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Abstract— The simulation of mobile networks calls for a
mobility model to generate the trajectories of the mobile users
(or nodes). It has been shown that the mobility model has a
major influence on the behavior of the system. Therefore, using
a realistic mobility model is important if we want to increase the
confidence that simulations of mobile systems are meaningful in
realistic settings.

In this paper we present an executable mobility model that uses
real-life mobility characteristics to generate mobility scenarios
that can be used for network simulations. We present a structured
framework for extracting the mobility characteristics from a
WLAN trace, for processing the mobility characteristics to
determine a parameter set for the mobility model, and for using
a parameter set to generate mobility scenarios for simulations.
To derive the parameters of the mobility model, we measure the
mobility characteristics of users of a campus wireless network.
Therefore, we call this model the WLAN mobility model. Mobility
analysis confirms properties observed by other research groups.
The validation shows that the WLAN model maps the real-
world mobility characteristics to the abstract world of network
simulators with a very small error.

For users that do not have the possibility to capture a WLAN
trace, we explore the value space of the WLAN model parameters
and show how different parameters sets influence the mobility
of the simulated nodes.

I. INTRODUCTION

As the availability and popularity of wireless networks
increases, the research community strives to offer new systems
(network architectures, networking protocols, services, etc.)
that take into account the user’s mobility. In the early stages
of research, such mobile systems are simulated. A simulator
offers a cheap and easy platform on which mobile systems
can be studied.

To generate the trajectories of the mobile entities (users,
nodes, etc.), the simulators rely on a mobility model. The
mobility model has a major influence on the performance of
a mobile system [1], [2], [3]. Therefore, results obtained with
an unrealistic model may not reflect the true performance of
a system (be it protocol or application) in real environments.

Several mobility models have been proposed recently [1],
[4], [3]. These models are based on assumptions about the
node’s mobility (e.g., nodes move in random directions at
random speeds). The problem with these mobility models is
that they lack validation against real environments. Using a
validated mobility model, however, is important to increase the
confidence that simulations of future systems are meaningful.

This work was funded, in part, by the NCCR “Mobile Information and
Communication Systems”, a research program of the Swiss National Science
Foundation, and by a gift from Intel’s Microprocessor Research Laboratory.

One method of measuring real-life mobility characteristics
is monitoring the user mobility in a wireless network (WLAN)
setting. However, WLAN traces are not directly suited for
trace driven simulations, because they lack detailed location
information. Yet, we show that WLAN traces contain enough
location information to train a mobility model for network
simulations. We develop a mobility model framework and
show how this framework can be used to obtain a mobility
model that yields the same mobility characteristics as the
WLAN users.

Several research studies focus on the analysis of wireless
networks. We unify the results obtained in wireless network
analysis and propose a mobility model based on measured
mobility characteristics. The model captures the mobility
characteristics of users during working hours. We validate the
WLAN mobility model using cross-validation and show that
the model captures the real-life mobility characteristics with a
very small error.

II. THE MOBILITY MODEL

A mobility model is a set of rules used to generate trajecto-
ries for mobile entities. Mobility models are used in network
simulations to generate network topology changes due to node
movement. A network simulator must know the position of a
mobile node at any one time. Using the exact node position the
simulator can compute signal fading from one node to another
and take actions based on the current network topology (e.g.,
determine the set of nodes that will receive a certain packet).

A mobility model uses an environment description to define
the bounds of the simulated world. In addition to the bounds,
the environment description can include obstacles or restric-
tions within the simulated environment (e.g., walls, streets).
These restrictions directly influence the way nodes move:
simulated humans must not walk trough walls, simulated cars
must stay on the streets, etc.

At a high level of abstraction, mobility has two components:
a spatial component and a temporal component. The spatial
component describes where the mobile entity is moving, and
the temporal component describes when an entity is moving
and at which speed. Thus, when developing a mobility model,
the two components of mobility must be clearly defined.

The general set of parameters required by a mobility model
to build the simulated world contains: the simulated population
size N , the simulation time tsim, the environment description,
the spatial mobility characteristics, and the temporal mobility
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Fig. 1. The 3D model of the WLAN environment.

characteristics. The mobility model produces node trajectories
that can be fed into a network simulator.

This paper presents a mobility model that imposes on the
modeled nodes the same mobility characteristics as measured
in a real wireless LAN. We use traces recorded in a WLAN
setting to extract the spatial and temporal mobility characteris-
tics required by a mobility model. The next sections describe
our mapping of the real-world characteristics to the mobility
model.

