Extracting a mobility model from real user traces
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Abstract— Understanding user mobility is critical for simula-  collect data about such opportunities, but these studies are
tions of mobile devices in a wireless network, but current mobility pased on small populations. One study [4] examines the large
models often do not reflect real user movements. In this paper, traces collected at Dartmouth College [5], [6] and UCSD [7],

we provide a foundation for such work by exploring mobility but onl . Tuniti hen th t th
characteristics in traces of mobile users. We present a method to ut only recognizes opportunities when the users are at the

estimate the physical location of users from a large trace of mobile Same Wi-Fi access po?nt (AP), in contrast to when the users
devices associating with access points in a wireless network. Usingare within communication range of each other.

this method, we extracted tracks of always-on Wi-Fi devices from  This paper describes our experiences in extracting user mo-
a 13-month trace. We discovered that the speed and pause timep;jity, characteristics from wireless network tracegglog and

each follow a log-normal distribution and that the direction of d lopi bilit del based on th h teristics. W
movements closely reflects the direction of roads and walkways. eveloping a mobility model based on these characteristics. e

Based on the extracted mobility characteristics, we developed a Chose to use syslog traces because these traces are relatively
mobility model, focusing on movements among popular regions. easy to collect for large user populations; for example, the

Our va_Iidation §hOWS that synthetic tracks match real tracks with  traces collected at Dartmouth College contain data from nearly
a median relative error of 17%. 10,000 users over several years. Any wireless ISP provider also
has access to similar data.
Although syslog traces are readily available, we cannot

The purpose of mobile computing and communications éxtract mobility characteristics directly from them. These
to allow people to move about and yet be able to interact witlaces contain sequences of access points with which wireless
information, services, and other people. Anyone designing davices associated. From these sequences, we need to extract
application, system, or network to serve mobile users muetations of users over time. We explored several methods to
therefore have some notion about how the users, and theitract mobility tracks from syslog traces.
devices, move. Indeed, most researchers use simulation toVe also developed a heuristic to extract mobility charac-
discover how their application, system or network respondsristics from mobility tracks. From these traces we cannot
to variations in user activity, including mobility. It is thusknow whether a user was moving or not, so we need a way
critical to support such simulations with a realistic model ab estimate pause durations. We validate this heuristic using
user mobility—and yet, most mobility models used by thithe data collected by controlled walks and then apply the
research community are ad hoc creations based on the intuiti@uristic to our wireless network traces to collect mobility
of their designer. Few models are derived from traces of reglaracteristics.
user behavior. The mobile and ad-hoc networks (MANET) We analyzed mobility characteristics including pause time,
community depends on simple but unrealistic variations epeed, and direction of movements. We found that pause time
random-walk models, for example. An alternative to mode&nd speed distributions each follow a log-normal distribution.
based simulation may be trace-driven simulation. AlthougXiot surprisingly, the directions of movement do not follow
trace-driven simulation does not require a mobility modea uniform distribution, although many MANET researchers
model-based simulation allows researchers to explore a largeike that assumption in their simulations. Instead, the di-
parameter space. rections of movement follow the direction of popular roads

To develop a mobility model, we must understand user mand walkways on the campus, and shows a strong symmetry
bility. We must obtain detailed mobility data about real useracross 180 degrees. These mobility characteristics provide the
and carefully characterize their mobility. This characterizatidmndamental information that underlies any mobility model.
provides useful insights itself, for example, to researchersFor our mobility model, we first define popular regions,
interested in predicting mobility in support of location-awar@otspots and characterize these regions. We concentrate on
applications [1] or for network optimization [2]. Recent removements among hotspots, supposedly more interesting re-
search in opportunistic ad hoc networking also depends ongions for many applications. Researchers who want to simulate
understanding of user mobility and the opportunities for usbow users aggregate (e.g., a friend-finder application [8]) need
devices to interact when users pass close to each other. Stonleave this type of model. Those who want to explore aspects
recent work [3] distributed portable devices to real people tf context-aware systems (such as scalability of context-aware

I. INTRODUCTION



services [9]) can also benefit from such a model.

Finally, we use mobility characteristics to develop a soft-
ware model that generates realistic user mobility tracks. We
validate our model by comparing synthetic tracks with real
tracks. Our validation shows that synthetic tracks match real
tracks with a median relative error of 17%.

CDF

Il. COLLECTING USER TRACES

We use the wireless network data set collected at Dartmouth
College to derive mobility information. The Dartmouth trace
data is the largest publicly-available set of Wi-Fi network
traces, comprising syslog, SNMP and tcpdump data that has
been collected since 2001 [5], [6]. In this paper, we concentrate
on the syslog data collected from the beginning of Ju%. 1. Diameter. CDF of diameter across 7,128 workdays. The diameter of
2003 to the end of June 2004. At the time, the Dartmoutloo m (denoted by the dotted vertical line) is used as the cutoff to separate
WLAN consisted of approximately 560 access points (tHgrkday traces into stationary and mobile sets.
number of APs changes over time as the network evolves).

Diameter (m)

Mobile | Stationary

Whenever cl?ents agthenticate, associate, roam, _disassociate (>100m) | (<100m) | Total

or deauthenticate with an AP, a syslog message is recorded, Cisco | 681 (34%) 1,330 | 2,011

containing a timestamp in seconds, the client MAC address, \/?Cte:a gg;; (ing) gvg;‘g ?Eg

the AP name and the event type. Note that syslog traces do not o4 1252 (46%) ' ’

contain signal-strength information, which would have been TABLE |

USEfUl for Iocating Clients. WORKDAY TRACE SUMMARY . THIS TABLE SHOWS THE NUMBER OF
The Dartmouth trace data includes a map, indicating the TRACES FOR MOBILE AND STATIONARY SETS

(z,y, z) coordinate of most of the APs on campus. We define

a location as a pair of ¢,y) coordinates on the map. (Weyorkdays. The CDF shows a plateau starting approximately
ignore thez coordinate, an integer representing the building; 100 m. Thus. we used 100 m as our cutoff (shown as the
floor on which the AP is located, in our study; we hopgotted vertical line) to distinguish between the stationary set of
to extend our approach to three dimensions in future workyrkdays and the mobile set. Workdays that have a diameter
If @ map of access points is not available, one can collggf |ess than 100 m are considered stationary, while all other
location of APs through methods such @&r-driving (as workdays are considered mobile. Table | shows the number
used by Place Lab [10], [11]), or using AP position-estimatiog; workdays in the stationary and mobile sets. 46% of all
techniques [12]. N . workdays are considered mobile.

