · w(U) = d · opt(G,w, γ). Since the weight of S is equal to the weight of S′, this implies that
w(S) ≤ d · opt(G,w, γ).

Eliminating Subsets of Boundaried Graphs as Minors. Consider the following problem,
which we call Boundaried Minor Hitting. Given a boundaried graph G, a weight function
w : V (G) → Q+

0 , and a collection F of boundaried graphs F with
⋃

Λ(F) ⊆
⋃

Λ(G), compute
a subset S ⊆ V (G) of minimum weight such that G/S excludes all graphs in F as minors; if
no such subset S ⊆ V (G) exists, then the output should be nil. To show that Boundaried
Minor Hitting is solvable in time f(t,F)nO(1), for some computable function f , on graphs of
treewidth t, we use Proposition 9.1. We remark that one can also directly design an algorithm
for Boundaried Minor Hitting based on standard (though somewhat tedious) dynamic
programming on tree decompositions. As for our purpose we just want to obtain any algorithm
whose running time is of the form f(t,F)nO(1) without the need to optimize f , we avoid this.

Lemma 9.5. The Boundaried Minor Hitting problem is solvable in time f(t,F)nO(1), for
some computable function f , on graphs of treewidth t. Here, the degree of n does not depend on
t and F .

Proof. Let F be a collection of boundaried graphs. In light of Proposition 9.1, to prove that
lemma, it suffices to present a formula ϕ in MSO2 with a free variable S such that the size of
ϕ can depend on the size of the encoding of F , and for any graph G, ϕ(S) is true if and only
if G/S has no graph in F as a minor. Note that the size of ϕ cannot depend on G. Given a
boundaried graph F , Fomin et al. [31] presented a formula ψF whose size depends on |V (F)|
(and the labeling of F) that tests whether F is a minor of G for a given graph G. (To be more
precise, their formula refers to a slightly more restricted definition of boundaried graphs where
the labeling function assigns integers rather than sets of integers, but it is immediate to see that
their formula is extendible to our case.) Having this formula at hand, we can write another
formula ψ̂F that tests whether F is a minor of G/S for a given graph G and a subset S ⊆ V (G).
Then, we define the formula ϕ simply as ϕ(S) = ∧F∈F ψ̂(S).

We proceed to define that the collection of all sets of boundaried graphs which we can be
potentially interested in eliminating by contracting minimum-weight sets of vertices.

Definition 9.2. Let ζ, τ ∈ N. An (ζ, τ)-elimination set is a set F of boundaried graphs F with
|V (F)| ≤ ζ2 + τ and

⋃
Λ(F) ⊆ {1, 2, . . . , τ}, such that the ζ × ζ-grid with empty boundary is

a member of F . The (ζ, τ)-elimination family, denoted by Elimζ,τ , is the family of all (ζ, τ)-
elimination sets.

As stated in the following lemma, the size of this collection is small.

Lemma 9.6. Let ζ, τ ∈ N. Then, the maximum size of a (ζ, τ)-elimination set is upper

bounded by 2O((ζ2+τ)2), and |Elimζ,τ | ≤ 22O((ζ2+τ)2)
. Moreover, Elimζ,τ can be computed in time

22O((ζ2+τ)2)
.

Proof. The number of (unboundaried) graphs on at most ζ2 + τ vertices is upper bounded by
2(ζ2+τ)2 . For each such graph, the number of options in which we can label its vertices with
labels in {1, 2, . . . , τ} to attain a boundaried graph is upper bounded by (ζ2 +τ+1)τ (each label
has the choice of which vertex to be assigned to or not to be assigned). Thus, the maximum
size of a (ζ, τ)-elimination set is upper bounded by 2O((ζ+2τ)2). As Elimζ,τ is a family of subsets

82

of this set of maximum size, the bound |Elimζ,τ | ≤ 22O((ζ2+τ)2)
follows. Furthermore, it should

be clear that Elimζ,τ can be computed in time 22O((ζ2+τ)2)
by simple enumeration.

Keeping the objective of the definition of the family Elimζ,τ in mind, we define a mapping
between each one of its (ζ, τ)-elimination sets, say F , to a subset of vertices of minimum-weight
in G[NG[R]] that eliminates all occurrences of boundaried graphs in F as minors of G[NG[R]].
In a sense that will become clearer in Lemma 9.11, this mapping represents the “restrictions”
of solutions to G[NG[R]]. Towards the definition of the mapping, we first need to formally
define how to treat G[NG[R]] as a boundaried graph. We remark that later, the order < in this
statement will be arbitrarily chosen.

Definition 9.3. Let γ ∈ N. Let G be an H-minor free graph with R ⊆ V (G) and an order <
on V (G). The boundaried graph of (G,R) is the graph B = G[NG[R]] with boundary δ(B) =
NG(R), label set Λ(B) = {1, 2, . . . , |NG(R)|} and labeling λB : δ(B)→ 2Λ(B) such that for each
vertex v ∈ δ(B), λB(v) = {i} where i = |{u ∈ δ(B) : u ≤ v}|.

Now, we present the mapping.

Definition 9.4. Let γ ∈ N. Let G be a graph with R ⊆ V (G) and an order < on V (G). Let
w : V (G) → Q+

0 be a weight function. Let B be the boundaried graph of (G,R). Then, an
elimination mapping of (G,R) is a function f : Elimγ,|NG(R)| → 2V (B) ∪ {nil} such that, for
every (γ, |NG(R)|)-elimination set F ∈ Elimγ,|NG(R)|, the following condition is satisfied: among
all subsets S ⊆ V (B) such that B/S has no graph in F as a minor, f(F) is one of minimum
weight, where if no such set S exists, then f(F) = nil.

Based on Lemmas 9.5 and 9.6, we can efficiently compute this mapping as follows.

Lemma 9.7. Let γ, q, r ∈ N be fixed constants. There exists a polynomial-time algorithm that,
given a graph G with an order < on V (G), a weight function w : V (G) → Q+

0 , and a subset
R ⊆ V (G) such that tw(G[R]) ≤ q and |NG(R)| ≤ r, outputs an elimination mapping of (G,R).
The degree of the polynomial in the running time of the algorithm is independent of γ, q and r.