A. WLAN environment

We model the environment in which the nodes move as a
set of cells. We call the area covered by an access point a cell.
In the most general case, cells are modeled by cubic volumes.
A widely used transmission range for wireless network simu-
lations is 250m. We measure the transmission range of several
IEEE 802.11 network adapters. The measurements show that
the 250m setting is very optimistic. In an unobstructed space,
the maximum distance for which we obtained reliable com-
munication was 175m. The cube included in a sphere with a
radius of 175m has a width of 202.07m. Therefore, we set the
default cell width to Cwidth = 200m.

Wireless LANs can spread over buildings with multiple
floors, each floor being covered by multiple cells. A simple 3D
model of a 3 floor building is depicted in Figure 1. The dotted
lines delimit the cells covering a floor. In this environment
a cell may have up to 26 neighboring cells (like the shaded
cell). Because of the relatively high number of users that roam
to a neighboring cell on another floor (64% in our WLAN
trace), we model the environment as a three dimensional
volume. However, current network simulators simply ignore
node elevation. To use the WLAN mobility model with such
a network simulator, the 3D model of a building could be
simply flattened out. The disadvantage of this method is that
transitions between floors can be modeled only at the edge of
a floor. Another way to cope with the flat environment of the
current simulators is to use flattened building models and a
transition function that maps the different stair-cases as jumps
from cells on one floor to the corresponding cells on another
floor. Although this method looks like random teleportation,
it will map the 3D model of a building to the 2D simulated
world.

We leave, however, the use of building models with two or
three dimensions, and/or the choice of a 3D network simulator
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Fig. 2. The framework of the WLAN mobility model.

up to the user of the model.

B. WLAN user behavior

The behavior of the nodes is modeled with active-inactive
cycles. The terms active and inactive refer to the networking
activity. In active state, a node is connected to the wireless
network and is associated with an access point (or cell). A
node in inactive state is not connected to the network. During
this state, the node moves from one cell to another. A seamless
movement between cells is modeled by an active-inactive-
active sequence with an inactive period of zero seconds. These
active-inactive cycles model the behavior of a real WLAN
user: open device, work, close device, move.

III. WLAN MOBILITY MODEL FRAMEWORK

The values of the mobility model parameters are obtained by
processing a WLAN trace. The exact processing of the WLAN
trace is described in Section IV. The parameter values are used
by the WLAN mobility model to generate different mobility
scenarios. For a set of parameter values and different seeds, the
mobility model generates different mobility scenarios. These
mobility scenarios can be used by a network simulator to study
the behavior of a mobile system. Our implementation of the
WLAN mobility model generates mobility scenarios for the
ns-2 simulator. The framework of the WLAN mobility model
is depicted in Figure 2.

A mobility model for network simulations can be seen as
the collaboration between two processes: a spatial process PS

and temporal process PT . The result of this collaboration is the
generation of node trajectories in a described environment. The
environment is defined by the boundaries of the physical space
in which mobile nodes can move, together with restrictions on
the way nodes are allowed to move. The environment and its
restrictions can be specified in multiple ways. For example,
the Random Waypoint [5] model defines the rectangular area
in which nodes are allowed to move and an empty set of
restrictions (i.e., nodes are allowed to move to any point
within the defined area). Another example of defining the
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load environment description
for every simulated node do

time := 0
while time < t sim do

call PS {select next destination}
call PT {generate timing}
move to next destination
time := time + current session

end while
end for

Fig. 3. The algorithm used by the WLAN mobility model to generate node
trajectories.

environment and its restrictions is given by the Manhattan [6]
mobility model. In this model, nodes are allowed to move
only on grid-like streets. At an intersection, the nodes are only
allowed to turn right or left or to proceed straight-ahead.

The first process used by the mobility model, the spatial
process (PS), defines the spatial behavior of the mobile nodes.
If we consider the simulated space as a volume of points, the
spatial process defines the subset of points to be visited by a
specific node during the life-time of a simulation. For example,
the next destination of a node can be selected using a uniform
random distribution, as implemented by the Random Waypoint
model.

The temporal process (PT ) defines the time component of
the mobility model. Part of the temporal component of a model
is, say, the time in which the node must reach the destination
point (i.e., the speed of the node).