_ For the purposes of char_acterlzmg mobility, we are or_1|y We parsed these syslog traces to obtaobility traces A
interested in a subset of wireless network users: the VoiGgppility trace lists locations of APs with which the device
over-IP (VoIP) device users. Most of the Dartmouth wirelesgssociated, authenticated, or roamed along with a timestamp
network clients are laptop users, but most of these clien} each action. (In the text that followassociationrefers to

are not very mobile, or are nomadic in their mobile networ)| three types of actions.) The parser also separates a workday
usage. We chose to concentrate on the always-on VoIP devige; gevice into multiple walks whenever the device was off
users, as these have been shown to have higher mobility [k more than thirty minutes. We detected these “off” states
We obtained a list of 198 MAC addresses belonging to Cis¢Ring the deauthenticate message that an AP generates for a
7920 Wi-Fi VoIP telephones and Vocera VolP communicatorgiient who has not sent any message for the past thirty minutes.
and only considered syslog data containing one of these MAfe 3 252 mobile traces are converted to 3,838 walks, and the

addresses. _ _ 3,876 stationary traces are converted to 4,006 walks.
For each VolP-client MAC address in the trace data, we
extracted the syslog events for each day. To remove diurnal [1l. TRACE PROCESSING ALGORITHMS

effects where a client will be less mobile at night (for instance, From these mobility traces, we need to extract user locations
where the owner of a VoIP device goes home off-campus @tusertracks Since we cannot tell, from these traces, whether

night but leaves the device charging in their office), we only user moved or not at a particular time, we also need to
consider the working day by ignoring any events before 8 AMstimate pause duration.

and after 6 PM on each day. o

We then divided the workday traces into stationary and m§- Estimating user tracks
bile sets. For each workday’s trace, we calculatedidsneter The mobility traces provide the sequence of coordinates
the maximum Euclidean distance between the locations of amfy APs for each user on each workday, but line segments
two APs that a user visits on that workday. Figure 1 shows tieennecting these coordinates in sequence may be far from the
cumulative distribution function (CDF) of diameter for 7,1281ser’'s geographical location over time. While it is possible



2) Time-based centroidBecause devices do not change
associations periodically, using the past three associations may
be ineffective, especially for less aggressive devices. Thus, we
explore the centroid algorithm with a window of a fixed-time
period,q. Everyp seconds, we update the user’s location with
associations that happened during the gas¢conds. Thus, a
user’s location at time is defined as:

B(t) =5 iz §(t) = 5 X0, v (1)
where n is the number of associations within the pagst

seconds. If there has been no association within the gast
seconds+{ = 0), we keep the previous location estimate:

z(t) = x(t — y(t) =yt —p). 2
Fig. 2. AP associationsA pedestrian carried a Vocera communicator on an ( ) ( p), y( ) y( p) ( )
outdoor walk around campus. This figure shows line segments between Afise default values forp and ¢ are 10 and 60 seconds,
the Vocera associated in sequence. respectively. Note that changes dynamically for each update
for this method, whilen is fixed at three for the triangle

: he | . ¢ 2 Wi-Fi by having its cli centroid algorithm.
to estimate the location of a WI-Fi user by having its client 3) Kalman filter: A Kalman filter is a recursive data pro-

sense multiple nearby APs (as with Place Lab [10] and maEXssing algorithm that produces optimal estimates. While this

others), it is experimentally difficult to obtain such IocatioqiI er requires significant knowledge of the system, one can
traces from thousands of users. In contrast, syslog data, whriﬁ ke reasonable guesses to get a good result

is recorded by the AP, is readily available. Thus, we explore-l-he system to be estimated can be modeled as:
methods to estimate user locations from syslog data. '

There are several reasons that locations in syslog data Xp+1 = PrXp + Wy 3)
may be different from a user's location. First, mos't USe(Bhere xj represents the state of the systedn,is a matrix
do not stand next to an AP, and then walk to a point ne@ating one statex;, to the next statexy.;, and w is a
to anqther AP‘ Second, m°'_°"e devices do not hecessali¥ctor representing system noise. Our state variables include
associate with the geographically-closest AP. This behaVI[(p{e user's locationa( andy) and velocity ¢ andy’). Then
results from many reasons, such as different APs being C%h'uation 3 is written as: ’
figured with different power levels, or the signal from close '

APs being blocked by buildings or trees. Third, different | 1t 00 T wy
devices have different aggressiveness in changing associatio s.2' _ (0 1 00 ! 4| w2 (4)
Less-aggressive devices do not change the associated AP asY 00 1 ¢ Y w3
frequently. Thus, they may be associated with an AP far from[ ¥ |4 000 1], v ], wy |,

the user's current location. _ ~wheret is the time difference between two consecutive asso-
To get a sense of how VoIP devices change associatiopgtions.

