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ABSTRACT

We study topology control problems in ad hoc networks,
where network nodes get to choose their power levels in or-
der to ensure desired connectivity properties. Unlike most
other work on this topic, we assume that the network nodes
are owned by different entities, whose only goal is to max-
imize their own utility that they get out of the network
without considering the overall performance of the network.
Game theory is the appropriate tool to study such selfish
nodes: we define several topology control games in which
the nodes need to choose power levels in order to connect
to other nodes in the network to reach their communication
partners while at the same time minimizing their costs. We
study Nash equilibria and show that — among the games we
define — these can only be guaranteed to exist if all network
nodes are required to be connected to all other nodes (we call
this the STRONG CONNECTIVITY GAME). We give asymp-
totically tight bounds for the worst case quality of a Nash
equilibrium in the STRONG CONNECTIVITY GAME and we
improve these bounds for randomly distributed nodes. We
then study the computational complexity of finding Nash
equilibria and show that a polynomial-time algorithm finds
Nash equilibria whose costs are at most a factor 2 off the
minimum cost possible; for a variation called CONNECTIV-
ITY GAME, where each node is only required to be connected
(possibly via intermediate nodes) to a given set of nodes, we
show that answering the question, if a Nash equilibrium ex-
ists, is N P-hard, if the network graph satisfies the triangle
inequality. For a second game called REACHABILITY GAME,
where each node tries to reach as many other nodes as pos-
sible, while minimizing its radius, we show that 1 4+ o(1)-
approximate Nash equilibria exist for randomly distributed
nodes. Our work is a first step towards game-theoretic anal-
yses of ad hoc networks.
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1. INTRODUCTION

Unlike traditional, fixed wireline networks, the next gen-
eration communication networks are likely to be ad hoc, or
hybrid (i.e., a combination of ad hoc and wireline) networks.
An ad hoc network consists of an arbitrary distribution of
radios in some geographical location. One important fea-
ture of ad hoc networks is that nodes can move, and so the
network changes dynamically. Earliest examples of ad hoc
networks were in military applications (e.g. [8]). Recent ad-
vances in the commercialization of intelligent radio devices
are likely to lead to the wide-spread emergence of ad hoc or
hybrid networks [13].

Depending on its power level, on the nature of environ-
mental interference, and on natural features, a node in an ad
hoc network can reach all nodes in a certain range. To send
a message to some far away node, the sending node must
rely on intermediate nodes to forward the message. We con-
sider scenarios where no fixed infrastructure is present and
it is left to the nodes to choose their power levels to enable
efficient communication. Once the radii (power levels) of
the nodes are fixed, a digraph G(V, FE) can be abstracted
out in the following manner: V is the set of nodes, and edge
e = (u,v) is present in F if node v is within the power range
of node u; such a graph is called the transmission graph
[14]. Efficient communication requires that the transmis-
sion graph satisfy certain properties such as connectivity,
energy-efficiency and robustness. The area of topology con-
trol deals with choosing the radii such that the transmission
graph has the desired properties; see [14] for a survey.

One of the key design criteria for any ad hoc network
protocol is energy efficiency. In fact, the network nodes typ-
ically have limited battery power and energy consumption
is the dominating cost component in an ad hoc network for



an individual node [6]. The transmission range of a node
u depends on the transmitting power PE™" of the node:
the power P, at which a node v at distance d(u,v) to the
transmitting node u receives the signal is [6]:
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rec __ emit
Pu,v - W u 5 (1)

where K is a constant and « is the distance-power gradient
varying between one and six depending on the environment
conditions of the network. If this power exceeds a minimum
level, a node v at this point can successfully receive the
message and falls within the transmission range. Thus, en-
ergy requirements increase super-linearly in most cases (i.e.,
whenever o > 1; under ideal conditions, we have o = 2).
Apart from high cost, large transmission radii also lead to
higher interference during radio transmission, and thus to
larger latencies.

Existing work on energy-efficient topology control [14] has
focused on the problems of minimizing the sum of the radii
(or the sum of some power of the radii) while ensuring that
the transmission graph has the desired properties. Typically,
such algorithms either require centralized control, or require
that the nodes run a distributed algorithm while cooperat-
ing and trusting each other. While such an assumption on
node behavior might hold for special networks, e.g. military
or government applications, it is certainly unreasonable in
commercial applications, which are strongly driven by eco-
nomic incentives. More often than not, different nodes will
be owned by different commercial entities, which would all
like to communicate together, but — at the same time — in-
dividually want to incur as little cost as possible. Thus, in
most scenarios, network nodes are selfish and each node’s
only goal is to maximize its own utility. This is a perfect
scenario for studying as a non-cooperative game. The self-
ish nature of network nodes of course affects all layers of
the protocol stack: a truly selfish node will try to exploit
weaknesses of the protocols on any layer in order to improve
its utility. We believe that the interactions of the network
nodes, in particular on the data link and the network layer,
should be studied as a game. On the data link layer, the
protocol for fixing transmission radii and the protocol of al-
locating channel resources (on the MAC sublayer) could be
exploited by selfish nodes; on the network layer, selfishness
comes most obviously into play when a node is asked to
forward data packets for another node, which only drains
the battery of the forwarding node, thus bringing a negative
utility to that node. A node can be made willing to forward
packets by paying an appropriate amount of money; several
schemes have been suggested that aim at solving the selfish-
ness problem on the network layer [4, 1]. In this work, we
will focus on the data link layer: we study different topology
control problems as games by examining their equilibria, and
by designing algorithms for reaching such equilibria. The ul-
timate goal of this line of research would be to combine the
notion of selfishness such that it stretches across all protocol
stack layers.

Computational Game Theory Game theory has been
used as a tool to model and study different aspects of com-
munication networks only in recent years. Transportation
networks have been subject to game theoretic analyses (see
e.g. [3, 5]) and policies on taxation and design of road net-
works have been influenced by game theoretic models [3].
Much of the classical game-theory work has been non-algo-

rithmic in nature, without much focus on the computational
complexity of finding good policies or designing good net-
works. The work by Roughgarden [15] represents recent at-
tempts at addressing such algorithmic questions for traffic
and wireline networks. Due to the intense interest in large
networks, like the Internet, a lot of recent work in computa-
tional game theory focuses on network design. Roughgarden
[16] considered the problem of designing networks that re-
duce the cost of selfish routing, and showed computational
intractability of such problems. The work most closely re-
lated to the questions studied in this paper is [2, 7].