Proof. The algorithm computes an elimination mapping f of (G,R) as follows. Let B be the
boundaried graph of (G,R). For every (γ, |NG(R)|)-elimination set F ∈ Elimγ,|NG(R)|, it calls
the algorithm in Lemma 9.5 with (B,F) as input, and defines f(F) as the set that this call
returns. Then, by the correctness of the algorithm in Lemma 9.5 , it is clear that the output f
is indeed an elimination mapping of (G,R).

For the running time, observe that a single call to the algorithm in Lemma 9.5 with (B,F) as
input takes time g(tw(B),F)nO(1), for some computable function g. By Lemma 9.6, in any such
call |F| ≤ 2O((γ2+|NG(R)|)2), and it is clear that the total number of bits required to encode F is
upper bounded by 2O((γ2+|NG(R)|)2) as well. Thus, because tw(G[R]) ≤ q and |NG(R)| ≤ r, we
derive that a single call takes time g′(γ, q, r)nO(1) for some computable function g′. Moreover,

by Lemma 9.6, we make |Elimγ,|NG(R)|| ≤ 22O((γ2+|NG(R)|)2) ≤ 22O((γ2+r)2)
calls. Thus, the total

running time of our algorithm is polynomial, where the degree of the polynomial in the running
time of the algorithm is independent of γ, q and r.

Properties of the Representative Mapping. We proceed to prove two properties of the
representative mapping. First, we show that each set assigned by the elimination mapping has
at least one vertex whose weight is positive, under the assumption that (G,R) is nice and G[R]
has a γ × γ-grid minor.

83

Lemma 9.8. Let γ ∈ N. Let G be a graph with R ⊆ V (G) and an order < on V (G). Suppose
that (G,R) is nice and that G[R] has a γ × γ-grid as a minor. Let w : V (G)→ Q+

0 be a weight
function. Let B be the boundaried graph of (G,R). Then, any elimination mapping f of (G,R)
satisfies the following condition: for every F ∈ Elimγ,|NG(R)|, it holds that f(F) is either nil

or it contains at least one vertex whose weight is positive.

Proof. Let f be some elimination mapping of (G,R), and let F ∈ Elimγ,|NG(R)| be such that
f(F) 6= nil. Denote S = f(F). Because the γ× γ-grid (with an empty boundary) is a member
of F and G[R] has a γ × γ-grid minor, the set S must contain at least two adjacent vertices
that belong to B.14 Since the set of vertices of weight 0 is an independent set (because (G,w)
is nice), this means that S contains at least one vertex whose weight is positive.

Secondly, we show that there necessarily exists a solution whose restriction in NG[R] contains
at least one of the sets assigned by the mapping. Towards obtaining this result (stated in
Corollary 9.1), we need to prove several claims. We begin by considering the relation between
minors in G and minors in a graph G/U obtained by the contraction of some subset U ⊆ V (G)
in G.

Observation 9.1. Let G be a (possibly boundaried) graph with U ⊆ V (G). Let L be a (possibly
boundaried) graph. Then, the following two statements are equivalent.

• L is a minor of G/U .

• There exists a minor model ϕ for L in G such that, for every maximal connected subset
T of U and for every vertex v ∈ V (L), either T ⊆ ϕ(v) or T ∩ ϕ(v) = ∅.

Proof. In one direction, given a minor model ϕ for L in G/U , define ϕ′ : V (L) → 2V (G) as
follows. For every vertex v ∈ V (L), let ϕ′(v) =

⋃
u∈ϕ(v) Origin(u). Then, ϕ′ is a minor model for

L in G such that, for every maximal connected subset T of U and for every vertex v ∈ V (L),
either T ⊆ ϕ′(v) or T ∩ ϕ′(v) = ∅. In the other direction, suppose that we are given a minor
model ϕ for L in G such that, for every maximal connected subset T of U and for every vertex
v ∈ V (L), either T ⊆ ϕ(v) or T ∩ ϕ(v) = ∅. Then, define ϕ′ : V (L) → 2V (G/U) as follows. For
every vertex v ∈ V (L), let ϕ′(v) = {u ∈ V (G/U) : there exists a connected subset T ⊂ ϕ(v)
such that T = Origin(u)}. Then, ϕ′ is a minor model for L in G/U .

Now, we argue that the set of “small” minors eliminated by any solution when restricted to
NG[R] belongs to Elimγ,|NG(R)|. Towards this, we first define this set of minors.

Definition 9.5. Let γ ∈ N. Let G be a graph with R ⊆ V (G) and an order < on V (G).
Let w : V (G) → Q+

0 be a weight function. Let U ⊆ V (G). Then, the minor set hit by
U with respect to (G,R), denote by Hit(G,R,U), is the set of all boundaried graphs F with
|V (F)| ≤ γ2 + |NG(R)| and

⋃
Λ(F) ⊆ {1, 2, . . . , |NG(R)|} that are not minors of B/(U ∩V (B)),

where B is the boundaried graph of (G,R).

We now prove that if G/U has no γ × γ-grid minor, then the set Hit(G,R,U) lies in
Elimγ,|NG(R)|.

Lemma 9.9. Let γ ∈ N. Let G be a graph with R ⊆ V (G) and an order < on V (G). Let
w : V (G)→ Q+

0 be a weight function. Let U ⊆ V (G) be such that G/U has no γ×γ-grid minor.
Then, Hit(G,R,U) ∈ Elimγ,|NG(R)|.

14Note that we cannot claim to have in S two such adjacent vertices that belong to R even though G[R] has a
γ × γ-grid minor.

84

Proof. Denote τ = |NG(R)|. LetB be the boundaried graph of (G,R). Denote F = Hit(G,R,U),
and denote the γ × γ-grid whose boundary is empty by L. To prove that F ∈ Elimγ,|NG(R)|, we
need to show that L ∈ F . In turn, this means that we need to show that B/(U ∩ V (B)) does
not contain L as minor.15

Towards the proof, suppose by way of contradiction that B/(U ∩ V (B)) does contain L as
a minor. By Observation 9.1, there exists a minor model ϕ for L in B such that, for every
maximal connected subset T ′ of U ∩ V (B) and for every vertex v ∈ V (L), either T ′ ⊆ ϕ(v)
or T ′ ∩ ϕ(v) = ∅. By the definition of a minor model and contraction for boundaried graphs,
and because δ(L) = ∅, the following statement holds: For every vertex v ∈ V (L), we have that
ϕ(v) ∩ δ(B) = ∅. Specifically, this means that

⋃
v∈V (L) ϕ(v) ⊆ R.

