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Abstract— Aloha is perhaps the simplest and most-studied
medium access control protocol in existence. Only in the recent
past, however, have researchers begun to study the performance
of Aloha in the presence of selfish users. In this paper, we present
a game-theoretic model of multipacket slotted Aloha with perfect
information. We show that this model must have an equilibrium
and we characterize this equilibrium. Using the tools of stochastic
processes, we then establish the equilibrium stability region for
some well-known channel models.

I. INTRODUCTION

Aloha and its variants have been central to the understanding
of communications network theory for many years. Simple
to describe and straightforward to analyze and implement,
Aloha is a widely studied and deployed medium access control
protocol. For instance, almost all deployed cellular systems use
Aloha for mobile terminals to request network access; another
example of Aloha usage is for reservation requests in two-way
messaging systems.

Aloha was first proposed in [1]; the slotted variation was
introduced in [2]. Early research sought methods to stabilize
the protocol and provide for retransmission control to make
use of available feedback information; for examples see [3],
[4].

The operation of slotted Aloha is straightforward. All nodes
accessing the medium are synchronized, and time is divided
into slots. When a node has a packet to send, it may attempt
to transmit it in any slot. Conventionally, a node with a
newly arrived packet will attempt to transmit in the first slot
after packet arrival; packets being retransmitted because of a
collision will be transmitted probabilistically. In this paper,
however, we assume that newly arrived packets and packets
awaiting retransmission are treated identically.

In conventional Aloha models, it was assumed that if
exactly one packet was transmitted in a slot then that packet
would be received without error; otherwise, all transmitted
packets were destroyed. Obviously, this model is somewhat
pessimistic as differences in received power, etc., may make
it possible for a packet to be captured even in the presence
of one or more interferers. Furthermore, recent advances in
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receiver technology, as well as uses of multiple channels,
etc., have made it possible for more than one packet to be
successfully received simultaneously. This desire for more
accurate channel modeling as well as technological progress
have led to the development of multipacket reception (MPR)
models for Aloha. A widely-used MPR model was developed
by Ghez, Verdu, and Schwartz in the 1980s [5]. We adopt their
model in this work.

Despite the bounty of work invested in understanding Aloha,
all of the studies of Aloha of which we are aware (with the
exception of our preliminary work on this topic in [6] and
[7]) have ignored the performance of Aloha in the presence
of selfish users. The question we seek to answer in this paper
is how users will behave in a MPR system running slotted
Aloha if they are given complete information about the number
of contending users and are allowed to choose their own
transmission policy.

The appropriate tool for examining the interaction of selfish
agents with conflicting objectives is game theory. Developed
primarily by the economics community for studying the inter-
actions of agents in a market, game theory has revolutionized
the field of microeconomics, reflected in the awarding of the
Nobel Prize in Economics to Harsanyi, Nash, and Selten in
1994.

In the past, game theory has been applied to several areas of
communications theory, including flow control (e.g. [8], [9])
and routing (e.g. [10]–[12]). The lack of more widespread
adoption of game-theoretic methods can be attributed to
several problems including the computational difficulty of
computing equilibria and the loss in efficiency with respect
to methods involving central control of the communications
infrastructure. In this paper, when we refer to central control
we include systems in which the system designer specifies
the algorithm which nodes in the system must execute. Hence
many of the “decentralized” algorithms in the literature are
encompassed by our notion of central control.

As the size of our networks and the diversity of node
requirements on those networks continues to grow, how-
ever, exerting direct central control on a network becomes
computationally intractable. Furthermore, in an age of open
network specifications, users have an incentive to modify
their communications nodes in order to improve their network
performance, making it impossible to ensure that a specified
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algorithm will be run by all of the nodes in the network. A
game theoretic solution, which is fundamentally distributed
and scalable, assumes from the outset that users will behave
selfishly. In such a system there is no incentive for a user to
“cheat” the system. In addition, with a game theoretic model
of a communications system, it is easy to introduce “network
terrorists” — users with objectives diametrically opposed to
those of the system designer — into the analysis.