we asked a volunteer to walk around on the DartmouthThe measurement of the system is defined as:

campus with a GPS device and a Vocera communicator. After

registering the GPS data to the AP map coordinates, we plotted z, = Hpxp + vi (5)

the act_ual path (according to GPS) and the associations in {i¢are H is a matrix relating the state variables, to the
same figure. Figure 2 shows both the GPS track and the cryfgasyrements,,, andv is a vector representing measurement
track of a user's location by drawing line segments betwe@Ryor. For each associatidn we have the location of the AP
the map coordinates of APs in sequence; the arrow shows {@, \which a user is associated. Given this measurement, we
direction of the walk. Clearly, a mobile user roams widelyyqate our estimate of the user’s location. Since the measured
from AP to AP. This crude method estimates a mobility traglcation can be considered as the user’s true location disturbed

that is far from the GPS track. by some noise, Equation 5 can be written as:
Based on the above observations, we need a method to

estimate a smooth path representing the user’s location over f
time. We explore three approaches to address this problem. [ 1 ] — [ 1000 } z + { vl } . (6)

1) Triangle centroid: The centroid algorithm uses location 22 ] 00 1 01y Y2 I
of past three AP associations as the vertices of a triangle. We LAY
estimate the user’s location as the centroid of a triangle, whichwe now need to define the covariance matrices vqr
is the intersection of the triangle’s three triangle medians. Thad v, Qi and Ry, respectively.Q represents the degree
location estimate is updated whenever there is an associatidivariability in the state variable® represents the measure-
message. ment uncertainty. Since the relationship between variances is

X
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Fig. 3. GPS tracks.This figure shows the GPS tracks of four walks depictedrig. 4. Differences.This figure shows the difference between the GPS track
on the Dartmouth campus map. and the path estimated using a Kalman filter.

unknown, we assume that the variances are independent dfigure 5 shows the median difference between the GPS
each other, making their products zero. The resultingnd track and the path estimated by Kalman filters with different

R are: v? values: 15, 25, 35, 50, 100, 150, 200, and 250. All users,
C w2 0 0 0 except User 4, do not show a trend over different values of
0 w? 0 0 v2. For User 4, ag? increases, the difference decreases for
Qr = 0 0 w2 0 the Vocera while it increases for the Cisco phone; there is not
0 0 0 wy? one good value for both. Thus, we chose 25 ddrbased on
-, the local minimum observed for some of the Vocera users.
R, = 1}6 UOQ Evaluating path extractorsFrom our walks, we found that
2

L different types of devices have different association patterns.
Vocera communicators aggressively associated with many
Since it is therelative magnitude of values in covarianceAPs, while the Cisco phones tended to stay associated with
matrices that affects the filter's performance, we set valuesansingle AP for a long time. Path extractors should be able
Q to one and empirically chose values rin the following to cope with these differences. We also observed that the
section. distance from a device to the associated AP varies by a large
4) Validation: To validate path extractors, we walkedamount; while a device tends to associate with nearby APs, it
around on the Dartmouth campus with a GPS device, sametimes associated with APs as far as 200 meters away. Path
Vocera VoIP communicator, and a Cisco VolP phone. GR&tractors should be able to produce estimates with a bounded
data serves as the ground truth and VoIP data is usedetoor range by coping with associations with far-away APs.
estimate a user’s path. We have data for four such walks Figure 6 shows the difference result for Vocera commu-
each made by a different person along a different path. Eagigators and Cisco phones; each line shows the median and
walk lasted around 30 minutes, roughly 20 minutes walkingaximum of differences (measured every 30 seconds) for
and 10 minutes pausing at an indoor location. With these foeich user. The triangle centroid, time-based centroid, and
walks, we were able to visit much of the area covered by th&lman filter are labeled as ‘triangle’, ‘time’, and ‘kalman’,
campus-wireless network. Figure 3 shows the GPS tracksrefpectively. In addition to these three algorithms, we included
these walks on our campus map. a crude track by connecting the locations of APs (like that
To get the difference between the tracks and GPS data, sfewn in Figure 2); this track is labeled as ‘ap’.
computed the distance between the two every 30 secondsThe triangle-centroid algorithm produces relatively well-
Since there is no GPS data when a user was indoors, bainded estimates for Vocera communicators, but its medians
excluded these time periods from the calculation. (Thefer Cisco phones are much worse than the crude tracks. This
pause-time periods are later used to test our characterizatiogult happens because Cisco phones tend to stay associated
technique.) Figure 4 illustrates the distance between a GRfh an AP for a while, so using the past three associations
track and an estimated track of a Vocera communicator fizrtoo slow to reflect a user’s current location. The time-based
one of our walks. centroid algorithm works better than the triangle-centroid
Choosing Kalman parametersiVe used all four walks to algorithm for Cisco phones, but it sometimes updates the user’s
choose the Kalman parameters. Since movemenisandy location with far-away APs as happened for Vocera User 2
directions are likely to be symmetric, we assume that erraaed User 4. The Kalman filter produces estimates that are
in the z and y directions are same. Then, we have only oneell bounded for Vocera communicators and it also works
unknown variablep?. reasonably well for Cisco phones.
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Fig. 5. Kalman parameter. This figure shows the median difference betweelfrig. 6. Path extractors This figure shows median(x’) and maximum(‘o’)
the GPS track and the estimated path with differehtvalues. of differences for Vocera communicators and Cisco phones.
B. Extracting pause time speed froml; to the new locatior;; is computed as
We then used the Kalman filter to extract user tracks, which s = ﬂ (7)
are sequences of a user’s locations with timestamps indicating €i

when the user arrived at each location. To characterize uggtered; is the Euclidean distance betwekrandl,;, ande;
mobility, we need to separate the time between two consg§+the elapsed time, | — ;. If s; is within the normal range,
utive associations into travel time and pause time. Since W@ assume that the user did not pausé; aiVe defined the
cannot tell whether a user was moving by looking at the tracefrmal range to benin < s; < 10 m/s; we explored different
we need to estimate pause duration. values ofmin: 0.1 m/s and 0.5 m/s. I§; is smaller thannin,

1) Algorithm: We estimate pause duration using the usertbe user is likely to have paused latbefore moving tol; ;.
speed. If the speed between two locations is within a “normalhus, biggermin values are likely to produce more pauses.
range, we assume that the user did not pause at the sodrbe elapsed timeg;, is the sum of the pause timg;, and
location. If the speed is too slow, we assume that the udbe duration of travely;, as illustrated in Figure 7. The pause
did not move at that slow speed, but instead, paused at thee, p; is computed as

source before moving to the destination. When considering a d.
“normal” range, we assume that users are pedestrians. This pi=€—q = e — S—f (8)
assumption is reasonable for the Dartmouth campus; most i

people walk rather than drive a car or take a bus on the campusere s/ is the average speed of the user, computed as expo-

because the campus is small. For an environment where usesstially weighted moving average; = 0.25s; + 0.75s, ;.

change their mode of transportation, we can adapt methodsn the traces we sometimes observe slow speeds due to

that detect mode of transit [13], [14]. pauses, but we also observe some high speeds. These high
Our track traces consists of an arrival titieand location speeds are observed only with shert (a few seconds).