Next, we claim that ϕ is a minor model for L in G such that, for every maximal connected
subset T of U and for every vertex v ∈ V (L), either T ⊆ ϕ(v) or T ∩ ϕ(v) = ∅. Since ϕ is
a minor model for L in B and B is a subgraph of G, it is also a minor model for L in G.
Now, consider a maximal connected subset T of U . If T is a connected subset of U ∩ V (B),
then for every vertex v ∈ V (L), either T ⊆ ϕ(v) or T ∩ ϕ(v) = ∅. Now, suppose that T
is not a connected subset of U ∩ V (B); in particular, T \ V (B) 6= ∅. In this case, we show
that T ∩ (

⋃
v∈V (L) ϕ(v)) = ∅. For this purpose, let T1, T2, . . . , Tr be the maximal connected

subsets of T ∩ V (B) (possibly r = 0), and let Tr+1 = T \ V (B). Observe that every subset
Ti, i ∈ {1, 2, . . . , r}, must contain at least one vertex from NG(R) (otherwise T cannot be
a connected subset that satisfies T \ V (B) 6= ∅); moreover, for every vertex v ∈ V (L), either
Ti ⊆ ϕ(v) or Ti∩ϕ(v) = ∅. Thus, since (

⋃
v∈V (L) ϕ(v))∩NG(R) = ∅ (because

⋃
v∈V (L) ϕ(v) ⊆ R),

we derive that for every subset Ti, i ∈ {1, 2, . . . , r + 1}, it holds that Ti ∩ (
⋃
v∈V (L) ϕ(v)) = ∅.

In turn, this implies that T ∩ (
⋃
v∈V (L) ϕ(v)) = ∅. Thus, our claim regarding ϕ is correct.

However, by Observation 9.1, this implies that G/U contain L as a minor, which contradicts
the supposition of the lemma. This completes the proof.

Towards showing that U ′ = (U \ NG[R]) ∪ f(Hit(G,R,U)) is at least as good as U , we
first consider the weight of U ′. In light of Lemma 9.9, the implicit assumption in the following
lemma concerning the containment of Hit(G,R,U) in Elimγ,|NG(R)| (otherwise f(Hit(G,R,U))
is undefined) is valid.

Lemma 9.10. Let γ ∈ N. Let G be a graph with R ⊆ V (G) and an order < on V (G). Let
w : V (G)→ Q+

0 be a weight function. Let f be an elimination mapping of (G,R). Let U ⊆ V (G)
be such that G/U has no γ × γ-grid minor. Then, f(Hit(G,R,U)) 6= nil and w(U ′) ≤ w(U),
where U ′ = (U \NG[R]) ∪ f(Hit(G,R,U)).

Proof. Let B be the boundaried graph of (G,R). Notice that, by the definition of Hit(G,R,U)
(Definition 9.5), it holds that B/(U∩V (B)) has no graph in Hit(G,R,U) as a minor. Thus, it di-
rectly follows from the definition of an elimination mapping (Definition 9.4) that f(Hit(G,R,U))
is not nil.

Now, observe that w(U ′) = w(U \ V (B)) + w(f(Hit(G,R,U))) and w(U) = w(U \ V (B)) +
w(U ∩ V (B)). Thus, to show that w(U ′) ≤ w(U), it suffices to show that w(f(Hit(G,R,U))) ≤
w(U ∩ V (B)). For this purpose, recall that B/(U ∩ V (B)) has no graph in Hit(G,R,U) as a
minor. Since f(Hit(G,R,U)) is a set of minimum weight that has this property (by Definition
9.4), we deduce that w(f(Hit(G,R,U))) ≤ w(U ∩ V (B)).

Now, we show that the contraction of U ′, just like the contraction of U , ensures that we do
not have any γ × γ-grids as minors.

15Note that B/(U ∩V (B)) might contain some boundaried γ×γ-grids whose boundary is not empty as minors.
We only claim that B/(U ∩ V (B)) cannot contain L as a minor.

85

Lemma 9.11. Let γ ∈ N. Let G be a graph with R ⊆ V (G) and an order < on V (G).
Let w : V (G) → Q+

0 be a weight function. Let f be an elimination mapping of (G,R). Let
U ⊆ V (G) be such that G/U has no γ × γ-grid minor. Then, f(Hit(G,R,U)) 6= nil and G/U ′

has no γ × γ-grid minor, where U ′ = (U \NG[R]) ∪ f(Hit(G,R,U)).

Proof. Denote τ = |NG(R)|. LetB be the boundaried graph of (G,R). Denote F = Hit(G,R,U),
and denote the γ × γ-grid whose boundary is empty by L. As in the proof of Lemma 9.10,
f(F) 6= nil. Now, we proceed to prove that G/U ′ does not contain L as a minor. For this
purpose, suppose by way of contradiction that G/U ′ contains L as a minor. By Observation
9.1, there exists a minor model ϕ for L in G such that, for every maximal connected subset T
of U ′ and for every vertex v ∈ V (L), either T ⊆ ϕ(v) or T ∩ ϕ(v) = ∅.

The outline of the rest of the proof is as follows. We will first partition S ∩ V (B), for every
set S assigned by ϕ, to the family of every maximal connected subset of S ∩ V (B), and argue
that this operation results in at most γ2 + τ sets in total. Then, based on these partitions and
the edges that go across them, we will define a boundaried graph L? and a minor model ϕ? for
L? in B; in particular the sets assigned by ϕ? will be the precisely the collection of sets in our
partitions. By applying Observation 9.1, we will deduce that L? is a minor of B/(U ′ ∩ V (B)).
In turn, based on the definition of f(F), we will deduce that L? is a minor of B/(U ∩ V (B)).
Applying Observation 9.1 again, we will obtain a minor model ψ? for L? and B. Lastly, we will
“complete” ψ? using the vertices in (

⋃
v∈V (L) ϕ(v)) \ V (B) to obtain a minor model ψ for L in

G. Applying Observation 9.1 one last time, we will derive that G/U contains L as a minor, and
thus reach a contradiction.