When game theory is applied to economic problems, a
major caveat is the game theoretic assumption that players
will behave rationally. In a communications network, however,
the players are typically computational agents who, given
appropriate programming, are capable of rational behavior
(at least up to the limits of computability). In this sense,
game theory is better suited to modeling the interactions of
computational agents than of human beings.

There has been no thorough investigation of the perfor-
mance of medium access control protocols in the presence of
selfish agents. This has lead to the deployment of protocols and
systems which can be easily hijacked or manipulated. Research
in this area will

1) improve understanding of our current protocols and
2) lead to the development of more robust protocols in the

future.

Although our application is to medium access control, we
believe that there are many possible applications of game
theoretic analysis at every layer of the protocol stack. For
examples of game theory at the physical layer, see [13]–[15];
for examples at higher layers, see the references to flow control
and routing above.

In the remainder of this paper, we will provide a brief
introduction to game theory and then present a game-theoretic
model for slotted Aloha with multipacket reception. We will
then show that an equilibrium of this model must exist, and
we will show how we can characterize the equilibria of
these games. Using this characterization, we will compute
(analytically or numerically, depending on the complexity) the
stability region for a slotted multipacket Aloha system with
selfish users and perfect information for some well-known
channel models.

II. GAME THEORY

The most basic setting of game theory is the normal form
game. Three elements define a normal form game:

• a set of users I (usually taken to be finite),
• a set of actions for each user Ai, i ∈ I which together

define a set of possible action profiles A = ×i∈IAi, and
• a utility function for each user ui : A → R.

When the game is played, each player i selects an action
from his own set of actions Ai. These selections are made
without any knowledge of the selections made by others. The
selections of all players taken together define an action profile,
a ∈ A, and each player i receives the payoff ui(a).

Ordinarily, we assume that a player is not limited to
choosing actions directly from Ai. Instead, we allow players

to choose “strategies” or mixed actions which are proba-
bility distributions over Ai. Let Σi = ∆(Ai) be the set
of probability distributions over Ai. Strategies from Ai are
known as “pure” strategies, while those from Σi are known
as “mixed” strategies. What does it mean to select a strategy
which is a probability distribution over actions? We adopt the
simple explanation that a player who selects a mixed strategy
will use a random device (such as a series of coin flips) to
determine which action in Ai that she will play. Now, when
each player selects a strategy σi ∈ Σi, the action profile is
σ ∈ Σ = ×i∈IΣi. What are player utilities if a mixed strategy
profile is selected? The usual assumption is that players are
expected utility maximizers. That is, we extend the simple
definitions of ui in the most straightforward way. If the Ai

are finite, then we have (in a slight abuse of notation)

ui(σ) =
∑
a∈A

σ(a)ui(a).

Once such a game has been defined, game theory defines a
solution concept which attempts to specify what we should
“expect” to occur if rational players play the game. The
most widely known solution concept is the Nash Equilibrium.
(Explaining how or why a Nash equilibrium will emerge when
rational players interact is a much more difficult question
which we will not address in this work.) For convenience,
we will sometimes write an action profile a ∈ A as (ai, a−i)
where ai denotes the action chosen by player i and a−i denotes
the actions chosen by everyone else; we will use a similar
notation for mixed strategy profiles σ ∈ Σ. An action profile
a ∈ A is said to be a Nash Equilibrium if for every player
i ∈ I

∀a′i ∈ Ai, ui(ai, a−i) ≥ ui(a′i, a−i).

That is, an action profile is a Nash Equilibrium if no player
can gain by unilaterally deviating from the specified profile.

An identical definition holds for Nash Equilibria in mixed
strategies. A mixed strategy profile σ ∈ Σ is said to be a Nash
Equilibrium if for every player i ∈ I

∀σ′
i ∈ Σi, ui(σi, σ−i) ≥ ui(σ′

i, σ−i).

Because of the assumption that players are expected utility
maximizers, however, the inequality in this definition is equiv-
alent to the more easily checked inequality

∀a′i ∈ Ai, ui(σi, σ−i) ≥ ui(a′i, σ−i).