For modeling communication networks as games, it is rea-
sonable to think of each node as a player or agent. Each
player has a certain set of strategies: in the games we con-
sider, a player needs to choose a radius, and a choice of the
radius is a strategy. Each player is endowed with a local
utility function. A lot of work in game theory has been de-
voted to stable operating points in non-cooperative games,
and the most popular notion is that of a Nash equilibrium
(see [12] for details). A choice of strategies o for all play-
ers is said to be a Nash equilibrium, if no player has an
incentive to deviate from ¢ in order to improve its utility.
A Nash equilibrium can be pure or mixed: a mixed equi-
librium is relevant if players randomize on their strategies.
In this work we will generally not consider mixed strate-
gies, as they do not seem to be practical in the context of
such design problems (see also [2] for a similar argument).
If the game has a Nash equilibrium, game theorists believe
that such a game — played repeatedly — would tend to end
up in a Nash equilibrium. Therefore, questions of existence
of Nash equilibria and algorithms for finding them are of
crucial importance.

Our Results We consider topology control problems in
ad hoc networks, and model them as non-cooperative games.
Ad hoc networks are characteristically different from other
infrastructure networks, e.g. transportation systems, in many
ways, and very little game theoretic analysis has been done
so far for ad hoc networks. We consider two topology control
games for static ad hoc networks, the CONNECTIVITY GAME
and the REACHABILITY GAME, in this paper. The cost of a
radius vector 7 is C'(7) = ) 7y (see also Section 2).

In the CONNECTIVITY GAME, each node has to communi-
cate with another node. Therefore, we need directed paths
connecting each source node to the corresponding destina-
tion node. Each node aims to minimize its radius. The
version of this game where each node needs to connect with
everyone else is called the STRONG CONNECTIVITY GAME.
In our model of selfishness, a node only cares about reach-
ing its destination; a node will not make its radius larger
to help other nodes reach their destinations. Once the radii
are fixed, however, a node is willing to forward data packets
even if these packets are from a third node (see [4] for a
method of achieving this willingness).

The CONNECTIVITY GAME can be viewed as a wireless
version of [2]. The work of [2] involves players on a net-
work, with edges having costs. An edge can be used if it is
paid for by the players, and strategies for the players involve
choosing payments for the edges so that their connectivity
requirements are met. In the ad hoc setting, a node can
reach all nodes within its transmission range. Also, in an
ad hoc network, a node only has control on its power, in
contrast to [2], where a node can pay for far away edges.

In the REACHABILITY GAME, the utility function for a



node v is defined as the difference between the number of
nodes reached from v and ry, where r, is the radius chosen
by v and « is a constant. Each node chooses a radius in
order to maximize its utility.

Our results are summarized below.

1. The CONNECTIVITY GAME need not always have a
pure Nash equilibrium, not even a G-approximate Nash
equilibrium, for any 8 > 0. Deciding whether an in-
stance of this game has a pure Nash equilibrium is
N P-complete if the underlying graph satisfies the tri-
angle inequality.

2. The STRONG CONNECTIVITY GAME always has a pure
Nash equilibrium. In fact, there are multiple Nash
equilibria, whose cost can vary widely. Also, any local
optimum is a Nash equilibrium.

3. There is a simple local improvement algorithm that
yields a Nash equilibrium for the STRONG CONNEC-
TIVITY GAME. Using an observation from [10], this
yields an algorithm to find a Nash equilibrium of cost
at most twice the optimum.

4. The cost of any Nash equilibrium for the STRONG CON-
NECTIVITY GAME is bounded by O(n®) times the opti-
mal cost. This is interesting, because it is independent
of the distances between points, and only depends on
their number. This bound is also tight: there is an
instance which has a Nash equilibrium of cost ©(n®)
times the cost of the optimum. This tight instance
has a special structure, and typical instances have a
much better ratio. Indeed, for a random distribution
of n points in a v/n X y/n plane region, the ratio of the
cost of the worst Nash equilibrium to the optimal cost
is bounded by O(n®/?log®n), with high probability.
Also, we show that a local improvement algorithm re-
sults in Nash equilibria of cost O(log®™ n) times the
optimal, with high probability.

5. There are instances of the REACHABILITY GAME with
no pure Nash equilibrium, even when the points are
located on a line for the case of @ = 1.

6. For a random distribution of n points in a v/n X /n
plane region, the REACHABILITY GAME has a 1+ o(1)-
approximate Nash equilibrium, with high probability.

Organization Section 2 defines all the basic graph theo-
retic and game theoretic concepts, and the models we study.
Section 3 describes the results on the CONNECTIVITY GAME
and Section 4 describes the results on the REACHABILITY
GAME. We conclude in Section 5.

2. PRELIMINARIES

Our input is always a graph H(V, E',w), with |V]| = n
and with @ being the weight vector on edges (i.e., we is the
weight of edge e € E’). A radius vector ¥ € R" (r, be-
ing the radius of v € V), induces a directed graph G(V, E)
in the following manner: e = (u,v) € E’ is present in F
if 7, > we. The graphs we consider here will not be ar-
bitrary — they are either Euclidean or the weight vector w
satisfies the triangle inequality. H is Euclidean if there is
an embedding of V in R* (k will usually be 2 or 3) such
that we = d(u,v), where d() denotes the Euclidean distance

function. In the Euclidean case, we will denote the graph
induced by radius vector 7 by G(V, 7), since the weights are
defined by the points themselves. Most of our discussion
will be restricted to the Euclidean case, except in Section
3.3, where the graphs will not be Euclidean but would sat-
isfy the triangle inequality. The cost of a radius vector 7 is
defined as C(7) = ) 7y, where a is a constant known as
the distance power gradient, usually being 2.