We begin by defining the partitions. For every vertex v ∈ V (L), let ccϕ(v) denote the
partition of ϕ(v) ∩ V (B) into maximal connected sets in B. Now, we upper bound the total
number of sets across these partitions.

Claim 9.1. It holds that
∑

v∈V (L) |ccϕ(v)| ≤ γ2 + τ .

Proof. Note that |V (L)| = γ2. Thus, to prove that
∑

v∈V (L) |ccϕ(v)| ≤ γ2 + τ , it suffices to
prove that for every vertex v ∈ V (L), it holds that |ccϕ(v)| ≤ max{1, |ϕ(v) ∩NG(R)|}. Indeed,
if this claim is true, then∑

v∈V (L)

|ccϕ(v)| =
∑

v∈V (L)
s.t. ϕ(v)∩NG(R)=∅

|ccϕ(v)|+
∑

v∈V (L)
s.t. ϕ(v)∩NG(R)6=∅

|ccϕ(v)|

≤
∑

v∈V (L)
s.t. ϕ(v)∩NG(R)=∅

1 +
∑

v∈V (L)
s.t. ϕ(v)∩NG(R)6=∅

|ϕ(v) ∩NG(R)|

≤ |V (L)|+ |NG(R)| = γ2 + τ.

To prove our claim, consider some vertex v ∈ V (L). If ϕ(v) \ V (B) = ∅, then ccϕ(v) = {ϕ(v)}
and hence |ccϕ(v)| = 1. Else, every maximal connected subset of ϕ(v)∩V (B) (possibly no such
subset exists) contains at least one vertex in NG(R), otherwise G[ϕ(v)] cannot be a connected
graph; then, |ccϕ(v)| ≤ |ϕ(v) ∩NG(R)|. �

Next, we define a boundaried graph L? as follows:

• V (L?) = {(v, C) : v ∈ V (L), C ∈ ccϕ(v)},

• E(L?) = {{(u,C), (v,D)} : (u,C), (v,D) ∈ V (L?), EB(C,D) 6= ∅},

• δ(L?) = {(v, C) ∈ V (L?) : C ∩NG(R) 6= ∅},

• Λ(L?) = {
⋃
{λB(u) : u ∈ C ∩NG(R)} : (v, C) ∈ V (L?)} \ {∅}, and

86

• For every vertex (v, C) ∈ δ(L?), λL?((v, C)) =
⋃
{λB(u) : u ∈ C ∩NG(R)}.

In particular, Claim 9.1 implies that L? ∈ Elimγ,τ .
Additionally, we define a mapping ϕ? : V (L?)→ 2V (B) as follows: for every vertex (v, C) ∈

V (L?), define ϕ?((v, C)) = C. From our definition of L?, it is immediate that ϕ? is a minor
model of L? in B. Moreover, consider any connected subset T ′ of U ′ ∩ V (B). Recall that
for every maximal connected subset T of U ′ and for every vertex v ∈ V (L), either T ⊆ ϕ(v)
or T ∩ ϕ(v) = ∅. Therefore, for every vertex v ∈ V (L), either T ′ ⊆ C for some C ∈ ccϕ(v)
or T ′ ∩ ϕ(v) = ∅. In particular, this means that for every vertex (v, C) ∈ V (L?), either
T ′ ⊆ ϕ?((v, C)) or T ′∩ϕ?((v, C)) = ∅. Thus, by Observation 9.1, L? is a minor of B/(U ′∩V (B)).

As f is an elimination mapping and U ′ ∩ V (B) = f(F), the fact that L? is a minor of
B/(U ′ ∩ V (B)) implies that L? /∈ F . In turn, because F = Hit(G,R,U), we derive that L? is a
minor of B/(U ∩ V (B)) as well. By Observation 9.1, there exists a minor model ψ? for L? in
B such that, for every maximal connected subset T of U and for every vertex (v, C) ∈ V (L?),
either T ⊆ ψ?((v, C)) or T ∩ ψ?((v, C)) = ∅.

Having ψ? at hand, our current goal is to modify ψ?, by using the vertices in (
⋃
v∈V (L) ϕ(v))\

V (B), to obtain a minor model ψ for L in G such that, for every maximal connected subset T
of U and for every vertex v ∈ V (L), either T ⊆ ψ(v) or T ∩ ψ(v) = ∅. To this end, we define a
mapping ψ : V (L)→ 2V (G) as follows. For every vertex v ∈ V (L), define

ψ(v) = (ϕ(v) \ V (B)) ∪ (
⋃

C∈ccϕ(v)

ψ?((v, C))).

We first claim that ψ is a minor model for L in G.16 To verify this claim, we assert that the
three properties of a minor model are satisfied as follows.

1. First, we claim that for all v ∈ V (L), it holds that G[ψ(v)] is connected. To this end,
consider some vertex v ∈ V (L). Because ψ? is a minor mode for L? in B and B is a
subgraph of G, for all C ∈ ccϕ(v), we have that G[ψ?((v, C))] is connected; furthermore,
by the definition of the labeling λL? , we have that C ∩ NG(R) = ψ?((v, C)) ∩ NG(R).
If ψ(v) \ V (B) = ∅, then |ccϕ(v)| = 1, and we are done. Thus, we next suppose that
ψ(v) \ V (B) 6= ∅. Because ϕ is a minor model for L in G, we have that G[ϕ(v)] is
connected. Therefore, as ϕ(v) \ V (B) = ψ(v) \ V (B) 6= ∅, for all C ∈ ccϕ(v), we have
that C ∩ NG(R) = ψ?((v, C)) 6= ∅. Therefore, as ϕ(v) = (ϕ(v) \ V (B)) ∪ (

⋃
C∈ccϕ(v)C),⋃

C∈ccϕ(v) ψ
?((v, C)) ⊆ V (B) and V (B) = NG[R], we conclude that G[ψ(v)] is connected.