1;, defined as#;, y;). When a user arrives &t,, at¢;.1, the Obviously, shorte; produces high speed (see Equation 7).



10 minutes at an indoor location during a 30-minute walk.
Table 1l shows the pause time recorded by individuals and the

time computed using our algorithm with different clustering
ranges; the unit of time is second. For a given user, the
P2 recorded pause duration was same for both the Vocera and
the phone. Note that our algorithm sometimes identified more

than one pause. Pauses at the pre-defined pause locations are
[<PAUSE =[<=—"— DURATION ————= | TIME L iy . .

ASSOC AP1 LEAVE APY ASSOC_AP2 concentrated with ‘+', while pauses at other locations are con-

, o 4 duration i . catenated with ‘;’. Smaller clustering ranges (no clustering and
g ﬁ;gﬁ"g&?gd‘;f‘;ssitagmy O e A B e O o 15 meters) sometimes divided the 10-minute pause into several

and ASSOCAP2. The user, however, may have paused at AP1, and so wBOrt ones. Bigger clustering ranges successfully aggregated
need to estimate the pause time and the duration that it takes to travel frghort pauses into a long 10-minute pause. After 35 m, the result

APl to AP2. did not change. Thus, we chose 35 m as our clustering range.

[ [recorded] noclustering | 15m | 35m | 55m | A clustering range that is too big may errpneously aggregate
vocera other short pauses (those separated by ‘;’ in the table) with the
1 600 45; 598+20 45;598+20] 45; 618 45; 618 | 10-minute pause. After clustering with a range of 35 m, the
2| 608 259+306 259+306 | 564 564 | difference between the recorded time and the computed time
3 620 9; 632 9, 632 9,632 | 9832 | ( ; ; q q
2 506 24 677 24677 | 24 677 24 677 for the 10-minute pause ranges from 3 seconds to 71 seconds.
phone For some users, we have short pauses that happened at a
1 600 38; 68+513 37, 68+513] 38; 581 [ 38; 581 | |ocation other than the 10-minute pause location. Some of
2| 608 569 569 569 569 | these pauses may be errors while others turned out to be
3 620 646 646 646 646 wual U 1 st q iy bef .
7 606 | 869797758+34+144 603 503 503 | actual pauses. User 1 stopped momentarily before crossing

a road; the pause locations for 45 seconds for the Vocera and

TABLE I 38 seconds for the Cisco phone match with the crossing point.

PAUSE TIME OF FOUR USERS (UNITZ SECOND). THE EFFECT OF
DIFFERENT CLUSTERING RANGES ON THE PAUSHIME COMPUTATION.
PAUSES AT THE PREDEFINED PAUSE LOCATIONS AND AT OTHER

LOCATIONS ARE CONCENTRATED WITH'+" AND ', RESPECTIVELY In addition to individual user’s mobility characteristics, we
are also interested in identifying the popular locations. To

Shorte; is due to aggressive devices that change associatiéfdine the regions that correspond to hotspots, we need to

in searching for better signal reception. Thus, these hiGg9regate user destinations to determine the most popular
speeds are not likely to reflect a real movement of a usgpstinations, that is, those destinations where the people spend

If s; is greater than 10 m/s, we ignore the correspondiﬁBe most time. One simple approach is to divide the area into

segment when computing pause timesand updating the fixed-sized regions and add the times that visitors spent in
average spees!. each region. One problem with this approach is that a highly

At the first movement between two locations in a tracPP,OpUlar hotspot may be divided into several regions and end

we have no value for!, as we consider each track to bélP @S @ group of less popular spots. A further problem is

independent. In this case, we use a default speed valueti@t it is hard to determine an appropriate size for the unit

1.34 mis (3 mile/h) as this is an average human walkif§9ion- Making it too small results in generating too many
speed. Note that the default value is used only when the fiRRtots and not effectively aggregating visits, while making it too
movement is out of the normal range. big results in generating over-sized hotspots. To avoid these

The Kalman filter updates a user's location whenever theb&PPlems, we chose not to divide our area into grid of fixed-

is an association. Because a device can change associaftyfied egions. S
even the user is not moving, the difference between conseclnstead, we apply a 2-D Gaussian distribution to each pause

utive location estimates may be small. In this case, we waffation, weighted by duration of pause, and sum up the distri-
to aggregate the user's pause time. Whenever a device pau8don. At each pause location, the 2-D Gaussian distribution
we aggregate following pauses if those locations are withinc&£ates a small ‘mountain’, uniformly distributed about its

fixed range from one another. We explore the effect of differeigrtical axis. We add the ‘mountains’ for visits and consider
“clustering ranges” in the following section. those regions that are higher than a given threshold to be

With pause time defined for thigh movement, we can now Notspots. We explore different threshold values in Section V-A.

Compute the Speed of the user's movement after the pause: To select the appropriate Gaussian diStribUtion, we need to
d define the standard deviation, This o should reflect the

(9) confidence in the exact user locations and the aggressiveness
€ —Di in aggregating pauses. We choseof 20 meters based on
2) Validation: To validate our algorithm, we use the sam¢he result of our GPS experiment shown in Figure 6(a); the
four walks described earlier. We asked people to pause arounedians of the differences are close to this value.