The movement of the nodes is modeled as a series of move-
ment sessions between different points in the environment. The
next destination of a node is selected by an invocation of the
spatial process PS , and the duration of the current session
is generated by the temporal process PT . The environment
restrictions are enforced by the spatial process. After both
spatial and temporal components of the next movement are
defined, the node moves to the next destination. This iterative
session generation is repeated for the entire duration of the
simulation. The algorithm used to generate node trajectories
is summarized in Figure 3.

IV. THE MODEL PARAMETER SETS

In this section we describe what information users of the
WLAN mobility framework must record and the way she they
map this information to a network simulator. We illustrate how
the framework can be used to generate the realistic mobility
characteristics of a WLAN.

To capture the spatial and temporal characteristics required
by the mobility model, we analyze user mobility using two
mobility metrics: prevalence and persistence, as introduced by
Balazinska and Castro [7]. Prevalence and persistence char-
acterize mobility independent of the duration of the mobility
trace and the time users spend on the network. Prevalence
captures the spatial component of user movement; it is the

fraction of time a user spends at a given location. The tem-
poral behavior of the users is captured by persistence, which
measures the amount of time a user spends at a given location.
The isolation of the spatial and temporal characteristics of
the WLAN mobility helps us define the spatial and temporal
processes needed by the mobility model.

As described in Section II-A, the environment in which the
modeled nodes move is described as a set of cells within
a building. The width of a cell is Cwidth = 200m. The
dimension of the building is specified by the number of cells
that cover the three physical dimensions Cx, Cy, Cz .

A. WLAN traces

We gather mobility data from a wireless network spread
across 32 buildings. These buildings host seminar and lecture
halls as well as offices. The university campus does not include
student dormitories.

The WLAN infrastructure is built using Cisco Aironet 340
and 350 access points, configured to run in infrastructure
mode. There are 166 access points installed throughout the
campus (i.e, there are 166 cells). With the exception of seven
lecture halls that are heavily used (occupied), the access points
are placed to minimize the overlapping of the cells; these seven
lecture halls are covered by two access points each.

1) Methodology: Mobility data was gathered in two traces.
The first trace captures user mobility information over nine
weeks, from May 19th 2003 to July 9th 2003. The second
mobility trace captures mobility information over nine weeks,
from April 1st 2004 to May 31st 2004. Depending on the
WLAN infrastructure, a user can gather the mobility infor-
mation in various ways. For instance, to gather the mobility
information for the first trace, we query the wireless access
points (APs) using the SNMP protocol. The APs were polled
every minute for user association information. For the sec-
ond trace, the access points were configured to send syslog
messages to a server whenever a host was either connecting
to the wireless network, disconnecting from the network,
or roaming between access points. Using this information
gathering technique, we can record the mobility events with
high timing accuracy. The access points send three types
of events: association, disassociation, and roaming messages.
Association and disassociation messages indicate the moments
when WLAN users connect or disconnect to/from the network.
Roaming messages indicate a seamless movement of a WLAN
user from one AP to another AP. Roaming messages are
followed by an association event from the new AP and a
disassociation message from the old access point.

We consider each unique MAC address as a separate user.
In reality, it is possible that a user has multiple network cards,
or that users exchange cards among them. From our obser-
vations, students swap network cards very rarely, therefore,
the assumption that each MAC address is associated with one
user seems to be correct. To ensure user privacy, the MAC
addresses and the access point names were anonymized.

2) Analysis: We analyze the WLAN traces to validate them
against traces gathered by other researchers. The comparison
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relies on the temporal behavior of the WLAN users.
The first trace captures 3073 users that connected to the

wireless network 97575 times. 414 users connected to the
network just once; this accounts for 13.47% of the user
population. For the duration of the second trace 4762 users
connected to the wireless network 343626 times. 32 users
connected to the network just once during the nine weeks
of the trace; this accounts for 0.65% of the user population.
The most active user was seen 3859 times, visiting 25 access
points. For the time period between the two traces (almost
one year), the user population increased with 54.96%, while
the networking presence (by means of session numbers) in-
creased with 252.16%. These trends indicate an increase in
the popularity of the wireless network in this campus.

We analyze the patterns in the number of users accessing
the network simultaneously. The number of connected users
follows the weekly trends expected in a facility where users
access the network mostly during the working hours. The
number of connected users is significantly lower on Saturdays
and Sundays. Within a day, the number of users increases
starting with 6 am and diminishes slowly after 6 pm, with
a slight decrease over lunch time. The cyclic pattern of the
number of connected users confirms the observations made in
other networks used during working hours [7], [8], [9].