2. Second, we claim that for all u, v ∈ V (L), it holds that ψ(u) ∩ ψ(v) = ∅. To this end,
consider some vertices u, v ∈ V (L). As ϕ is a minor model, we have that ϕ(u)∩ϕ(v) = ∅,
which implies that (ϕ(u) \ V (B)) ∩ (ϕ(v) \ V (B)) = ∅ and ccϕ(u) ∩ ccϕ(v) = ∅. As ψ?

is a minor model, we have that ψ?((w,C)) ∩ ψ?((s,D)) for all (w,C), (s,D) ∈ V (L?).
Thus, (

⋃
C∈ccϕ(v) ψ

?((u,C))) ∩ (
⋃
C∈ccϕ(v) ψ

?((v, C))) = ∅. Because ψ?((w,C)) ⊆ V (B)

for all (w,C) ∈ V (L?), we conclude that ((ϕ(u)\V (B))∪(
⋃
C∈ccϕ(u) ψ

?((u,C))))∩((ϕ(v)\
V (B)) ∪ (

⋃
C∈ccϕ(v) ψ

?((v, C)))) = ∅, which means that ϕ(u) ∩ ϕ(v) = ∅.

3. Third, we claim that for all {u, v} ∈ E(L), it holds that there exist u′ ∈ ψ(u) and
v′ ∈ ψ(v) such that {u′, v′} ∈ E(G). To this end, consider some edge {u, v} ∈ E(L).
Because ϕ is a minor model for L in G, we have that there exist û ∈ ϕ(u) and v̂ ∈ ϕ(v)
such that {û, v̂} ∈ E(G). When we proved that first property, we have already shown
that for all w ∈ V (L) and C ∈ ccϕ(w), we have that C ∩NG(R) = ψ?((w,C)) ∩NG(R).

16In this context, we remind that L and G are unboundaried graphs and therefore we deal with the standard
definition of a minor model.

87

Thus, ϕ(u) ∩ NG(R) = ψ(u) ∩ NG(R) and ϕ(v) ∩ NG(R) = ψ(v) ∩ NG(R). Moreover,
note that ϕ(u) \ V (B) = ψ(u) \ V (B). Thus, if û, v̂ ∈ (V (G) \ R), then we are done by
choosing u′ = û and v′ = v̂. Therefore, we next suppose that this is note the case. Then,
without loss of generality, suppose that û ∈ R. Because {û, v̂} ∈ E(G), this implies that
v̂ ∈ V (B). Let C and D be the maximal connected subsets in ccϕ(u) and ccϕ(v) such
that û ∈ C and v̂ ∈ D. As {û, v̂} ∈ E(G), we have that {(u,C), (v,D)} ∈ E(L?) (by our
definition of L?). Because ψ? is a minor model for L? in B which is a subgraph of G,
there exist u? ∈ ψ?((u,C)) and u? ∈ ψ?((u,C)) such that {u?, v?} ∈ E(G). Thus, because
ψ?((u,C)) ⊆ ψ(u) and ψ?((u,C)) ⊆ ψ(u), the proof of claim is complete (select u′ = u?

and v′ = v?).

Now, we claim that for every maximal connected subset T of U and for every vertex v ∈ V (L),
either T ⊆ ψ(v) or T ∩ ψ(v) = ∅. For this purpose, consider some maximal connected subset
T of U . Then, for every vertex v ∈ V (L), either T ⊆ ϕ(v) or T ∩ ϕ(v) = ∅. Moreover, for
every maximal connected subset A of T ∩ V (B) and for every vertex (v, C) ∈ V (L?), either
A ⊆ ψ?((v, C)) or A ∩ ψ?((v, C)) = ∅. Thus, if T ⊆ V (G) \ V (B) or T ⊆ V (B), the proof
of our claim is complete (by the definition of ψ(v)). Therefore, we next suppose that neither
T ⊆ V (G) \ V (B) nor T ⊆ V (B). Then, it must hold that T ∩NG(R) 6= ∅. Recall that we have
already shown, in this case, that every maximal connected subset A of T ∩V (B) contains at least
one vertex from NG(R), and that for all w ∈ V (L) and C ∈ ccϕ(w), we have that C ∩NG(R) =
ψ?((w,C)) ∩NG(R). Now, as for every vertex v ∈ V (L), either T ⊆ ϕ(v) or T ∩ ϕ(v) = ∅, we
in particular derive that there exists at most one vertex in V (L), say v?, such that T ⊆ ϕ(v).
For the rest of the proof, we can suppose that v? exists, since otherwise (

⋃
v∈V (L) ϕ(v))∩ T = ∅

and hence (
⋃
v∈V (L) ψ(v))∩T = ∅ (because (

⋃
v∈V (L) ϕ(v))∩NG(R) = (

⋃
v∈V (L) ψ(v))∩NG(R),

and T cannot have non-empty intersection with
⋃
v∈V (L) ψ(v) if it has an empty intersection

with (
⋃
v∈V (L) ψ(v))∩NG(R)), which completes the proof of the claim. Only the vertex v? can

have subsets C ∈ ccϕ(v?) such that T ∩ C 6= ∅. Therefore, for every maximal connected subset
A of T ∩ V (B) and for every vertex (v, C) ∈ V (L?), if v 6= v? then A ∩ ψ?((v, C)) = ∅, and
otherwise either A ⊆ ψ?((v, C)) or A ∩ ψ?((v, C)) = ∅; moreover, for the maximal connected
subset C ∈ ccϕ(v?) such that A ⊆ C, it holds that A ⊆ ψ?((v?, C)) (because A ∩ ψ?((v?, C))
cannot be satisfied as A ∩ NG(R) = ψ?((v?, C)) ∩ NG(R) 6= ∅). From this, we conclude that
either T ⊆ ψ(v?).

So far, we have proved that ψ is a minor model for L in G such that, for every maximal
connected subset T of U and for every vertex v ∈ V (L), either T ⊆ ψ(v) or T ∩ ψ(v) = ∅.
Finally, due to this proof and by Observation 9.1, we derive that G/U contains L as a minor.
However, recalling that L is the (unboundaried) γ×γ-grid, this is a contradiction, and therefore
the proof is complete.

From Lemmas 9.10 and 9.11, we directly obtain the following corollary.

Corollary 9.1. Let γ ∈ N. Let G be a graph with R ⊆ V (G) and an order < on V (G). Let
w : V (G) → Q+

0 be a weight function. Let f be an elimination mapping of (G,R). Among all
subsets U ⊆ V (G) of minimum weight such that G/U has no γ × γ-grid minor, there exists at
least one subset U that satisfies the following condition: There exists a set F ∈ Elimγ,|NG(R)|
such that f(F) 6= nil and f(F) ⊆ U .