John Nash proved that if mixed strategies are allowed, then
at least one equilibrium exists for every finite game [16]. (A
finite game is a game with finite sets I and Ai.) It was for this
result that Nash won the Nobel Prize. Little is known about the
existence of pure-strategy Nash equilibria in general games.

The results in the remainder of this paper will require a
more complex type of game, with a correspondingly more
complex notion of an equilibrium. The basic notions of a
game, a strategy, and an equilibrium will continue to hold,
however. For a more thorough introduction to game theory,
see [17], [18].

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003



III. PROBLEM MODEL

We examine an Aloha system in which selfish users make
transmission decisions in an effort to maximize their utility.
The channel model we employ is taken from [5]; this model
assumes that when the number of successes in a given slot
depends only upon the number of transmissions. Specifically,
the channel is defined by a MPR matrix

R =




ρ10 ρ11 0 0 . . . 0 . . .
ρ20 ρ21 ρ22 0 . . . 0 . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ρn0 ρn1 ρn2 . . . ρnn 0 . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .




where ρnk is defined as the probability that k packets are
successfully received in a slot where n packets are transmitted.
This model is applicable to a wide variety of channels with
noise, capture, multiple channels, and to some systems using
CDMA [5]. We define the expected number of successes in a
transmission of size n to be

rn =
n∑

k=0

kρnk.

In [5] Ghez, Verdu, and Schwartz show that with a fixed
retransmission probability, the system will be stable only if
the arrival rate is less than limn→∞rn. They expand this
work in [19] to the case where the retransmission probability
is controlled based on the system state. For the case of
perfect information (when the number of backlogged users
is known), these papers shown that a control algorithm can
stabilize the system only if the arrival rate is less than
supx≥0 e

−x
∑∞

n=1 rnx
n/n!.

We assume that all users who transmit in a given slot are
equally likely to be successful. If n users transmit and k
are successful, then the probability that any particular user’s
transmission is successful is k/n. More usefully, if n users
transmit, the probability that a particular user’s transmission
is successful is given by

n∑
k=0

ρnk
k

n
=

rn

n
.

We assume that users interact as players in a game. A user
enters the game when she has a packet to transmit; she leaves
the game when her packet has been successfully transmitted.
In each slot while she is in the game, the user can choose
either to transmit or to wait. We assume that in each slot the
users know how many users are currently participating in the
game; in other words, it is a game of perfect information.

We assume that users enter the game according to an
exogenous random process, and the arrivals in each slot
are independent and identically distributed random variables
where λn is the probability that n users arrive in a slot. Let
λ denote the expected number of arrivals per slot:

λ =
∞∑

k=0

kλk.

We assume that λ < ∞.
A user’s immediate payoff is determined by whether or

not she transmits and whether or not she is successful. We
normalize the value of a successful transmission to 1, and we
assume that the cost of transmitting is c ∈ (0, 1). So, the
immediate payoff from a successful transmission is 1− c; the
payoff from an unsuccessful transmission is −c. The payoff
from not transmitting in a particular slot is 0. The cost of
transmitting is c, one of the most important parameters in our
model. It reflects the cost of transmitting a packet relative
to the value of a successful transmission (which has been
normalized to 1). As a result, c is not a parameter that can
be directly controlled. For a given system, the value of c will
depend on the amount of battery power that the nodes have
available, the amount of power drawn by their transmitters,
and so on. We also note that affine transformations of the
immediate payoffs do not change the set of equilibria. Thus,
this model encompasses any model in which the immediate
payoffs to the three possible outcomes are fixed and ordered in
such a way that successful transmission is preferred to waiting,
which is in turn preferred to unsuccessful transmission.

We further assume that the users share a common per-slot
discount rate δ ∈ [0, 1), and that the goal of each user is to
maximize her expected discounted sum of payoffs. In other
words, when a user enters the game at time t0, her goal is to
maximize the expectation of

∑∞
t=t0

δt−t0ut where ut is the
immediate payoff defined in the previous paragraph for each
slot t where she is still in the game and is 0 for all slots after
she successfully transmits. Embedded in this assumption is the
assumption that users are expected utility maximizers.