Now we define the game theory notation we need; see
[12] for more details. Formally, a game in its normal form
is defined as the tuple (1,{Sy}, {Uv()}), where I is the set
of players, S, is the set of strategies for player v € I and
Uy, : I1,S, — R is the utility function for player v € I. In
our models, each node v is associated with an independent,
selfish agent; so I = V. We will identify the agent with the
point in the description below. Each point v has to choose a
radius (power level) and so the set of strategies S, for v € V
is R, the set of all possible radii (note that it is sufficient to
consider the finite set {d(v, w), w € V} for the set of possible
radii for point v, instead of R). A choice of strategies for
all points is just a radius vector 7, with r, being the radius
chosen by v. The game is fully specified once we define the
utility functions. In this paper we consider the following

games.
The Connectivity Game In the CONNECTIVITY GAME,
we are given pairs (s1,t1),..., (Sk, tx), and each s; needs to

connect to t;. Each s; has to choose a radius so that it gets
connected to t; (possibly over several intermediate nodes),
while keeping the radius as small as possible. For a radius
vector 7, the utility Us, of point s; is defined as —M if s; does
not connect to t;, M being some very large number, and is
—rg, if s; connects to ¢;. The utilities of all other points are
0. The social optimum for such a game is a radius vector
7 such that s; reaches ¢;, for each ¢ in G(V,7), and C(7) is
minimized.

The Strong Connectivity Game The STRONG CON-
NECTIVITY GAME is a special case of the CONNECTIVITY
GAME, where each point needs to connect with every other
point. Therefore, for a radius vector 7, the utility of point v
is —M if v does not reach some point, and is —ry if v does
reach all other points. The social optimum for such a game
is a radius vector 7 such that each v € V reaches all other
points in V' and C(7) is minimized.

The Reachability Game Given 7, let f7(v) denote the
number of vertices w € W reachable from v in G(V, 7). The
utility of a player v € V is defined as U(v) = fr(v) — .

For the CONNECTIVITY GAME and the STRONG CONNEC-
TIVITY GAME, we denote the social optimum by OPT. The
exponent « in the utility functions (i.e., in —r§) for the two
connectivity games models the emission energy level and
thus the cost that a node v incurs when sending to node
at distance r,; our results would still hold if we defined the
utility to be the negative of any strictly positive power of
r», which could be different from c.

In all these games, we will be interested in the Nash equi-
libria. A choice of strategies 7 is said to be a Nash equilib-
rium if Uy (ry,7—0) > Uy(ry,7—0),Yv € V, where r_,, is the
vector denoting the radii of all points other than v. Infor-
mally, 7 is a Nash equilibrium, if no point v has incentive
to locally change its radius (while others keep their choices
fixed).

Remark The Nash equilibrium defined above is called a
pure Nash equilibrium, because the players are not allowed



to randomize on their strategies. In the case where players
choose their strategies according to a probability distribu-
tion, the appropriate notion is that of a mized Nash equilib-
rium. We will consider only pure strategies and pure Nash
equilibria in this paper, as mixed strategies do not seem to
be very reasonable in studies of network design, such as ours
(see also [2]). Finding Nash equilibria is desirable, however,
pure Nash equilibria need not necessarily exist in all games;
the notion of a (-approximate Nash equilibrium is a possi-
bility to deal with this: a choice of strategies o for all players
is said to be a S-approximate Nash equilibrium (for 8 > 1),
if unilateral deviation from o by an individual player will in-
crease its utility by at most a factor 3. Approximate Nash
equilibria might be a more suitable notion when only partial
information is available.

Random Points in the Plane We consider random dis-
tributions of n points within a \/n x /n region of the plane,
denoted by A. Each point is thrown into this region inde-
pendently and uniformly at random. This experiment places
points roughly uniformly in the region, as is shown in the
following lemma, which will be used later.

LEMMA 1. Partition the region A into n/log®n parts of
dimensions logn xlogn. For any such part B in an instance
P of random points, the number of points in B is in the
interval [(1 — ¢)log®n, (1 + €)log® n], with high probability,
where € is a small, strictly positive constant.

PROOF. The proof is a simple application of the Chernoff
bound [11]. Let Z; be the event that the ¢th point lies in
region B; Pr[Z; = 1] = area(B)/n = log>n/n. Let Z =
>, Zi be the random variable denoting the number of points
in region B. Then, E[Z] = log®n.

By the Chernoff bound, Pr[|Z — E[Z]| > €¢E[Z]] < 1/n’.
The number of parts B is O(n), and therefore, with prob-
ability at least 1 — 1/n, the statement holds for each such
part B. [

3. EQUILIBRIA IN THE CONNECTIVITY
GAME

3.1 The Strong Connectivity Game

In this section, we show that any instance of the STRONG
CONNECTIVITY GAME has a pure Nash equilibrium. We
prove an upper bound on the cost of all Nash equilibria and
show with an example, that this upper bound is tight. We
further present an algorithm that finds a Nash equilibrium
for any given instance. We then show how our local im-
provement algorithm combined with an algorithm given in
[10] yields a Nash equilibrium with no more than twice the
optimum cost. All results in this section also hold for non-
Euclidean instances where the triangle inequality is satisfied.

LEMMA 2. Any instance of the STRONG CONNECTIVITY
GAME has a pure Nash equilibrium. In fact, any local opti-
mum s a Nash equilibrium.

PRrROOF. Consider the set of radius vectors {7 | G(V,7) is
strongly connected}. This set is clearly non-empty and has
local optima. Every local optimum is a Nash equilibrium.
This is due to the fact that in a local optimum, no node

has an incentive to decrease its radius. If any node were to
decrease its radius, it would thereafter not be able to reach
at least one other node anymore, which would decrease its
utility to —M and therefore not be in its interest. [

Unfortunately, this game can have multiple Nash equilib-
ria. The costs of different equilibria can vary widely. It is,
however, surprising that the ratio of the cost of any Nash
equilibrium to the optimal cost depends only on n, and is in-
dependent of the actual interpoint distances. The following
lemma bounds the maximum cost of any Nash equilibrium.