Proof of Lemma 9.3. Let p and r be the fixed constants in Lemma 9.2, and s = |Elimγ,r|.
Given an H-minor free graph G such that (G,w) is nice and tw(G) ≥ p, and a weight function
w : V (G) → Q+

0 , the algorithm begins by calling the algorithm in Lemma 9.2 with G as input
to compute a subset R ⊆ V (G) such that G[R] has a γ × γ grid as a minor, tw(G[R]) ≤ q and
|NG(R)| ≤ r for some fixed constant q that depends only on H and γ. Then, the algorithm

88

selects (arbitrarily) some order < on V (G). Next, it calls the algorithm in Lemma 9.7 with
(G,w,R) as input (note that all of the conditions required to make this call are satisfied), and
thus computes an elimination mapping f of (G,R). For every (γ, r)-elimination set F ∈ Elimγ,r

such that f(F) 6= nil, let xF be some vertex in f(F) of positive weight (whose existence is
guaranteed by Lemma 9.8 because (G,w) is nice). Finally, return the set X defined as follows.

X = {xF : F ∈ Elimγ,r, f(F) 6= nil}.

The fact that the algorithm runs in polynomial time, where the degree of the polynomial is
independent of H and γ, follows directly from the bounds on the running times of the algorithms
in Lemmas 9.2 and 9.7.

Now, we turn to prove that X is s-reducible. Let ε = minv∈X{w(v)}. The construction of
X immediately implies that |X| ≤ s, and that if X is not empty, then ε > 0. By Corollary
9.1, among all subsets U ⊆ V (G) of minimum weight such that G/U has no γ × γ-grid minor,
there exists at least one subset U that satisfies the following condition: There exists a set
F ∈ Elimγ,|NG(R)| such that f(F) 6= nil and f(F) ⊆ U . For this subset U , it holds that
xF ∈ U ∩X. This inclusion also implies that X is not empty. Thus, the proof is complete.

9.3 Proof of Lemma 9.1

For the sake of simplicity, we design the algorithm as a recursive algorithm. Let p and s be the
fixed constants in Lemma 9.3. Additionally, fix d = s. Given an H-minor free graph G, and a
weight function w : V (G)→ Q+

0 , our algorithm ALG(G,w) computes S ⊆ V (G) as follows.

1. If tw(G) ≤ p: Solve the problem optimally in time f(p, γ)nO(1) by calling the algorithm
in Lemma 9.5 on (G,w,F) where G is considered as a boundaried graph with an empty
boundary, and the only graph in F is the γ × γ-grid (with an empty boundary).

2. Else if (G,w) is not nice: Let Z = {v ∈ V (G) : w(v) = 0}. Execute a recursive call
ALG(G/Z,wZ), and let S′ ⊆ V (G/Z) be its output. Return S = (S′ ∩ V (G)) ∪ Z.

3. Otherwise: Call the algorithm in Lemma 9.3 to compute an s-reducible subset X ⊆
V (G). Let ε = minv∈X w(v), and define w′ : V (G)→ Q+

0 as follows.

w′(v) =

{
w(v) if v /∈ X
w(v)− ε otherwise

Execute a recursive call ALG(G,w′), and let S ⊆ V (G) be its output. Then, return S.

For the analysis of the running time, observe that each recursive call decreases the number
of vertices that have positive weight. Specifically, in the second case the total number of vertices
decreases, and in the third case ε > 0 (because X is s-reducible), and therefore at least one
vertex in X changes its weight from being positive to 0. Thus, the depth of the recursion is
upper bounded by n. Moreover, by Lemma 9.3, the computation in the third case can be done
in polynomial time (where the degree of the polynomial is independent of γ and H). Thus, the
running time of our algorithm is polynomial (where the degree of the polynomial is independent
of γ and H).

Now, let us consider the correctness of the algorithm. Namely, we need to show that the
set S returned by ALG(G,w) has weight at most d · opt(G,w, γ) and that G/S has no γ × γ-
grid minor. The proof is by induction on the number of vertices of positive weight in G. In
the basis, tw(G) ≤ p. Then, we solve the problem optimally (our problem is the special case
of Boundaried Minor Hitting where F consists only of the γ × γ-grid), and therefore the
inequality holds.

89

In the step of the induction, we first consider the case where tw(G) > p and (G,w) is not
nice. By the inductive hypothesis, the weight of S′ (by wZ) is at most d · opt(G/Z,wZ , γ)
and (G/Z)/S′ has no γ × γ-grid minor. Then, from Lemma 9.4, we immediately get that
w(S) ≤ d · opt(G,w, γ) and that G/S has no γ × γ-grid minor.

Lastly, consider the case where tw(G) > p and (G,w) is nice. By the inductive hypothesis,
we have that w′(S) ≤ d ·opt(G,w′, γ) and G/S has no γ×γ-grid minor. Since |X| ≤ s (because
X is s-reducible) and d = s, we have that

w(S) = w′(S) + ε · |X ∩ S| ≤ d · opt(G,w′, γ) + εs = d · (opt(G,w′, γ) + ε).

Thus, to prove that w(S) ≤ d · opt(G,w, γ), it suffices to show that opt(G,w′, γ) + ε ≤
opt(G,w, γ). Because X is s-reducible, there exists a subset T ⊆ V (G) such that w(T) =
opt(G,w, γ), G/T has no γ × γ-grid minor and X ∩ T 6= ∅. The fact that X ∩ T 6= ∅ implies
that

w′(T) = w(T)− ε|T ∩X| ≤ w(T)− ε = opt(G,w, γ)− ε.

Note that, because G/T has no γ× γ-grid minor, it holds that opt(G,w′, γ) ≤ w′(T). Thus, we
derive that opt(G,w′, γ) + ε ≤ opt(G,w, γ). This completes the proof.