Since we assume perfect information, a strategy in this game
is defined as a mapping from the number of users currently in
the game to a transmission probability. That is, a strategy is
a function σ : Z

++ → [0, 1] where Z
++ is the set of positive

integers. We define σ0 to be an equilibrium strategy in the
sense of Nash if given that all other players in the game are
playing σ0, σ0 is an optimal strategy to play.

Note that our definition of equilibrium requires that all
players play the same strategy. This reflects a feature of Aloha:
the players are indistinguishable. This requirement does not
weaken the notion of “selfishness” which we have introduced,
however. In order for σ0 to be an equilibrium in the sense
of Nash, it must be the case that for each player, σ0 is a
best response given that all other players are playing σ0.
Furthermore, if one expands the strategy space to allow players
to choose an action based on the history of game play, then
even within this larger class of strategies, σ0 is a best response
when other players are playing σ0.

This game belongs to a general class of games known as
Games of Population Transition, which we introduce in [20].
In that work, we provide a general existence proof for games
of population transition. Here, we present a special case of the
theorem with a proof appearing in the Appendix.

Theorem 1: For any MPR slotted Aloha system with MPR
matrix R, any cost parameter c ∈ [0, 1], any arrival distribution
{λn}, and any discount rate δ ∈ [0, 1), there exists an
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equilibrium strategy σ (not necessarily unique) of the MPR
slotted Aloha game.

IV. ANALYTICAL RESULTS

The main result of the previous section was that an equilib-
rium exists for any MPR slotted Aloha system. In this section
we develop the primary results concerning the stability of a
MPR Aloha system with selfish users and perfect information.
We begin by providing some sufficient conditions on the MPR
Aloha game under which the equilibrium Markov chain over
the number of users in the system, {Xt}∞t=0 is irreducible and
aperiodic. We then characterize the equilibria of these games
and show how to compute the stability region of such a game
at equilibrium. In the following section we will show how
these results apply to some particular systems.

Observe that the MPR matrix for a channel R, the arrival
distribution {λn}, and a particular equilibrium behavior σ
define a Markov chain over the number of users currently
contending for the channel. Given the current state n ∈ Z

+,
all of the current users transmit with probability σ(n). The
next state is then determined by the number of successful
transmissions and the number of new arrivals.

In order to apply many of the results of Markov chain the-
ory, it is necessary that the given Markov chain be irreducible
and aperiodic. We provide sufficient conditions on R and
{λn} that will guarantee that any Markov chain resulting from
an equilibrium strategy σ will be irreducible and aperiodic.
Similar conditions are presented in Ghez, et. al. [5]. There are
some minor differences here, though. First, transitions in our
Markov chain consist of first departures and then arrivals —
this is the opposite of the ordering for the chain studied in
Ghez. Second, in Ghez it is assumed that all arriving users
will transmit in the next slot; we assume that arriving users
will use the same retransmit probability as backlogged users.
Finally, Ghez places restrictions on the retransmit probability;
we do not restrict the strategy of the users directly, although
some restrictions on equilibrium strategies are implied by our
restrictions on R and {λn}.

A simple set of sufficient conditions for {Xt} to be irre-
ducible and aperiodic is

λ0 �= 0 (1a)

ρ11 = 1 (1b)

∃n ≥ 1 s.t. λn > 0 and ρnn < 1 (1c)

∀n ≥ 1, ρn0 �= 1 (1d)

Condition (1a) guarantees that if the Markov Chain is
irreducible then it must be aperiodic because it ensures that
state 0 is aperiodic. Condition (1b) ensures that transmit
probability 0 is never an optimal response in any state (because
if everyone else used σ(n) = 0 for some n then one could
guarantee success by transmitting). Condition (1c) ensures that
it is possible for the number of users in the system to climb
to an arbitrarily large value; this condition is superfluous for
distributions like the Poisson distribution where the number

of arrivals in a single slot is arbitrarily large with positive
probability. Hence we provide an alternate condition

∀N > 0,
∞∑

n=N

λn > 0 (1c∗)

Finally condition (1d) ensures that we can have departures
from the system even if everyone transmits.