LEMMA 3. Any Nash equilibrium for the STRONG CON-
NECTIVITY GAME has cost at most n® times the optimal
cost.

PROOF. Assume the radius vector 7 constitutes a Nash
equilibrium for the STRONG CONNECTIVITY GAME and 5 is
a choice of radii such that C(5) is minimal. Denote by Ky
the undirected, complete graph over all nodes in V, with
edge weights ¢(e) = d(u,v) for any edge e = {u, v}.

Fix any vertex vg. Since there is a path from any other
vertex to vo in G(V,5), we can construct a rooted intree T,
rooted at wvo: all vertices v have a directed path towards
vo of the smallest hop length. By construction, C(35) >
S er )

Next, observe that r, < >3 .. £(e), because d(v,w) <
> eer t(e), for any point w € V' (by triangle inequality).
Therefore, C(7) < n(}_.cr£(e))* = nC(T)?, where C(T') =
> cer £(e). The ratio of the cost of the Nash equilibrium to
the optimal cost is therefore bounded by

C(7) < nC(T)

C(3) = Xeertle)*
Since C(T) is fixed, this ratio is maximized when Y~ . £(e)”
is minimized, subject to ) ., ¢(e) = C(T). The mini-
mum value of > . £(e)* is n(C(T)/n), which is achieved
when ¢(e) = C(T)/n for each e € T. Therefore, the ratio
C(7)/C(3) is bounded by n®. [

(2)

The bound in the above lemma is tight: there is an in-
stance where the cost of a Nash equilibrium is ©(n®) times
the optimal cost. The example given in Fig. 1 demonstrates
this.

OBSERVATION 1. The instance given in Fig. 1 has a Nash
equilibrium of cost ©(n*) times the optimal cost.

PrROOF. Let n vertices be placed in the plane as illus-
trated in Fig. 1. There are n/8 nodes in each of the levels
A to F, and the remaining n/4 nodes are situated in the
set R along the right side of those levels. For n sufficiently
big, this graph is Euclidean. The nodes in level A to F have
a horizontal distance of 1 from each other and the vertical
distances between the levels are n/8, 0.5, 0.4, 0.5, and 1 as
given in the figure. The nodes in R all have distance 1 from
each other.

Assume each node chooses radius r, = 1. Then the in-
duced graph G(V,7) is strongly connected and the cost of
the radius vector is C(7) = >, o\, 7¢ = n. Now consider a
second choice of radii #'. We denote by r’sx the radius of any
node v in the subset X C V.

'y =n/8, rg = 0.5, r¢ = 0.4, rp = 0.5,

! / /
TEZI, T'le, T'R:1
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Figure 1: A graph where we can find a Nash equi-
librium of cost ©(n*) times the optimal cost.

The following proves that this choice of radii constitutes a
Nash equilibrium. Certainly, in order for a node to have
a utility function that is bigger than —M, that is, for the
induced graph to be strongly connected, each node has to
choose a positive (nonzero) radius. The nodes in F and R
choose their smallest nonzero radius and therefore do not
have an incentive to decrease it. Each of the nodes in level
A to E chooses its radius such that it can reach the corre-
sponding node in the level above. Observe that this induces
a graph that can be traversed in various cycles in clock-
wise order, thus the induced graph is strongly connected.
However, the graph cannot be traversed in counterclockwise
direction, since there are no edges going from the nodes
in level C to the nodes in level B. Hence, if any one of
the nodes in levels A to E decreased its radius, it would
not reach the node in the level above anymore and the cy-
cle would be broken. The cost of this Nash equilibrium
is n/8 * (n/8)* + O(n) = O(n**!') and we have therefore
found a Nash equilibrium of cost ©(n*) times the optimal
cost. [J

Finding a Nash equilibrium via Local Improve-
ment The following local improvement always leads to a
Nash equilibrium.

1. Start with any choice of radii #*) = 7 such that G(V, 7)
is strongly connected.

2. Order the vertices arbitrarily as vi,...,v, and con-
sider the vertices in this order.

3. In step i, the choice of radii is 7~ initially. Vertex
v; chooses the smallest radius so that it can still reach
every other vertex. Let 7 denote the choice of radii
after v; updates its radius.

LEMMA 4. The above local improvement algorithm always
leads to a Nash equilibrium.

PRrROOF. Throughout the algorithm, the graph G(V,#7®)
stays strongly connected. Therefore, no vertex ever has an
incentive to increase its radius. It remains to be proven
that, for all 4, vertex v; does not have an incentive to further
decrease its radius after any of the steps i + 1,...,n. Since
in those steps no vertex increases its radius, no new paths
are generated and v; never develops an incentive to decrease
its radius further. [

In order to find a choice of radii such that G(V,7) is
strongly connected, it is sufficient to go through all the nodes
once in arbitrary order and let each of them choose the ra-
dius that maximizes its utility function. However, by deter-
mining the start vector for the local improvement algorithm
in a more clever way, we can give an upper bound of the cost
of the resulting Nash equilibrium. The following algorithm
given in [10] constructs in O(n) time a vector 7% such that
G(V, 77(0)) is strongly connected.

1. Construct the undirected, complete graph Ky with
edge weights d(u,v)® for all u and v.

2. Find a minimum weight spanning tree T" of Kv.
3. For all v € V let 7, = max{d(v,w) | {v,w} € T}.

COROLLARY 1. A Nash equilibrium of cost at most twice
the optimum can be found in polynomial time.

PrOOF. Construct vector #(?) with the algorithm given
above. Lemma 4 implies that applying the local improve-
ment algorithm with the start vector 7 yields a vector
of radii #™ = 7 which constitutes a Nash equilibrium of
the STRONG CONNECTIVITY GAME. In [10] it is shown that
C(OPT) > C(T) and that

n

CF ) = max d(vi,v;)”

) izzlm{vi,vj}eﬂ (01, 94)
<2

i=1 {j|{vi,0, €T}

=2xC(T) <2xC(OPT).

d(viv vj)a

Clearly C(7) < C(7). O

3.2 The Strong Connectivity Game for Ran-
dom Points in the Plane

The bound on the ratio of the cost of the worst Nash
equilibrium to the optimal cost in the previous section is
tight, but the tight instance has a special structure. Most
arrangements of points in the plane are likely to lack such a
structure. Our results in this section show that this is indeed
true: if the n points are distributed randomly in a square
region of dimensions /n X y/n, the ratio is much smaller.
As in Section 2, let P denote a random distribution of the n
points. A denotes the region in which the points are thrown.