C. Extracting hotspot regions

v =
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Fig. 8. Pause.This figure shows the overall pause-time distribution. Fig. 9. Speed.This figure shows the overall speed distribution. The speed
of each movement segment is weighted by duration of that movement.

IV. MOBILITY CHARACTERISTICS

Having verified that the Kalman filter provides a reasonable
approximation of the GPS data, we apply this filter to the 3,838
mobile walks to produce the same number of mobility tracks.
We then apply our pause-time estimator and extract mobility
characteristics: pause time, speed, direction, start time, and
end time.

For the 4,006 stationary walks, we do not extract user tracks.
We estimate each user’s stationary location using the simple
triangle centroid (Section IlI-A.1). We extract characteristics
such as duration of stay, start time, and end time.

A. Mobile set 270

For both pause time a”q spe.ed' Ch_"’\raCte”Zf”‘tlon’ we LIL‘T’d:’.‘lO. Direction. This figure shows a weighted PDF of movement direction
the complementary cumulative distribution function (CCDF)iith a bin size of 5°. The direction of each movement segment is weighted

F(xr) = P(X > z). CCDF is commonly drawn on a by duration of that movement.
logarithmic scale for both axes. The log-log CCDF helps
determine whether a set of data fits a power law or heavy-
tailed distribution; if the data is linear on a log-log scale, thegpeed of each movement segment is weighted by the duration
this means that the data fits a power-law distribution. of that movementmnin of 0.5 m/s produced more faster speeds
Figure 8 shows the log-log CCDF of the number of paus&an min of 0.1 m/s. The median fomin of 0.5 m/s and
observed across all 3,838 walks as a function of pause duratibh m/s are 0.43 m/s and 1.26 m/s, respectively; 1.26 m/s
in seconds. We explored two different valuesmin, used (2.8 mile/h) is close to the average human walking speed
for our pause-time estimator (see Section 11-B.1). Note th& mile/h). MLE finds that speed fits a log-normal distribution.
we only counted non-zero pauses. This figure shows theFigure 10 shows the probability density function (PDF)
distributions of pauses both before and after clustering, usinfymovement directions. The direction of each movement is
the clustering range of 35 meters (based on the validatiafeighted by the duration of that movement. The bin size is 5°.
presented in Section I1I-B.2). As expected, there were moldy manual comparison to a map of the Dartmouth campus,
longer pauses when clusterechin of 0.5 m/s produced we found that the directions with larger peaks correspond to
relatively more shorter pauses thamn of 0.1 m/s; this is the directions of popular roads. Interestingly, the trends are
because biggemin identifies more pauses. It is clear thatepeated every 180°. We expect that this symmetry is because
none of distributions are linear. Using maximum likelihoo@n a given road, people move in both directions. For instance,
estimation (MLE), we find that the clustered pauses fit a logn a road that goes south and north, people move either
normal distribution, with a small number of users pausing farorthward or southward, generating peaks at two directions
long periods of time. that are exactly 180° apart. Because of this symmetry, both
Figure 9 shows the weighted log-log CCDF of the totdhe mean and median of the distribution are close to 0°.
duration of travel as a function of speed in meters per secondFigure 11 shows a CDF of the start time and end time of
It includes distributions withmin of 0.1 m/s and 0.5 m/s. The each of 3,252 mobile workday traces. The line ‘start’ shows



09r

0.8

0.7

0.6

051

CDF

0.4

0.3

0.1r

|
|
|
02F |
|
|
|
1

o O o i ‘ ‘ ‘ ‘ ‘ 0 : : : s w w s s s
8 9 10 11 12 13 14 15 16 17 18 0 1 2 3 4 .5 6 7 8 9 10
Hour Duration (hour)
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Fig. 12. Mobile users on map.
Fig. 14. Start and end times of stationary workdays.This figure shows
the CDF across 3,876 workdays. ‘start’ and 'end’ denote the time that devices

the time that devices first appeared within a workday. The ”ﬁiést appeared and the time that devices disappeared within a workday.

‘end’ shows the time that devices disappeared. Note that our
chosen workday runs from 08:00 to 18:00; earlier start tim?fs

were recorded as 08:00 and later end times as 18:00. 47% of device associates with an AP and no deauthentication
workdays started by 09:00, and 53% ended after 17:00 message was generated, the computed duration for that device

Figure 12 shows the distribution of pauses over our camp y be much shorter than the actual duration that the device

after applying a Gaussian distribution for each visit an\Has, connected to the network. )

adding them up. The darker spots represent higher mountaind;19uré 13 shows the CDF of duration for 4,006 walks.
The popular regions include the main Dartmouth library, tfePoUt 29% had a duration of less than two minutes. The
Department of Computer Science, the School of Engineerid mp at thirty minutes is due to the fact that a client is

the building with offices of network administrators, a hotef€authenticated if it has not sent any message for thirty
restaurant, and a gym.

minutes. After the thirty minute jump, the number of walks
for different durations does not change much.
B. Stationary set Figure 14 shows the CDF of start and end time for 3,876
We computed the duration of the stay for each of 4,0G8ationary workdays. 28% of workdays started by 09:00 and
walks. The duration of a walk is the difference between tH34% ended after 17:00. Compared to mobile workdays, sta-
time when the first and last messages of that walk wetenary workdays started later and ended earlier. This result
recorded. When there is only one message, the durationmay be because workdays that start later and end earlier are
zero. Note that this duration is an approximation of the timmsore likely to have small diameters, and thus are classified as
that a device was connected to the network. Since APs skationary.
not always generate deauthentication messages, which showigure 15 shows the users’ locations on the campus map
the time that clients deauthenticate, we cannot rely on thesfter applying a Gaussian distribution for each stationary
messages to determine when clients went off. For examplegation. For this set of walks, we used the triangle centroid to
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Fig. 15. Stationary users on map.The arrow denotes a popular region that )
is unique to stationary users. Fig. 16. Threshold for hotspots

compute the stationary location for each walk and calculatgd Defining hotspot regions
the number of walks at each location. Note that we did not

consider the duration of stay for this set; each stationary Io—GIVen the map of user dest|.nat|ons (F|gur-es 12 and 15),
we need to define hotspot regions by applying a threshold.