Unfortunately, conditions (1b) and (1d) are quite restrictive.
Loosening condition (1b) is difficult; furthermore, it is intu-
itively obvious that the situation condition (1b) guards against
will rarely occur in a real system — in almost any practical
medium access control system the “do not transmit” strategy
will not be used in equilibrium for any number of contending
users. For the present work, it is more important that we loosen
condition (1d); hence, we provide the following alternative
condition.

if ∃N s.t. ρN0 = 1 then ∀n > N, ρn0 = 1 (1d∗)

This condition insures that for n ≥ N , σ(n) �= 1 in
equilibrium because for n ≥ N , the always transmit strategy
results in a cost of c in each slot with no possibility of a
success; this is clearly dominated by a strategy of waiting.

These sufficient conditions on R and {λn} ensure that
the Markov chain on the number of users induced by an
equilibrium strategy must be irreducible and aperiodic. For
the remainder of this section, we assume that these sufficient
conditions hold.

The remainder of our results require two final assumptions.
We assume that the sequence {rn}∞n=1 is bounded and that
the sequence {rn/n} is nonincreasing. These restrictions say
that the expected number of users who successfully transmit
at one time is bounded, and the probability that a given user
transmission is successful is non-increasing in the number of
users who transmit.

Let σ be an equilibrium strategy. Then, it follows immedi-
ately from our assumption on {rn} that for large enough n,
because the transmission cost c is positive, σ(n) < 1. That is,
there exists some N such that for n > N players are mixing
between the transmit and wait actions. (In fact, this argument
can be used to show that limn→∞ σ(n) = 0 in equilibrium.)
Because our players are expected utility maximizers, for an
equilibrium strategy to use a non-degenerate mixing strategy,
it must be the case that the payoffs from all strategies in
the support of the mixture are the same. In this case, that
means that if everyone else is playing σ, then the payoff from
transmitting for n > N must equal the payoff from waiting.

Let bp(n, k) =
(
n
k

)
pk(1 − p)n−k. Associated with the

equilibrium strategy σ is an equilibrium value function vσ :
Z++ → R where vσ(n) is the expected payoff to a player
when there are n users who wish to transmit and everyone is
playing the equilibrium strategy σ. For notational convenience,
let v̄σ(n) =

∑∞
m=0 λmvσ(n + m). Then if we write out

expressions for the payoff from transmitting and the payoff
from waiting in a particular slot when everyone else is playing
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σ, we have

uσ,T (n) =
n∑

k=1

bσ(n)(n− 1, k − 1)
rk

k

+ δ
n∑

k=1

bσ(n)(n− 1, k − 1)
k−1∑
l=0

ρkl
k − l

k
v̄σ(n− l)

− c

uσ,W (n) = δ
n−1∑
k=0

bσ(n)(n− 1, k)
k∑

l=0

ρklv̄σ(n− l)

and for n > N ,

vσ(n) = uσ,T = uσ,W . (2)

Since any player can guarantee a payoff of zero simply
by adopting a strategy of never transmitting, it must be the
case that vσ(n) is non-negative. From our assumption that rn

is bounded, however, we know that as n → ∞, the length
of time that a player must wait to successfully transmit also
grows without bound. Hence limn→∞ vσ(n) = 0. It follows
that in the limit as n → ∞, the second term in the expression
for uσ,T (n) and all of the terms in the expression for uσ,W (n)
go to zero. Let γ = limn→∞nσ(n). (One can prove that this
limit exists by using limn→∞

∑n
k=1 bσ(n)(n−1, k−1) rk

k = c
and the fact that {rn/n} is nonincreasing.) Then in the limit
as n → ∞, we can use equation (2) and apply the Poisson
approximation to obtain

∞∑
k=1

e−γγk−1rk

k!
= c (3)

where e is the root of the natural logarithm. For a particular
channel model and a particular value of the cost parameter c,
it is possible to solve this equation for γ; we call the solution
γ̂.