LEMMA 5. For an instance P, let 5 be a radius vector that
minimizes the cost C(5). Then, C(3) > Q(n/log® n), with
high probability.



PROOF. Partition the region A into square grid regions of
dimensions log n x logn. By Lemma 1, the number of points
in each grid cell B of A is very close to log® n. Let 5 be the
optimal radius vector for this random instance.

Consider any such grid cell B in A that is not a boundary
cell. Let S be the set consisting of B and the 8 cells adjacent
to B. We first show that )5/ o>, cp 7 > logn. Since
G(V,3) is strongly connected, points in B must connect to
points in cells not adjacent to it. Thus, there must be a
directed path in G(V,35) from a point in B to some cell B”
that is distance 2 away from B (cells adjacent to cells in S
are said to be distance 2 away from B). Since this path has
length at least logn, Y5/ D icp i > logn.

Next, we show that Y5 oD cp i > 1/ log®~ ! n. This
follows directly from convexity. Since Y5 pcqD sep T >
logn, > picg sep i is minimized when all the r; are
equal, and therefore,

Z Z ry > ng(logn/ng)®

B'€SieB
o a a—1
=log” n/ng

> Q(1/1og” 2 n)

where ns = ©(log®n) denotes the number of points con-
tained in cells in S.

Finally, partition A into n/(9log?n) parts, each part con-
sisting of 9 cells. By using the above bound on the sum
of the powers of the radii of the points in it, the lemma
follows. [J

LEMMA 6. Let 7 be any Nash equilibrium for an instance
P and let 5 denote an optimal assignment of radii. Then,
C(7)/C(5) < n®/?log®™ n, with high probability.

PROOF. By construction, d(u,v) = O(y/n) for any two
points u,v. Therefore, r, = O(y/n) for any point u, and
C(7) < O(n®/**1). From Lemma 5, C(5) = Q(n/ log® n) for
the optimal radius vector §, and the lemma now follows. [

For a random distribution of points in the plane, the local
improvement algorithm described earlier tends to result in
Nash equilibria of better quality. In fact, the next lemma
shows for o = 2 that if we start with 7 such that 7“1(,0) is
the largest possible radius, the resulting Nash equilibrium is
quite good.

LEMMA 7. Let 7@ be a radius vector that satisfies 7'1(,0) >
maxy{d(v,w)}Vv € V. Let ¥ be the Nash equilibrium re-
sulting from the local improvement algorithm, for any order
of updating the vertices, and let § be the optimal radius vec-
tor. Then, for a =2, C(7)/C(5) < O(log®™ n), with high
probability.

PrOOF. The proof basically improves the bound com-
puted in the proof of Lemma 6. Partition the /n x \/n
region, A, into n/k? blocks of dimensions k x k each, where
k will be defined later. Observe that at the end of the lo-
cal improvement algorithm, all except possibly one vertex in
each block have radius O(k). Intuitively, the vertex within a
block that got updated last might have a large radius (even
O(4/n)) but all other vertices that got updated earlier need
to choose a radius sufficient to connect to this leader.

Figure 2: Connectivity game instance without Nash
equilibrium.

Since there are n/k? blocks, there are at most this many
leaders with large radius; the contribution of the remaining
nodes to the cost of the Nash equilibrium is O(nk?). Each
leader has radius O(y/n), and the maximum contribution
from the leaders is O(n?/k?). Thus, the total cost is O(nk?+
n?/k?) = O(ny/n) for k = n'/*. Using the bound from
Lemma 5, this gives a bound of O(y/nlog®™® n) on the ratio
of the cost of 7’ to the optimal.

We can improve this partitioning process repeatedly till
the number of leaders becomes small. Consider the next
step: partition the n/k? leaders from step 1 into n/k* blocks
of k* elements each. One thing to note is that within the
block defined in this step, the distances between two ele-
ments could be O(k?). Again, there is at most one leader
in each block, who could possibly have radius larger than
O(Kk?). This bounds the contribution of the non-leaders to
the cost by O(k4k”—2) = O(nk?). In general, if we repeat this
process i times, the number of elements to consider at the
ith step would be n/k* 2, and the radii of non leaders at
the end of step ¢ would be bounded by k‘. Therefore, the
contribution of the non leaders to the cost is O(nk?). If we
choose k = O(log n) and repeat this process for ¢ = O(logn)
steps, the number of elements in step 7 becomes O(1), and
the total cost over all steps is O(nk?i) = O(nlog®® n). The
lemma now follows from the bound in Lemma 5. [

3.3 The Connectivity Game

In this section, we show that, unlike the STRONG CON-
NECTIVITY GAME, the general CONNECTIVITY GAME need
not have pure Nash equilibria, not even approximate ones.
We also prove that determining whether a game instance has
a pure Nash equilibrium is IV P-complete by proposing a re-
duction from MONOTONE 2-IN-3-THREE-SATISFIABILITY.

Figure 2 shows a game instance without pure Nash equi-
librium. The instance consists of three sources s1, s2, s3 and
three sinks t1,to, t3; The sources form an equilateral trian-
gle with edge length 1; vertices s1,t1,s2 form an isosceles
triangle with ¢; being at distance 2 from both s; and sg;
similarly vertices so, t2, s3 and vertices s3, t3, s1 form isosce-
les triangles.

OBSERVATION 2. No pure Nash equilibrium ezists for the

connectivity game instance given in Figure 2.