cation i§ weighted equally. Cqmpared to the popular Ioc.atioﬁreshold values that are too low may generate too many or
for mobile users (shown in Figure 12), the popular statlonaB{ regions as hotspots. Some of these hotspots may be in

locations are restricted to smaller regions. Nonetheless, th%% not popular locations. On the other hand, if the threshold

popular locations for stationary users coincide with those for . :
. . : . . value is too high, we may also select too many hotspots, as
mobile users. The only location that is unique for the statlona{!)(

users is one of the clusters of undergraduate dorms, den%%esggte:hmd may divide a large region into several smaller

by an arrow in Figure 15. The Iocatlons_ that were pqpular To observe the effect of selecting different threshold values,

among mobile users, but not among stationary users, include .

a gym and a hotel containing a restaurant we calculated the number of hotspots generated by varying the
' threshold from 1500 to 2500 in increments of 100. Figure 16

C. Summary of characteristics shows the result. Among the values that generated the mini-

Table 11l shows the summary of mobility characteristics. Fghum number of hotspots we chose the smallest, 1900; smaller
each characteristic, we list the mean and median. The last t@lues produce larger hotspots. _
columns show the parameters for fitted distributions and theFigure 17 shows the regions represented by these five
root mean square (RMS) error. Most characteristics are fittBatspots on a map of the Dartmouth campus. These hotspots
as either log-normal distribution or exponential distributiorzoincide with the locations of several buildings popular among
The equation for the PDF of the log-normal distribution i¥ocera and Cisco phone users: the School of Engineering, the
fz) = 67(1"(17“\/2/2“ , and that of the exponential distri-main Dartr_nouth_llbrary, the Computer Suenc_e _department, the

S TOVIT b . T building with offices of campus network administrators, and a
bution is f(z) = e***°. To fit data to a distribution, we o
h?tel containing a restaurant. Note that these hotspots represent

first separated them into 100 bins. To remove the effect 0 : ;
. . . . : opular spots among VoIP device users and may be different
truncating traces to working hours, we ignored the first bin fgr

the start time, and ignored the last bin for the end time. THe™ popular spots of the whole Dartmouth population.
start and end time of both mobile and stationary sets follow Hotspot characteristics
exponential distributions. The pause times and speed of the

mobile set follow log-normal distributions. The durations of Figure 18 shows a PDF of the number of users (walks)
the stationary set follow a uniform distribution. starting their day at each region (shown as black bars). The

region labeled as ‘0’ represents tracks that started outside any
V. CHARACTERIZING HOTSPOTS hotspot (thecold regior); the rest represents values for each
The research community is often more interested in popetspot. This figure also shows the area of each hotspot region
ular regions,hotspots where wireless users spend most afiormalized by the total area of all hotspots (shown as white
their time. For example, researchers working in opportunisti@ars). The size of the cold region is not included because we
networking or developing context-aware services need to hal@ not have a clear boundary of the campus and thus do not
an accurate model of these regions. Thus, we focus on th&sew the exact size of the cold region. Clearly, we see that the
hotspots in developing a mobility model. We first defin@umber of users and the hotspot size follow a similar trend,
hotspot regions using a Gaussian distribution; the area outsjghaps because a popular hotspot builds a larger ‘mountain’
of hotspots becomes theold region We then characterize with a larger base.
each region separately. We also computed the pause-time distribution for each



[ set | characteristic [ unit ] mean | median ] distribution [ RMS |

mobile start hour | 1.9 (09:54) | 1.1 (09:06)| exponential a = —0.438 b= —0.872 | 0.5399
end hour | 8.5 (16:30) | 9.1 (17:06) | exponential a = 0.523 b= -6.637 | 0.1844
pause (min=0.1m/s) hour 0.718 0.223 log-normal ;= —1.880 o2 =5.085 | 1.1654
pause (min=0.5m/s) hour 0.466 0.045 log-normal = —2.700 o2 =4.738 | 3.0781
speed (min=0.1m/s) m/s 0.76 0.43 log-normal = —0.741 o2 =0.788 | 0.5252
speed (min=0.5m/s) m/s 1.64 1.26 log-normal  p = 0.290 0? = 0.604 | 0.5253

direction degree -6.2° 2.5° - -
stationary start hour | 3.3 (11:18)| 2.4 (10:24) | exponential a = —0.175 b= —1.599 | 0.3754
end hour | 7.3 (15:18) | 8.4 (16:24) | exponential a = 0.249 b= —-3.858 | 0.5246
duration (after 30 minutes) hour 51 5.0 uniform f(z) = 0.1055 0.3802

TABLE Il

SUMMARY OF MOBILITY CHARACTERISTICS

@5

a4
'2 '3

.1 o1}

. . . . . .
0 05 1 15 2 25 3 35
Pause (s) x 10"

Fig. 17. Hotspots on campus mapThis shows the hotspots identified with Fig. 19. Pause distribution per region. This figure shows the CDF of pause
the threshold of 1900. Hotspots 1 to 5, in order, correspond to a hotel, time for five hotspots and the cold region.