The existence of limn→∞ nσ(n) for the equilibrium strate-
gies provides insight into the structure of the equilibria. Specif-
ically, it implies that in equilibrium the transmit probability
σ(n) → γ̂/n as n → ∞. This result is not surprising, given the
optimal retransmit probabilities of centrally controlled slotted
Aloha systems. For instance, in [19] it is shown that the
optimal control algorithm has the structure σ(n) = A/n for
some constant A.

Once the value of γ̂ is known, one can use this value to
compute the throughput of the system as the number of users
becomes large. Let Dn denote the expected drift of the Markov
chain representing the number of users contending for the
channel when there are n users contending. We can break this
expected drift into two pieces: a positive component, repre-
senting new arrivals, and a negative component, representing
departures. Hence we have the following expression for Dn:

Dn = λ−
n∑

k=0

(
n

k

)
σ(n)k(1 − σ(n))n−krk.

In the limit as n → ∞, we can again apply the Poisson
approximation to obtain

lim
n→∞Dn = λ−

∞∑
k=0

e−γ̂ γ̂k

k!
rk. (4)

Pakes’s Lemma: Given an irreducible, aperiodic Markov
chain such that

1) Dn < ∞ for all n and
2) limn→∞ Dn < 0,

the Markov chain is positive recurrent [21].
From this lemma, a standard result of Markov Chain drift

analysis, and equation 4 we can conclude that the Markov
Chain will be positive recurrent if

λ < e−γ̂
∞∑

k=1

γ̂k

k!
rk.

Recall that for the case of centrally controlled Aloha, [19]
showed stability if λ < supx≥0e

−x
∑∞

n=1 rnx
n/n!. If there

is a value of x > 0 for which this sup is achieved, then it
can be easily shown that there is a value of the parameter
c ∈ (0, 1) such that γ̂ = c. That is, for some value of the
parameter c ∈ (0, 1), the throughput achieved by the system
with selfish users is equal to the optimal throughput that can
be achieved via central control.

In this section we have shown how to calculate the stability
region for a perfect-information MPR Aloha system. Although
these equations can be solved analytically for only a few
simple channel models, in our experience numerical solutions
can be obtained relatively easily. We have also seen that there
exists a value of the parameter c ∈ (0, 1) such that the
maximum throughput of the selfish system is equal to the
maximum throughput of the centrally controlled system. In
the next section we apply these results to two well-known
channel models.

In conventional Aloha analyses, the perfect information
analysis is used to provide bounds on performance for the
case of imperfect information. Regrettably, this standard ar-
gument does not hold in the case of game-theoretic analysis.
It is possible to construct simple games in which imperfect
information actually improves players’ payoffs. Although that
seems unlikely in the current case, it is important to investigate
the case of imperfect information carefully before attempting
to draw conclusions from the results derived above for the
perfect information case.

V. EXAMPLE SYSTEMS

The capture model described in this paper (taken from [5])
is quite general. In this section we present results for two
different channel models. The first is a general capture model
which does not have MPR capabilities; this model includes
as special cases the conventional collision model and the
perfect capture model. The second channel model is a q-
channel hopping model which can be used to model a system
with q conventional channels or, in some cases, a DS-CDMA
channel with q spreading codes. Since these models appear
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elsewhere in the literature, our focus here will be on computing
the maximum throughput which can be supported by such a
channel if the contending users are selfish.

In all of these examples, we will assume that the arrival
distribution {λn} is Poisson with rate λ. We note, however,
that the exact distribution is not important provided that the
conditions for irreducibility are satisfied; for most of the
models here, this means simply that λ0 �= 0 and ∃n > 1,
such that λn > 0.

A. General Capture

There are several models for capture in Aloha. These
models are primarily based on either power discrimination or
time discrimination. Our discussion here will focus on power
discrimination, closely following [5], but the results for time
discrimination are similar. As special cases of this result, we
will include the conventional collision channel and the perfect
capture channel.

Assume that the system can capture a maximum of one
packet per slot, and that if any packet is captured it will
be the packet with the highest received power which we
designate P1. Finally, assume (as in [22]–[24]) that whether
or not this packet is received depends solely on the second
highest received power, denoted P2. Specifically, assume that
the highest powered packet will be received if and only if
P1/P2 > K where K ≥ 1 is a system dependent constant.
Note that K = 1 denotes perfect capture while K = ∞
denotes the conventional collision model.