PROOF. Assume for the sake of contradiction that such
an equilibrium exists with radii 71, 72, r3 for the three source



vertices si,s2,S3 respectively. We note immediately that
r; € {1,2} as any radius r; < 1 would mean that source
si does not reach any other vertex in the graph and thus
certainly will not reach its sink ¢;, whereas any radius r; > 2
cannot be part of a Nash equilibrium as reducing r; to 2
would still allow source s; to reach its sink ¢; with a better
utility. The following equivalences hold:

ry =2 < rg =1 (3)
ro =2 s r=1 (4)
rg =2 < ro =1 (5)

The “= 7 direction holds because the source on the right-
hand side of the implication would increase its utility by
reducing its radius to 1; the “<= " direction holds because
the source on the left-hand side would not reach its sink
otherwise. Since we only have two possible values for each
radius, Equations 3 — 5, imply the following equivalences:

rp=1 <~ ry =2 (6)
ro =1 <~ ry =2 (7)
rg =1 < ro =2 (8)

Combining Equations 3, 8, and 4, we obtain the following
contradiction:

rm=2=—r3=1—ro=2=—17r1 =1.
Thus, no pure Nash equilibrium exists for this instance. [

With respect to approximate Nash equilibria, a slight adap-
tation of the instance from Figure 2 yields the following neg-
ative result:

COROLLARY 2. An instance of the connectivity game does
not necessarily have an approxrimate Nash equilibrium.

ProOF. Consider the instance from Figure 2 and replace
each edge of length 2 by an edge of length B, for an arbitrary
B > 1. In geometric terms, this corresponds to making the
three isosceles triangles longer. Each source node will now
use a radius of either 1 or B. In any feasible combination of
radii of the three sources as given in the proof of the previous
lemma, a reduction from radius B to 1 will improve the
utility of the corresponding source by a factor of B*. Thus,
this modified instance does not have an B“-approximate
Nash equilibrium. Since we can choose B arbitrarily large,
the corollary follows. [

As a puzzling observation, we briefly look at the mized
Nash equilibrium for the instance in Figure 2. Recall that
the utility function for a source is —M if it cannot reach its
sink, it is —2¢ if it chooses radius 2, and it is —1 for radius 1.
Straight-forward analysis shows that the only mixed Nash
equilibrium is for all sources to choose their radius r; = 1
with probability ﬁ, and r; = 2 with probability 1 — ﬁ
If we let M — oo, the mixed Nash equilibrium lets all
sources choose radius r; = 2 with probability 1. Thus, the
mixed Nash equilibrium appears to be identical to a pure-
strategy solution that is clearly not a pure Nash equilibrium.
In fact, if we set M = oo, the game does not even have a
mized Nash equilibrium, which — intuitively — is due to the
non-continuity of the utility function.

Knowing that Nash equilibria do not always exist does
not necessarily prevent us from designing a polynomial-time

Figure 3: Instance of REACHABILITY GAME with no
pure Nash equilibrium: there are a/2 — 1 vertices
located together at points 1 and 3, three vertices at
point 4 and a single vertex at point 2. The distances
between the points are as shown. The value a is any
number larger than 4.

algorithm that finds a pure Nash equilibrium if it exists.
However, we now show that the simple question (dubbed
PURE NASH CONNECTIVITY WITH TRIANGLE INEQUALITY)
whether a given connectivity game has a pure Nash equilib-
rium is N P-hard to answer, if the triangle inequality holds
on the input graph. The corresponding problem for purely
geometric graphs (with embeddings in the plane) remains
open. We show this hardness result by reducing MONOTONE
1-IN-3 THREE SATISFIABILITY to PURE NASH CONNECTIV-
ITY WITH TRIANGLE INEQUALITY.

DEFINITION 1. The problem MONOTONE 1-IN-3 THREE
SATISFIABILITY consists of finding a truth assignment to the
variables of a given formula with three positive literals in
each clause such that exactly one literal in each clause is
true.

MONOTONE 1-IN-3 THREE SATISFIABILITY is N P-hard

[9).

LEMMA 8. PURE NASH CONNECTIVITY WITH TRIANGLE
INEQUALITY is N P-hard.

The proof of Lemma 8 is given in the appendix.

4. THE REACHABILITY GAME

In this section, we show that the REACHABILITY GAME
need not have a pure Nash equilibrium, even for a 1-di-
mensional instance. The simple example of Figure 3 is one
such instance. Multiple vertices are located at the same
point (e.g. points 1,3,4) in this figure. This is only for the
purpose of keeping the example simple; the colocated points
can be perturbed slightly to be located very close to each
other.

OBSERVATION 3. The REACHABILITY GAME instance in
Figure 3 with a = 1 does not have a pure Nash equilibrium.

PRrROOF. Note that in any Nash equilibrium, only one of
a set of colocated vertices can have positive radius — all
the other vertices can keep their radius 0 without affecting
their utility. In what follows, we use r3 (r1, 4, respectively)
to denote the radius of the vertex located at point 3 (1,4,
respectively) with the largest radius, keeping in mind that
the other vertices at point 3 (1, 4, respectively) have radius
0.

The total number of vertices in this instance, n is a + 2.
Therefore, no vertex has radius more than a + 1. Also,
r1 =0, since U1(0,0-1) = a/2—1,Ui(z,0-1) = a/2—1—ux,
for any x < a and Ui (a,0-1) < 2, for any choice o_1 of radii



by vertices at points 2, 3,4. Further, r4 has no influence on
the utilities of vertices at points 2 or 3, namely Us(), Us():
vertices at these points cannot reach any more vertices if
r4 > 0. Therefore, Uz() and Us() depend only on 72 and rs,
and are denoted by Uz (r2,73) and Us(r2, r3) in the discussion
below.

The observation now follows from the following four im-
plications.

1. r3 < a/2 = ry=a: If r3 < a/2, vertices at point 3 do
not reach vertices at point 4. Therefore, U2(0,73) =
1,U2(a/2,7r3) = 0 and Uz(a,r3) = 2, which implies
T2 = Q.

2. r3 > a/2 = re = a/2: In this case, U2(a/2,a/2) =
a/2+4+3—a/2=3>Usz(a,a/2) and so r2 = a/2.