3) Traces used: To study the degree of similarity be-
tween multiple mobility scenarios derived from different traces
recorded in the same environment, we split both WLAN traces
into multiple traces. Since both WLAN traces account for
about two month, we split both traces in two halves. In
Section V we show that this arbitrary split does not influence
the choice of the model’s parameter space. The four traces
account for the WLAN mobility during the following periods:
mid May to mid June 2003, mid June to July 2003, April
2004, and May 2004.

B. Spatial node distribution

As described earlier in this paper, the spatial mobility
characteristics are defined by the spatial process (PS) of the
mobility model. Before the spatial process is first invoked
for a specific node, the initial place of each node must be
determined. The nodes are placed into cells using a uniform
random distribution. This is the initial place from which each
node will start its trajectory.

When the spatial process is first invoked for a node, the
spatial process must already have an idea of how much of the
simulated space the node will cover during the life-time of the
simulation. Therefore, before the simulation begins, each node
is assigned a set of cells the node will visit for the duration
of the simulation. We call this set the checkpoint set (V ).

The size of the checkpoint set is the number of cells a node
must visit |V | = nc. This number is determined by analyzing
the WLAN traces. We use a distribution global to all nodes
to determine the number of cells each node will visit (nc).
The set of visited cells A = {αi|1 ≤ i ≤ Amax} stores the
distribution of the node population over the number of visited
cells. αi is the fraction of the population visiting i cells (for
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Fig. 4. The distribution of the number of visited access points.

αi of the simulated population nc = i). Using different αi

values results in generating mobility scenarios with different
mobility characteristics. The maximum number of cells a node
can visit is Amax. The maximum value of Amax is the total
number of cells in the environment.

The distributions (A = {αi}) observed in the WLAN traces
are depicted in Figure 4. The traces are similar and we observe
that 30%-32% of the user population visited just one access
point. The distribution of the users over the number of visited
access points follows a power law distribution with only a very
low percentage of users visiting more than 20 access points.
Therefore, we set Amax = 20 and we use the distributions
depicted in Figure 4.

The checkpoint set of a node is built iteratively, starting
with the cell where the node was initially placed. The size
of the checkpoint set is equal to the number of cells a node
must visit |C| = nc. This set is built iteratively, starting with
the cell where the node was initially placed. At each iteration,
the model makes a probabilistic decision to choose the next
cell of the node. The next checkpoint can be either the same
cell, one of the neighboring cells, or a non-neighboring cell.
The probability that a node moves from a cell (x, y, z) to a
neighboring cell (x±1, y±1, z±1) is pneigh. The node moves
to a non-neighboring cell with the probability pnon neigh or
remains in the same cell with the probability psame. The
transition probabilities must sum up to 1:

psame + pneigh + pnon neigh = 1.

We use the WLAN trace to determine the transition proba-
bilities. To measure the number of movements to neighboring
or non-neighboring cells we rely on information about the
topology of the access points. This information can be ex-
tracted from the WLAN trace without the need of processing
a separate map of the WLAN. The roaming messages delivered
by the access points offer a powerful clue about access point
placement. A roaming message contains the access point from
which the node is roaming and the AP where the node is
moving. For a roaming event to occur, the two access points
must be neighbors.

In the May-June 2003 trace, for example, 30% of the
movements had a neighboring cell as destination. 34% of
the movements were to non-neighboring cells. The rest of
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Fig. 5. Prevalence distribution for different WLAN traces.

36% were consecutive sessions at the same location. Based
on this information, we set the three movement probabilities
to psame = 0.36, pneigh = 0.30 and pnon neigh = 0.34.

The spatial mobility characteristics are captured by preva-
lence. Prevalence is the fraction of time a user spends at a
given location. Each user has a non-zero prevalence value
(fraction of time spent at an access point) for each access
point the user ever visited. The prevalence distribution is the
histogram of the prevalence values, normalized by the number
of users. To ease the analysis, prevalence values are captured
in bins of 0.05.

The prevalence distribution of the four WLAN traces is
depicted in Figure 5. For prevalence values between 0.01 and
0.85, the prevalence frequency follows a power-law distribu-
tion. Prevalence values between 0.90 and 1 correspond to the
mostly stationary nodes (nodes that spend 90%–100% of their
time in the same cell). The distribution of prevalence values
shows that the fraction of time users spend in different cells
is unbalanced. Users spend most of their time in one cell and
visit other cells very shortly. This aspect is common to all four
wireless traces.