References

[1] A. Agrawal, D. Lokshtanov, P. Misra, S. Saurabh, and M. Zehavi, Polylog-
arithmic approximation algorithms for weighted-f-deletion problems, in Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX-
/RANDOM 2018, August 20-22, 2018 - Princeton, NJ, USA, vol. 116 of LIPIcs, Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018, pp. 1:1–1:15. 2

[2] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network flows - theory, algorithms
and applications, Prentice Hall, 1993. 33

[3] S. Arnborg, J. Lagergren, and D. Seese, Easy problems for tree-decomposable graphs,
J. Algorithms, 12 (1991), pp. 308–340. 78

[4] S. Arora, M. Grigni, D. R. Karger, P. N. Klein, and A. Woloszyn, A polynomial-
time approximation scheme for weighted planar graph TSP, in Proceedings of the Ninth
Annual ACM-SIAM Symposium on Discrete Algorithms, 25-27 January 1998, San Fran-
cisco, California, USA., ACM/SIAM, 1998, pp. 33–41. 3

[5] V. Bafna, P. Berman, and T. Fujito, A 2-approximation algorithm for the undirected
feedback vertex set problem, SIAM Journal on Discrete Mathematics, 12 (1999), pp. 289–
297. 1, 2

[6] B. S. Baker, Approximation algorithms for NP-complete problems on planar graphs, J.
ACM, 41 (1994), pp. 153–180. 3

[7] N. Bansal, D. Reichman, and S. W. Umboh, LP-based robust algorithms for noisy
minor-free and bounded treewidth graphs, in Proceedings of the Twenty-Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel
Porta Fira, January 16-19, 2017, pp. 1964–1979. 1, 9, 10, 14, 18, 19, 20, 67, 69

[8] J. Baste, I. Sau, and D. M. Thilikos, Hitting (topological) minors on bounded treewidth
graphs, CoRR, abs/1704.07284 (2017). 2, 6, 7

90

[9] , Optimal algorithms for hitting (topological) minors on graphs of bounded treewidth,
in 12th International Symposium on Parameterized and Exact Computation, IPEC 2017,
September 6-8, 2017, Vienna, Austria, vol. 89 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2017, pp. 4:1–4:12. 1, 2, 6, 7

[10] H. L. Bodlaender, A linear-time algorithm for finding tree-decompositions of small
treewidth, SIAM J. Computing, 25 (1996), pp. 1305–1317. 80

[11] H. L. Bodlaender, M. Cygan, S. Kratsch, and J. Nederlof, Deterministic single
exponential time algorithms for connectivity problems parameterized by treewidth, in Pro-
ceedings of the 40th International Colloquium of Automata, Languages and Programming
(ICALP), vol. 7965 of Lecture Notes in Comput. Sci., Springer, 2013, pp. 196–207. 2

[12] G. Călinescu, H. J. Karloff, and Y. Rabani, An improved approximation algorithm
for MULTIWAY CUT, J. Comput. Syst. Sci., 60 (2000), pp. 564–574. 68

[13] J. Chuzhoy and Z. Tan, Towards tight(er) bounds for the excluded grid theorem, in Pro-
ceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2019, San Diego, California, USA, January 6-9, 2019, SIAM, 2019, pp. 1445–1464. 2

[14] V. Cohen-Addad, É. C. de Verdière, P. N. Klein, C. Mathieu, and D. Meier-
frankenfeld, Approximating connectivity domination in weighted bounded-genus graphs,
in Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2016, Cambridge, MA, USA, June 18-21, 2016, 2016, pp. 584–597. 1, 2, 3, 4, 5, 6

[15] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk,
M. Pilipczuk, and S. Saurabh, Parameterized Algorithms, Springer, 2015. 11, 21, 78

[16] M. Cygan, M. Pilipczuk, M. Pilipczuk, and J. O. Wojtaszczyk, An improved FPT
algorithm and a quadratic kernel for pathwidth one vertex deletion, Algorithmica, 64 (2012),
pp. 170–188. 1

[17] A. Dawar, M. Grohe, S. Kreutzer, and N. Schweikardt, Approximation schemes
for first-order definable optimisation problems, LICS 2006, (2006), pp. 411–420. 1, 2, 3

[18] E. D. Demaine, F. V. Fomin, M. Hajiaghayi, and D. M. Thilikos, Subexponential
parameterized algorithms on graphs of bounded genus and H-minor-free graphs, J. ACM,
52 (2005), pp. 866–893. 3

[19] E. D. Demaine and M. Hajiaghayi, Bidimensionality: New connections between FPT
algorithms and PTASs, in Proceedings of the 16th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA 2005), ACM-SIAM, 2005, pp. 590–601. 1, 3

[20] , Linearity of grid minors in treewidth with applications through bidimensionality,
Combinatorica, 28 (2008), pp. 19–36. 8

[21] E. D. Demaine, M. Hajiaghayi, and K. Kawarabayashi, Contraction decomposition
in h-minor-free graphs and algorithmic applications, in Proceedings of the 43rd ACM Sym-
posium on Theory of Computing, STOC 2011, San Jose, CA, USA, 6-8 June 2011, 2011,
pp. 441–450. 3

[22] E. D. Demaine, M. Hajiaghayi, and B. Mohar, Approximation algorithms via con-
traction decomposition, Combinatorica, 30 (2010), pp. 533–552. 3

91

[23] E. D. Demaine and M. T. Hajiaghayi, Graphs excluding a fixed minor have grids as
large as treewidth, with combinatorial and algorithmic applications through bidimension-
ality, in Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2005, Vancouver, British Columbia, Canada, January 23-25, 2005, 2005,
pp. 682–689. 1, 11, 21

[24] R. Diestel, Graph theory, vol. 173 of Graduate Texts in Mathematics, Springer-Verlag,
Berlin, 3rd ed., 2005. 75

[25] D. Eisenstat, P. Klein, and C. Mathieu, An efficient polynomial-time approximation
scheme for Steiner forest in planar graphs, in Proceedings of the twenty-third annual ACM-
SIAM symposium on Discrete Algorithms (SODA), SIAM, 2012, pp. 626–638. 3

[26] D. Eppstein, Diameter and treewidth in minor-closed graph families, Algorithmica, 27
(2000), pp. 275–291. 3

[27] G. Even, J. Naor, S. Rao, and B. Schieber, Fast approximate graph partitioning
algorithms, SIAM J. Comput., 28 (1999), pp. 2187–2214. 68