If we make the conventional assumption of power law
fading, then the received power will be P = Cdb where
C and b are system dependent constants and d is the user’s
distance from the receiver. If d1 is the distance of the closest
user and d2 is the distance of the second closest user, then
the packet will be captured if d2 > βd1 where β = K1/b.
Assume that all transmitting users are distributed uniformly in
a circle of radius 1, and that the positions of the transmitting
users are independent from one slot to the next. If there are
k transmitting users in a slot, what is the probability that a
packet is captured? When the users are distributed uniformly
over a circle of radius 1, their distances from the center are
distributed as a random variable D with probability density
function fD(d) = 2d. The probability of capture can then be
seen to be 1 if k = 1 and 1/β2 otherwise [5].

Hence we have

R =




0 1 0 0 0 0 . . .
1 − 1/β2 1/β2 0 0 0 0 . . .
1 − 1/β2 1/β2 0 0 0 0 . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .


 ,

and thus r1 = 1 and rk = 1/β2 for k �= 1 [5].
We substitute these values into equation (3) in an attempt to

solve for γ̂. This equation does not yield to analytical solution
methods for arbitrary values of β.

For the conventional collision channel, β = ∞, we can
solve equation (3) to obtain γ̂ = − ln c. Hence the system
will be stable provided that λ < −c ln c.
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1, 4/3, 2, 4,∞.
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Fig. 2. Throughput maximizing cost vs. β2.

For the perfect capture channel, β = 1, equation (3)
can be solved using Mathematica to obtain γ̂ = 1/c +
ProductLog(−e−1/c/c), where ProductLog(x) is the principle
solution for w of x = wew. Hence for arrival rates λ <
1 + cProductLog(−e−1/c/c) the system will be stable.

The curves in figure 1 show the maximum throughput bound
as a function of c for several different values of β including the
perfect capture (β = 1) and conventional collision (β = ∞)
models. Not surprisingly, as c → 0 the throughput bound goes
to 1/β2 because σ(n) → 1 as transmitting becomes costless.
Also as expected, as c → 1, the throughput bound goes to
zero. When the cost of transmission approaches the value of
a successful transmission, users will not transmit unless the
probability of success is extremely high.

At c = 1/e the conventional collision channel is stable for
all λ < 1/e. Hence for this particular value of the parameter
c the selfish Aloha channel supports the same throughput as
Aloha with unselfish users.

The maximum throughput under optimal (total throughput
maximizing) control with perfect information is computed to
be 1/β2 +(1−1/β2)e(−β2/(β2−1)) in [19]. From figure 1 and
from our analytical results, we can see that for each value of β,
there exists some value of c which obtains the same maximum
throughput as the optimal controller. Figure 2 shows the value
of this optimal cost as a function of β2.

This observation leads to a design suggestion. For a given
set of technologies, the transmission cost c is usually a
decreasing function of the capture parameter β. Smaller β
implies capture for smaller values of the signal-to-interference-
and-noise ratio; this will usually require more coding, etc.,
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and hence will increase transmission cost c. If we plot such
a function on the graph in figure 2, then the intersection of
this function with the throughput maximizing cost curve will
suggest an optimal design point for the system.

B. q-frequency Hopping Model

The q-frequency hopping model assumes that q conventional
collision channels exist in a system. After choosing to transmit,
a user selects one of the q channels on which to transmit, all
with equal probability. If exactly one user transmits on a given
channel, then the user on that channel is successful; if more
than one user transmits on a given channel, then no users
on that channel are successful. Such a model is discussed in
[25], [26]. Computing the MPR matrix for such a channel is
a combinatorial exercise, see [5], [27] for details. The end
result of this exercise is that we have r1 = 1 and for n > 1,
rn = n(1 − 1

q )n−1 [5].
This same model can also be applied to a DS-CDMA Aloha

model such as the one described in [28] provided that the
number of receivers, R, is at least as large as the number of
spreading codes, q. If R < q then the model will have to be
altered somewhat; see [28] for details.