School of Engineering, the main Dartmouth library, the Computer Science

department, and the building with offices of campus network administrators.

as regions that have longer total pause times. Among the five

o I nitial users hotspots, hotspot 2 and 3 have more long pauses. This implies
03 [_JHotspot size}1 that people tend to stay for a long time in these two regions:
03r | the School of Engineering and the main Dartmouth library.
20250 ] To capture movements between different regions, we com-
g 0% ] puted the probability of moving from one region to another. In
& 0.15 1 addition to five hotspots and the cold region, we also defined
01r 1 the OFF state. Thus, we have anx n transition matrix where
0.05¢ .H I lH 1 n — 2 is the number of hotspots.
0 o 1 ) 3 7 5 Among these seven states, the cold region is treated differ-
Region ently. It is considered not as a destination, but agagpoint

Fig. 18. Initial regions. This figure shows the initial region distribution of that a user goes through or stops on the way from one

the number of users for each region. ‘0’ represents regions outside of f@tSPOt to another. A waypoint is locatidn in our track
hotspots. traces described in Section IlI-B.1. For each transition from

one hotspot to another hotspot @FF state, we count the
number of waypoints from traces, and generatga 1) x
region. Figure 19 shows CDFs of pause time for five hotspqts — 1) waypoint matrixthat consists of the average number
and the cold region. We first aggregated pause time as lasfgwaypoints when users moved between two regions.
as a user remains within the same region. The aggregated
pause time depicts the duration of a user’s stay after entering
a region. For each region, we have a CDF of the number ofwe generate synthetic mobility tracks using our model and
aggregated pauses for all walks as a function of aggregathdn compare these tracks to the real tracks, using character-
pause duration. We include pause times of zero seconds; igtics that were not considered by the model.
need this information for simulation to decide whether to pause )
or not before moving to the next location. Figure 19 showfs: Generating tracks
that the cold region has relatively more short pauses than anyfo simulate users’ movements, we use the following mo-
of the hotspots. This result is expected since we chose hotsgutisy characteristics that we described earlier:

VI. M ODELING MOBILITY



destinati
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, e,s,[:mon the generated tracks. We would therefore expect the two

distributions to be similanerification[15] is concerned with
determining whether the conceptual model has been correctly
translated into a computer program. Although verification is

‘/Q ! an important step, its purpose is debugging. Instead, one needs
oumee to validate a modelValidation is the process of determining

whether a model is an accurate representation of the system.

Fig. 20. Example of a path with three waypoints. To validate a model, we need to compare an aspect of the

tracks that is not a component of the model.

We validate the tracks by looking at the number of visitors
within a given region in each hour of a workday. We define the
number of visitors to be the number of users who either were
already in the region at the start of the hour or entered during
X - the hour. Note that a user can be counted at most once for a
(n—1) x (n — 1) Waypoint matrix region in a given hour. We count the visitors per region per
Overall speed distribution. . hour for both the generated tracks and the real ones. Note that
» Overall start time distribution for mobile workdayshis method does not validate the path (location of waypoints)
Initial region c_j|st_r|bu_t|on _ that a user took to move between hotspots. It also does not
« Pause time distribution per region validate behaviors of stationary users.

1) Ratio of mobile set size to stationary set size
2) Mobile set
« n x n Region transition matrix
(wheren — 2 is the number of hotspots)

3) Stationary set Figures 21 shows the number of visitors per region per hour.
« Initial location map The z-axis shows one-hour buckets starting at 08:00 and end-
« Start time distribution for stationary workdays ing at 18:00. The number of visitors using the synthetic tracks
« Duration of stay are similar to the real tracks for all regions except hotspot 1.

Using these characteristics, we generate Synthetic movem-éhe number of visitors in the real tracks for these four hOtSpOtS
traces. A user is assigned as either mobile or stationary usifigrelatively stable during the day. Visitors increase at the
the mobile to stationary ratio. A stationary user enters tieginning of the day, are relatively constant during the day,
network at a time from the start time distribution at the locatioand decrease at the end of the workday. Hotspot 1, however,
from the initial location map. She then stays at the locatidis @ large peak between 1200 and 1300, which may be due
for the duration chosen from the duration-of-stay distributio® Users visiting a restaurant during their lunch hour. The

A mobile user enters the network at a time selected froﬁynthetic tracks of hOtSpOt 1 fail to match the real behavior
the start time distribution at a region selected from the initiglue to these temporal variations. While our model considers
region distribution. The user's next destination is then chos#ie variations for the beginning and ending of each working
based on the probabilities in the region transition matrix. day, it currently does not consider the variation for certain

The number of waypoints visited on the way to the destiours during the day, such as lunch time. Incorporating such
nation is based on the waypoint matrix. We use a Gaussi@mnporal variations may be useful, although it may require
distribution with the mean based on this matrix to choog¥ior knowledge about a hotspot, such as whether it contains
the number of Waypointsli;’ for each move. We choose thea restaurant, if lunch-time movements are to be considered.
locations ofk points, uniformly distributed, within the area \We compute the relative error for each hotspot. Let the value
bounded by a box whose two diagonal end points are defirlda real track be- and that of synthetic track be Then, the
by the source and the destination of the move. We then sort fleéative error is defined a5 ", |r; — si|/ >_;_, 7 wheren
k points in ascending order by their distance from the sourdé.the number of hour-long bins.

Figure 20 shows an example path constructed in such wayFigure 22 shows the relative error between the synthetic
We expect that this approach generates paths that are cld&gks and real tracks. Hotspot 1 with a large peak during
to real movements than using straight lines between regiorlgnch time has the largest error of 46%. The error for the

The speed of movement is chosen from the overall spea$t of the hotspots ranges from 16% to 30%. The median of
distribution. Once a user has reached the destination, he patig&ive error for the five regions is 17%.
for a period chosen from the pause time distribution for
that particular region. When the pause time elapses, the next

destination is chosen using the region transition matrix. Most MANET researchers use relatively simple mobility
models, based on some form of random walk on a flat plane.

B. Validation With increasing awareness of the limitations of some of
One of the most difficult problems in modeling is tahese models [16] and the importance of a realistic mobility
determine whether a model captures reality. For instance, anedel in the evaluation of MANET protocols [17], others
could compare the pause-time distributions of both sets lodive begun to propose more complex models. For example,
tracks and determine whether they are similar. The pause-tidegdosh et al. propose a random-walk model that incorporates
distribution, however, is a component of the model that createtistacles [18]. This paper describes a technique for modeling

VIlI. RELATED WORK
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Fig. 22. Relative error. This figure shows the relative error between the

synthetic tracks and the real tracks.

with each other. These complex models, however, are typically
synthetically generated, rather than based on real traces.