[28] J. Fakcharoenphol and K. Talwar, An improved decomposition theorem for graphs ex-
cluding a fixed minor, in Approximation, Randomization, and Combinatorial Optimization:
Algorithms and Techniques, 6th International Workshop on Approximation Algorithms for
Combinatorial Optimization Problems, APPROX 2003 and 7th International Workshop
on Randomization and Approximation Techniques in Computer Science, RANDOM 2003,
Princeton, NJ, USA, August 24-26, 2003, Proceedings, 2003, pp. 36–46. 68

[29] S. Fiorini, G. Joret, and U. Pietropaoli, Hitting diamonds and growing cacti, in In-
teger Programming and Combinatorial Optimization, 14th International Conference, IPCO
2010, Lausanne, Switzerland, June 9-11, 2010. Proceedings, 2010, pp. 191–204. 1, 2

[30] F. V. Fomin, P. A. Golovach, and D. M. Thilikos, Contraction obstructions for
treewidth, J. Combinatorial Theory Ser. B, 101 (2011), pp. 302–314. 75

[31] F. V. Fomin, D. Lokshtanov, N. Misra, and S. Saurabh, Planar F-deletion: Ap-
proximation, kernelization and optimal FPT algorithms, in Proceedings of the 53rd Annual
Symposium on Foundations of Computer Science (FOCS), IEEE, 2012, pp. 470–479. 1, 82

[32] F. V. Fomin, D. Lokshtanov, V. Raman, and S. Saurabh, Bidimensionality and
EPTAS, in Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), SIAM, 2011, pp. 748–759. 79, 80

[33] F. V. Fomin, D. Lokshtanov, and S. Saurabh, Excluded grid minors and efficient
polynomial-time approximation schemes, J. ACM, 65 (2018), pp. 10:1–10:44. 1, 2, 3, 8

[34] F. V. Fomin, D. Lokshtanov, S. Saurabh, and D. M. Thilikos, Bidimensionality and
kernels, in Proceedings of the 20th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), SIAM, 2010, pp. 503–510. 1

[35] R. Gandhi, S. Khuller, and A. Srinivasan, Approximation algorithms for partial
covering problems, J. Algorithms, 53 (2004), pp. 55 – 84. 3

[36] N. Garg, V. V. Vazirani, and M. Yannakakis, Approximate max-flow min-(multi)cut
theorems and their applications, SIAM J. Comput., 25 (1996), pp. 235–251. 68

92

[37] M. Grigni, E. Koutsoupias, and C. H. Papadimitriou, An approximation scheme
for planar graph TSP, in 36th Annual Symposium on Foundations of Computer Science,
Milwaukee, Wisconsin, USA, 23-25 October 1995, IEEE Computer Society, 1995, pp. 640–
645. 3

[38] M. Grohe, Local tree-width, excluded minors, and approximation algorithms, Combina-
torica, 23 (2003), pp. 613–632. 3

[39] A. Gupta, E. Lee, J. Li, P. Manurangsi, and M. Wlodarczyk, Losing treewidth
by separating subsets, in Proceedings of the Thirtieth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, 2019,
pp. 1731–1749. 1

[40] D. S. Hochbaum and W. Maass, Approximation schemes for covering and packing
problems in image processing and VLSI, J. ACM, 32 (1985), pp. 130–136. 3

[41] D. R. Karger, P. N. Klein, C. Stein, M. Thorup, and N. E. Young, Rounding
algorithms for a geometric embedding of minimum multiway cut, Math. Oper. Res., 29
(2004), pp. 436–461. 68

[42] S. Khanna and R. Motwani, Towards a syntactic characterization of ptas, in STOC
1996, ACM, 1996, pp. 329–337. 3

[43] P. N. Klein, A linear-time approximation scheme for planar weighted TSP, in 46th Annual
IEEE Symposium on Foundations of Computer Science (FOCS 2005), 23-25 October 2005,
Pittsburgh, PA, USA, Proceedings, 2005, pp. 647–657. 3

[44] , A linear-time approximation scheme for TSP in undirected planar graphs with edge-
weights, SIAM J. Comput., 37 (2008), pp. 1926–1952. 3

[45] P. N. Klein, S. A. Plotkin, and S. Rao, Excluded minors, network decomposition,
and multicommodity flow, in Proceedings of the Twenty-Fifth Annual ACM Symposium on
Theory of Computing, May 16-18, 1993, San Diego, CA, USA, 1993, pp. 682–690. 9, 68

[46] J. M. Kleinberg and A. Kumar, Wavelength conversion in optical networks, J. Algo-
rithms, 38 (2001), pp. 25–50. 3

[47] E. Lee, Partitioning a graph into small pieces with applications to path transversal, in
Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, 2017, pp. 1546–1558. 1

[48] R. J. Lipton and R. E. Tarjan, A separator theorem for planar graphs, SIAM J. Appl.
Math., 36 (1979), pp. 177–189. 3

[49] D. G. Luenberger and Y. Ye, Linear and Nonlinear Programming, Springer Publishing
Company, Incorporated, 2015. 17

[50] F. Mazoit, Tree-width of hypergraphs and surface duality, J. Combinatorial Theory Ser.
B, 102 (2012), pp. 671–687. 7, 75

[51] B. Mohar and C. Thomassen, Graphs on surfaces, Johns Hopkins Studies in the Math-
ematical Sciences, Johns Hopkins University Press, 2001. 75

[52] B. A. Reed, Tree Width and Tangles: A New Connectivity Measure and Some Appli-
cations, London Mathematical Society Lecture Note Series, Cambridge University Press,
1997, pp. 87—162. 10, 19

93

[53] N. Robertson and P. D. Seymour, Graph minors. XIII. The disjoint paths problem, J.
Combinatorial Theory Ser. B, 63 (1995), pp. 65–110. 69

[54] N. Robertson and P. D. Seymour, Graph minors. xx. wagner’s conjecture, J. Combi-
natorial Theory Ser. B, 92 (2004), pp. 325–357. 1

[55] I. Sau and D. M. Thilikos, On self-duality of branchwidth in graphs of bounded genus,
Discrete Applied Mathematics, 159 (2011), pp. 2184–2186. 17

[56] S. Thomassé, A 4 k2 kernel for feedback vertex set, ACM Trans. Algorithms, 6 (2010),
pp. 32:1–32:8. 1

94