To sum up the preparations for the spatial process invo-
cations, each node was assigned the number of cells it must
visit nc and the checkpoint set V (the set of cells the node will
visit for the duration of the simulation). At each invocation,
the spatial process PS selects a cell from the checkpoint set
as the new destination of the node. The new destination is
selected from V using a uniform random number generator.
In Section V we show that although the selection of the next
cell is done by a random process, the prevalence distribution of
the modeled nodes is induced by the checkpoint set selection
(and follows the distribution depicted in Figure 5).

C. Session length distribution and movement decisions

For the duration of the simulation, the nodes follow inactive-
active cycles. During the active state, a node is associated
with a cell and it is actively participating in the network.
For the duration of the inactive state, a node is not part of
the wireless network. The timings the model generates are
alternatively active and inactive periods. The temporal process
PT can therefore be seen as a process alternatively invoking
an active timer process and an inactive timer process.
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Fig. 6. The session length distribution.
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Fig. 7. Session length probability for the May to mid June 2003 trace .

The duration of the inactive state is modeled by a uniform
random distribution. The nodes move during the inactive
period to the next cell. The duration of the inactive period is
adjusted to the travel distance, so that a node does not move
faster than a maximum speed vmax. For our model we choose
vmax = 3m/s; this speed is an approximation of the speed of
a running human.

To capture the temporal aspect of WLAN user mobility, we
analyze the persistence of network sessions; the persistence
measures the amount of time a user spends at a given location.
Figure 6 depicts the cumulative percentage of user sessions
against session duration. The four WLAN traces are pairwise
similar. The graphs capture 92% of the sessions for the 2003
trace and 97% of the sessions for the 2004 trace. The rest
of the sessions are very long sessions. However, most of the
captured sessions are very short. For the 2003 trace, 50% of
the sessions are up to 35 minutes; 66% of the sessions are
shorter than 1 hour. In the 2004 trace, 75% of the sessions
are up to 7 minutes; 92% of the sessions are shorter than one
hour.

Figures 7 and 8 depict the probability with which a session
has a certain length. The probability that a session has the
duration S is computed as the sum of all sessions of length
S divided by the total number of sessions. The probability
that a session lasts longer drops following the shape of a
power-law function with a low exponent. The traces are again
pairwise similar. For the 2003 traces, the probability that
a session lasts longer than 30 minutes follows the shape
of the function 1/x1.4. Although this function is a good
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Fig. 8. Session length probability for the April 2004 WLAN trace.

approximation for long sessions, the probability that a session
is shorter than 30 minutes is better approximated by the
function that approximates the 2004 traces: c · 1/x1.22, where
c = 1/7.

Therefore, the duration of the modeled active state (the
session time) is generated using a general Pareto distribution
with a shape parameter of 0.22 and a scale parameter of
0.15. This distribution is fitted from the WLAN trace and
approximates the probability function c · 1/x1.22 (depicted in
Figure 8). Using this distribution, short sessions appear with
higher probability than long sessions.

To sum up, the user of a model must define the spatial
and temporal processes used by the WLAN mobility model.
The parameters of the model are summarized in Appendix A.
Three of the parameters (population size, simulation time
and maximal speed) are common parameters to almost every
mobility model. Specific to the WLAN mobility model are
the distribution of visited access points and the movement
probabilities. An in-depth comparison of the parameters used
by different mobility models is presented in Section VII.

The mobility characteristics measured in our network are
close to the characteristics reported by Balazinska and Cas-
tro [7] and by Balachandran et al. [10]. Prevalence and
persistence follow power-law distributions with low exponents.
Users spend most of their time at one location, and short
periods of time at other locations. Most of the sessions are
short, and the probability that a session lasts longer decreases
rapidly.

V. WLAN MODEL VALIDATION

The validation of the WLAN mobility model can be done
at the mobility scenario level or at the network simulator
level. To validate the mobility model at the simulator level,
we should both implement (for the real-world) and simulate a
mobile system, and then compare the behavior of the simulated
system with the behavior of the real system. The drawback of
this method is that network simulators still lack accuracy in
simulating some aspects of the real world (e.g., propagation
properties of the obstacles). Therefore, we validate the WLAN
model at the mobility scenario level.

Using the parameters extracted from the WLAN traces, the
four parameter sets can be used to generate node trajectories
for modeled users. To investigate at which extent the four

parameter sets capture the same mobility characteristics as
recorded in the WLAN traces, we compare the spatial and
temporal characteristics of the generated trajectories with the
recorded mobility characteristics of the WLAN users.