Recently, there have been a few papers describing ways
to extract places from traces of user mobility. For exam-
ple, Patterson et al. used GPS data in an effort to identify
common destinations in a user’s daily life [20]; their results
are interesting, but it is not clear how to use this technique
to derive a general model for a user population. Similarly,
Kang et al. demonstrate a method for clustering a sequence
of location observations to identify “places” within a moving
user’s path [21]. Again, although they validate the technique
on a trace of two users, their aim is not to build a general
model for a larger population.

There have been few significant efforts to create mobility
models from real traces. In one short paper, Hsu et al. develop
a Weighted Way Point model from a set of survey data,
in which they asked 268 students to keep a diary of their
movements on campus for a month, at the granularity of a
building [22]. Using a predefined set of five location types
(classrooms, libraries, cafeterias, off-campus, and other), they
noted a non-uniform distribution of visits to these location
types. Their Markov-based model conditions the choice of a
next location type upon the time of day (morning or afternoon)
and on the current location type. They also used the survey
data to extract a distribution of pause times for each location
type. They confirm that their model, when used in a simulator
for ad hoc routing, does demonstrate non-uniform location
distribution and (due to clustering) leads to lower connectivity
than does the random way-point model. Although our study
must estimate user locations from network-association records,
it goes far beyond their study, by extracting mobility for
a larger area, with finer location granularity, over a longer
period of time, and for far more users. Another study based on

Fig. 21. Hourly visitors. This figure shows the number of visitors duringobservations of pedestrian traffic on a campus [23] developed
each hour of a workday for the five hotspots.

a hybrid mobility model which favors certain directions based
on probabilities computed from the observations. In this short
paper, they only observe people at six locations on a large

paths between points based on Voronoi diagrams, which coglimpus. Using the same trace as our study, Jain et al. [24]
be adapted for use in our model. Another mobility modeleveloped a model of wireless users’ AP registration patterns,
is proposed by Musolesi et al. [19], who use observatiomghich may be significantly different from users’ physical
from social networking theory to create a model that reflectsobility patterns. Their model ignores temporal patterns and
how users congregate according to their social relationshijpguses only on spatial patterns.



VIIl. CONCLUSION [6]

This paper has presented one of the first attempts 1o
construct a WLAN mobility model from real-world wireless

user traces. We present a method for extracting users’ mo-
bility tracks from these traces, and validated this method b

8]

D. Kotz and K. Essien, “Analysis of a campus-wide wireless network,”
Wireless Networksvol. 11, pp. 115-133, 2005.

M. McNett and G. M. Voelker, “Access and mobility of wireless PDA
users,” Department of Computer Science and Engineering, University of
California, San Diego, Tech. Rep. CS2004-0780, February 2004.

J. I. Hong and J. A. Landay, “A architecture for privacy-sensitive
ubiquitous computing,” inProceedings of the second international

comparing them to the location determined by users carrying conference on mobile systems, applications, and services (Mabisys)
both GPS and 802.11 devices. We applied our method tg Boston, MA, 2004, pp. 177-189.

. . 9
one of the largest available traces of wireless users, fr0|In

|

Dartmouth College. By examining the mobility in these tracks

we

were able to extract information about the movement

. o o . 10
speed, pause times, destination transition probabilities, a{nd
waypoints between destinations. This information forms an G. Borriello, and B. Schilit, “Place Lab: Device positioning using radio
empirical model that we used to generate synthetic tracks, beacons in the wild,” inProceedings of Pervasiyéunich, Germany,

which we validated by comparison to the real tracks. V\{El
found that our generated tracks produced similar results to the

real tracks, save in the cases where temporal variations wer

present in the real tracks, as our model does not consider th%%i

temporal effects.
We believe that this model, and the methods used to Oberpfaffenhofen, Germany: Springer-Verlag, May 2005, pp. 144-156.

construct it, will be useful for research in many areas of mobil&

13]

T. Buchholz and C. Linnhoff-Popien, “Towards realizing global scal-
ability in context-aware systems,” iRroceedings of the International
Workshop on Location- and Conext-Awareness (LoCA)berpfaffen-
hofen, Germany: Springer-Verlag, May 2005, pp. 26-39.

A. LaMarca, Y. Chawathe, S. Consolvo, J. Hightower, I. Smith, J. Scott,
T. Sohn, J. Howard, J. Hughes, F. Potter, J. Tabert, P. Powledge,

] Y.-C. Cheng, Y. Chawathe, A. LaMarca, and J. Krumm, “Accuracy char-

acterization for metropolitan-scale Wi-Fi localization,” Intel Research
Seattle, Tech. Rep. IRS-TR-05-003, Jan. 2005.

H. Satoh, S. Ito, and N. Kawaguchi, “Position estimation of wire-
less access point using directional antennas,’Pinceedings of the
International Workshop on Location- and Conext-Awareness (LoCA)

L. Liao, D. Fox, and H. Kautz, “Learning and inferring transportation
routines,” in Proceedings of the National Conference on Atrtificial

computing and communications. As examples, we cite related Intelligence 2004, pp. 348-353.

work in mobile ad hoc networking, opportunistic networking(4l E. Welbourne, J. Lester, A. LaMarca, and G. Borriello, “Mobile context
content-distribution networks, and location prediction, all of
which need good mobility models or an understanding of

mobility characteristics.

(18]

In future work, we intend to further improve our metric 16]
for validating our synthetic tracks. We also intend to help
the research community use our model by developing a track Networking ACM Press, 2003, pp. 205-216.
generator capable of creating mobility traces that can be uddd
by the network simulatons-2

(18]
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