Substituting the values of rn into equation (3) yields

∞∑
k=1

e−γ̂ γ̂k−1(1 − 1/q)k−1

(k − 1)!
= c.

Hence e−γ̂/q = c, so that γ̂ = −q ln c. So, the system will be
stable for λ < −cq ln c.

Not surprisingly, adding conventional collision channels
increases the capacity of the system linearly. One would expect
similar results for increasing the number of available channels
with any other capture model as well.

VI. CONCLUSIONS

In this paper we found the stability region for a slotted
Aloha system with multipacket reception and selfish users for
the case of perfect information. We computed this region for
some common channel models and showed that while the
stability region is dependent on the cost parameter, c, there
are values of this parameter for which the stability region is
as large as the stability region of a centrally controlled system.

These results show that while the throughput of a medium
access control protocol with selfish users may approach that of
a more conventional system where the transmission policy is
specified by the system designer, it may also be drastically
different. Hence the results highlight both the promise of
systems with selfish users — systemwide efficiency may be
maintained — as well as the perils of ignoring the game
theoretic equilibrium.

In addition to computing performance results, we observed
that the results for the general capture channel provide some
insight for system designers attempting to account for selfish
users. We expect that further study will reveal other ways to
exploit game theoretic insights during the design of telecom-
munications networks.

Although we caution that these perfect information results
do not necessarily provide bounds on stability for the case
of imperfect information (e.g. ternary feedback), we believe
that they are still useful in cases where the number of users
contending for the channel can be reliably estimated.

The next research challenge in this area concerns the
development of results for the case of practical interest — the
case of imperfect information, for example ternary feedback.
In such a game, a strategy is a mapping from an observed se-
quence of signals to a transmit probability; also associated with
each observed sequence of signals is a belief about the number
of other players in the game and their observations. While we
have proven the existence of equilibria in such games, the
computation and characterization of such equilibria is much
more difficult than in the case of complete information.

We further contend that a similar approach could be prof-
itable for investigating other medium access control protocols
as well as the interaction of nodes at higher layers of the
protocol stack.

APPENDIX

PROOF OF THEOREM 1

In this appendix we will prove the theorem by application
of the Glicksberg-Fan fixed point theorem, using results from
dynamic programming to demonstrate that the hypotheses of
the Glicksberg-Fan theorem are satisfied. For reference, we
state the Glicksberg-Fan theorem here:

Glicksberg-Fan Fixed Point Theorem: Given an upper semi-
continuous point to convex set correspondence Φ : S ⇒ S
of a convex compact subset S of a convex Hausdorff linear
topological space into itself there exists a fixed point x ∈ Φ(x)
[29], [30].

We now begin the proof of our result.
Proof: Let M denote the set of functions from Z

++ to
R where Z

++ denotes the positive integers. Let M0 = {m ∈
M : ∀n ∈ Z

++,m(n) ∈ [0, 1]}. If we endow Z with the sup
norm, ||m|| = supn∈Z++ |m(n)|, then it is clear that M is a
convex Hausdorff linear topological space. Furthermore, M0

is a convex, compact subset of M.
Our primary object of interest is the best reply correspon-

dence, which we denote Φ : M0 ⇒ M0. The object Φσ
is interpreted as the set of optimal stationary strategies when
all other players are playing σ. Observe that computing a best
response if all other players are playing σ is simply solving an
infinite horizon dynamic programming problem. In a classic
result of dynamic programming, Blackwell showed that such
a problem has a solution which is stationary and Markovian
provided that the action space is finite [31]. In 1981, Langen
further showed that the correspondence between the param-
eters of the problem, including the transition probabilities,
and the set of optimal stationary policies was upper semi-
continuous [32].

Now, the transition probabilities of the dynamic program-
ming problem change continuously in the strategy σ played by
the other players in the game. It follows that Φ is non-empty
and upper semi-continuous. Hence, Φ satisfies the hypotheses
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of the Glicksberg-Fan fixed point theorem and so possesses at
least one fixed point, σ∗, such that σ∗ ∈ Φσ∗. Such a fixed
point, σ∗, is an equilibrium of the game in the sense of Nash.
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