3. r2 = a = r3 = a/2: In this case, Us(a,a/2) =a+ 2 —
a/2=a/2+2 > Us(a,0) =a/2—1, and so r3 = a/2.

4. ra < a = r3 = 0: In this case, the vertex at point
2 does not reach the vertices at point 1. As a result,
Us(rz,a/2) =a/2+3—a/2 < Us(rz2,0) = a/2—1, and
so rz3 = 0.

Suppose, r3 < a/2. Then implications (1) and (3) lead to
a contradiction. Suppose r3 > a/2. Then implications (2)
and (4) lead to a contradiction. []

4.1 The Reachability Game for Random Points
in the Plane

In this section, we show that an approximate Nash equi-
librium always exists for a random distribution of points in
the plane, as described in section 2.

LEMMA 9. For an instance P of random points in the
plane, the REACHABILITY GAME with any o has a 1+ o(1)-
approzimate Nash equilibrium, with high probability.

PROOF. The proof is by constructing a radius vector 7
that is an approximate Nash equilibrium. The graph G(V,7)
will actually be strongly connected.

Partition the region A into square regions of dimensions
logn x logn: there are n/log? n such regions. Within each
such region, choose one node arbitrarily as a leader for that
region. The leader of each region chooses a radius of 4 log n,
so that it is connected to the leaders of the regions imme-
diately adjacent to it. All the other points in each region
choose a radius in the range [0,logn] so that they get con-
nected to the leader of that region. Let 7 be the resulting
radius vector. It is easy to check that G(V,7) is strongly
connected, and each point has utility at least n — (4logn)®.
The maximum utility of any point is n, and therefore this
choice is a m = 14 o(1)-approximate Nash equilib-
rium. [

S.  CONCLUSIONS AND OPEN PROBLEMS

We consider two topology control games arising in ad hoc
networks in the presence of selfish, non-cooperative agents
in this paper and study the existence of Nash equilibria,
their quality and algorithms for computing them. Our work
motivates further game theoretic study of protocols for ad
hoc networks. Some of the interesting open questions are
the following.

1. What is the average cost of a Nash equilibrium for the
STRONG CONNECTIVITY GAME? Design mechanisms
or pricing schemes that reduce their cost.

2. Is it NP-hard to decide whether an instance of the
REACHABILITY GAME has a Nash equilibrium?

3. Intermediate nodes in the games we study have to be
paid by the source for each message. Augment the
games to include this price.

6. ACKNOWLEDGMENTS

We are very grateful to Madhav Marathe for his constant
encouragement and valuable suggestions.

7. REFERENCES

[1] L. Anderegg, S. Eidenbenz. Ad hoc-VCG: A Truthful
and Cost-Efficient Routing Protocol for Mobile Ad
Hoc Networks with Selfish Agents. Proceedings of
Mobicom, 2003.

[2] E. Ansheleich, A. Dasgupta, E. Tardos, and
T. Wexler. Near-optimal network design with selfish
agents. Proceedings of the Symposium on Theory of
Computing, 2003.

[3] M. Beckmann, C.B. McGuire and C.B. Winsten.
Studies in the Economics of transportation. Yale
University Press, 1956.

[4] L. Buttyan and J. Hubaux. Stimulating Cooperation
in Self-Organizing Mobile Ad Hoc Networks; Accepted
for publication in ACM/Kluwer Mobile Networks and
Applications MONET), October 2003, Vol. 8 No. 5.

[5] S.C. Dafermos and F.T. Sparrow. The traffic
assignment problem for a general network. Journal of
Research of the National Bureau of Standards, Series
B, 73 B(2), pp 91-118, 1969.

[6] S. Doshi, S. Bhandare, T. Brown. An On-demand
minimum energy routing protocol for a wireless ad hoc
network; in: ACM Mobile Computing and
Communications Review, vol. 6, no. 3, July 2002.

[7] A. Fabrikant, A. Luthra, E. Maneva, S. Papadimitriou,
and S. Shenker. On a network creation game.

[8] J. Freebersyer and B. Leiner. A DoD perspective on
mobile ad hoc networks. In C. Perkins, ed. Ad Hoc
Networking, pp 314-318, 2001.

[9] M.R. Garey and D.S. Johnson. Computers and
Intractability: A Guide to the Theory of
NP-completeness; Freeman, San Fransisco, 1979.

[10] L. M. Kirousis, E. Kranakis, D. Krizanc, and A. Pelc.
Power consumption in packet radio networks,
Theoretical Computer Science 243 (2000) pp 289-305.

[11] R. Motwani and P. Raghavan. Randomized
Algorithms, Cambridge University Press, 1995.

[12] A. Mas-Collel, W. Whinston, and J. Green.
Microeconomic Theory. Oxford University Press, 1994.

[13] C. Perkins. Ad hoc networking: an introduction. In C.
Perkins, ed. Ad Hoc Networking, pp 314-318, 2001.

[14] R. Rajaraman. Topology control and routing in ad
hoc networks: a survey. SIGACT News 33:60-73, June
2002.

[15] T. Roughgarden. Selfish Routing. Ph.D. Thesis,
Cornell University, 2002.



t t

1 2 !

3

Figure 4: Clause gadget: source-sink relationships
are indicated by arrows; dashed lines denote edges
with weight 1, solid lines denote edges with weight
2.

[16] T. Roughgarden. Designing networks for selfish users
is hard. In Proceedings of the 42nd Symposium on the
Foundations of Computer Science, pp 472-481, 2001.

APPENDIX

Proof of Lemma 8 Given a MONOTONE 1-IN-3 THREE
SATISFIABILITY instance I consisting of variables z1,..., 2y
and m clauses with each clause being a 3-tuple of positive
literals, we construct a PURE NASH CONNECTIVITY WITH
TRIANGLE INEQUALITY instance I’ as follows: For each vari-
able z;, we create a source node z; in the graph that we call
a variable node. We insert an edge of weight 1 between
two nodes x; and x;, if there exists a clause in which both
variables appear as positive literals.

Figure 4 shows a clause gadget: for each clause ¢ = (z;,
Zj, k), we create three nodes tf,t5,t5, where ¢{ is a sink
node that source node z; must reach, accordingly for ¢§ and
ty. FEdges of weight 2 are inserted between the three source
nodes x;,%;,Tx and the three sink nodes t7,t5,t;. We call
the part of the clause gadget containing these six nodes the
upper part.

In contrast, the lower part of the clause gadget consists
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of nine nodes that are created individually for each clause.
The six nodes s1, s2, $3, t1, t2,t3 (see Figure 4) form exactly
the same graph as the one given as an example of a graph
without Nash equilibrium in Figure 2 with source-sink pairs
(s1,t1), (s2,t2), and (s3,t3). In addition, each of the sources
s1, 82,53 needs to reach a second sink node t,t5,t5. These
additional sink nodes are connected to their correspond-
ing source nodes by edges of length 2. The upper and
the lower part of the clause gadget are connected through
edges (mi751)7 (xi752)7 ('T]'752)7 (xj753)7 (.Tk,Sg), ($k781) of
length 1 and through edges (x;,t1), (z:,t5), (z5,t5), (x;,13),
(xk,t5), (zk,t]) of length 2.1

This completes the description of the PURE NASH CON-
NECTIVITY WITH TRIANGLE INEQUALITY instance I’. As
we only have edge weights 1 and 2, our graph satisfies the
triangle inequality. We have created one node for each vari-
able and 12 nodes for each clause, giving a total number of
n 4+ 12m nodes, thus the reduction is polynomial. The key
idea of the construction is that the lower part of each clause
gadget will only have a Nash equilibrium if exactly one of
the variable nodes in the upper part sets its radius to 2 and
the other two variable nodes set their radii to 1.

To be more precise, if a “1-in-3” satisfying truth assign-
ment exists for the variables of the MONOTONE 1-IN-3 THREE
SATISFIABILITY instance I, we obtain a radius vector for the
nodes of the PURE NAsH CONNECTIVITY WITH TRIANGLE
INEQUALITY instance I’ that constitutes a Nash equilibrium
by setting the radii of exactly those variable nodes z; in I’ to
2, of which the corresponding variables x; in I are set to true
in the truth assignment. All other variable nodes set their
radius to 1. For better illustration, assume w.l.o.g. (due to
the symmetry of the construction) that variables x; and z;
are set to false, while variable xj is set to true in the assign-
ment, thus the clause ¢ = (i, z;,xx) is “1-in3” satisfied,
and thus the radii of nodes z; and z; are 1 and the radius
of node xy is 2. Thus, variable node x) reaches its sink j,
directly and nodes x; and x reach their sinks ¢ and tj via
node x. This radii assignment also forces a radius assign-
ment for the sources on the lower part of the clause gadget:
source ss has to set its radius to 2 in order to reach sink
t5 as nodes x; and z; have both set their radii to 1 and
thus do not reach t5; this makes it sufficient for source s3
to set its radius to 1 as it can reach sink ¢3 via so and sink
t5 via upper part node z; this in turn forces s1 to set its
radius to 2 as it cannot reach ¢1 otherwise. To see that this
radius vector constitutes a Nash equilibrium, first note that
all sources reach their sinks and thus have no incentive to
increase their radii. Similarly, each source with radius set
to 2 would lose the connection to at least on of its sinks if it
reduced its radius to 1. Thus, we have found a radius vector
that constitutes a Nash equilibrium.

We also need to show that any Nash equilibrium of I’
induces a “1-in-3” satisfying truth assignment of the vari-
ables of I. Assume we are given a radii assignment for all
sources in [ that constitutes a Nash equilibrium. We first
note that no source will choose a radius larger than 2 in any
Nash equilibrium as it will directly reach all its sinks with a
radius of 2, neither will a source set its radius to less than
1, as it will not reach any other node with such a small ra-

!The nine nodes of the lower part of the clause gadget would
be more aptly named s, s5, 55,15, 15,5, 15, t5, t5, as they
are individual to clause ¢, but for ease of presentation, we
have chosen to drop the c-index.



dius. Let us consider the clause gadget representing clause
¢ = (xs,zj,z). We distinguish four cases of radii assign-
ment for the three source nodes si, s2, s3 as they are in the
lower part of the clause gadget. For simplicity, let (2,1,1)
denote the radius of source s; set to 2 and the radii of the
other two sources s2 and sz set to 1; accordingly for other
radii choices:
e Radii vector (1,1,1):
In this case, none of the sinks t1, t2, t3 is reached by its
source, thus the radius assignment cannot be a Nash
equilibrium.
e Radii vector (2,1,1):
In this case, sink ¢3 is not reached by its source, thus
this cannot be a Nash equilibrium. The radii vectors
(1,2,1) and (1,1, 2) are equivalent due to symmetry.
e Radii vector (2,2, 2):
In this case, all variable nodes z;, x;,z of the clause
must have set their radius to 1 as at least two of the
sources $1, S2, s3 would have an incentive to reduce their
radius otherwise. However, with the radii of x;, x;, x
all set to 1, sinks t7, ¢5, t§ in the upper part of the clause
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will not be reached by their sources. Thus, this cannot
be a Nash equilibrium.

e Radii vector (2,2,1):
In this case, either x; or x; must have radius 2 as sink
t5 would not be reached otherwise. If z; had its radius
set to 2, then source sz would have an incentive to
reduce its radius to 1, independent of the radii of z;
and xp. Similarly, if z; had its radius set to 2, then
source s2 would have an incentive to reduce its radius
to 1, independent of the radii of x; and z;. However,
if only xx has its radius set to 2 and x; and z; set to 1,
then we have a valid Nash equilibrium, from which we
can easily read off a truth assignment for the variables:
x; and x; are false, xj is true. We can argue for the
radii vectors (2,1,2) and (1,2, 2) similarly.
Thus, the a radii vector can only be a Nash equilibrium, if it
has exactly one variable node in each clause set to radius 2
and the other two variable nodes set to radius 1. From this,
we can assign a “1-in-3” satisfying truth assignment to the
variables of I immediately. This completes our proof. [l