A. Validation methodology

We use cross-validation to validate the prevalence and
persistence distributions. The simplest type of cross-validation,
called holdout method, splits the data set in two sets: a training
set and a test set. The model is fitted using the training set
only. The model is then used to predict the values for the
data in the testing set. A penalty function is used to quantitize
the error, which is the difference between the predicted values
and the testing set. The errors are accumulated to give the
mean test error. This error is used to assess the accuracy of
the model. One of the commonly used penalty functions for
cross-validation is the mean squared error. The predicted value
is compared with the test data and their difference is squared.
The error is cumulated and averaged over the number of data
points:

E =
1
n

n∑

i=1

(Pi − Ti)2

where Pi is the value predicted by the model and Ti is
the value from the training set. A perfect model matches the
training data in every measurement point (E = 0). Lower
values of the error are better than higher values, since they
indicate a better matching model.

B. WLAN mobility model parameter sets

To perform the cross-validation, we split each WLAN trace
in two parts. A part of the WLAN trace is used to extract
the parameters of the mobility model. These parameters are
used to generate simulated node trajectories. The second part
of the trace is then used to validate the generated spatial and
temporal distributions.

The size of the testing set varies from one measurement
(called leave-one-out method) to an arbitrary fraction of the
data set. Since the leave-one-out method is meaningless in
the context of the WLAN mobility model, we search for the
smallest reasonable testing set. We search for the smallest
user population that still maintains the mobility character-
istics of the entire population. We use binary search and
therefore iteratively halve the user population. At each step,
the nodes are selected at random from the entire trace. For
each population size we analyze the mobility characteristics
of the reduced population. The mean squared error for each
iteration is depicted in Figure 9. We observe that the error
increases dramatically after the 4th iteration. At this iteration
the population size is 191 users. We round this figure up to
200 users and use it as the size of the WLAN testing sets.

For each of the four WLAN traces, we quarantine 200
randomly selected users and set their traces aside for testing.
We use the remaining of the traces to extract the parameters
needed by the mobility model. The parameters used by the
WLAN mobility model and the way these parameters are
extracted from the traces is described in Section IV.
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Fig. 9. The mean squared error for each population halving iteration.

TABLE I

THE TRANSITION PROBABILITIES OF THE FOUR PARAMETER SETS.

Trace psame pneigh pnon neigh

May – June 2003 0.3609 0.3079 0.3312
June – July 2003 0.4128 0.3076 0.2795
April 2004 0.4539 0.4752 0.0710
May 2004 0.4692 0.4653 0.0654

After isolating 200 users for the test sets, the distribution
of the user population (in the training set) over the number of
visited access points is the same with the distributions depicted
in Figure 4. These distributions are part of the parameter
set used by the mobility model (distribution A described in
Section IV-B). To determine the checkpoint set of each node
we have to extract from the traces the probabilities with which
nodes will choose the next destination. This operation relies
on the graph of the access points placement; we extract this
graph from the WLAN trace as well. We use the AP graph to
compute the transition probabilities of the mobility model and
we summarize the values in Table I. The difference between
the traces recorded in 2003 and 2004 are given by the increase
of the user population (from 3073 in 2003 to 4762 in 2004)
and the increase in the size of the WLAN (from 143 APs in
2003 to 166 in 2004).

To fit the session length distribution of the mobility models
we use a general Pareto distribution with the shape parameter
a = 0.22 and a scale parameter b = 0.15. These values are
given by the test distributions depicted in Figures 7 and 8.

We simulate 200 nodes for 66000 seconds, which yields
roughly the same number of sessions as in the test traces.
For evaluation purposes the simulation time is determined
experimentally, such that we obtain about the same number
of sessions as recorded in the test set traces. When evaluating
a mobile system, tsim is determined by the simulated mobile
system properties and the evaluation strategy.

C. Spatial distribution evaluation

Once the values of the parameters are set, we generate node
trajectories using the WLAN mobility model. We simulate 200
mobile nodes, moving in a space containing 150 cells (Cx =
10, Cy = 5, Cz = 3).

We use the traces generated by the mobility models and

TABLE II

THE MEAN SQUARED ERROR BETWEEN THE PREVALENCE DISTRIBUTIONS

OF THE GENERATED NODES AND WLAN USERS.

Trace Mean Squared Error
May – June 2003 0.00143
June – July 2003 0.00575
April 2004 0.00033
May 2004 0.00034

compare them with the WLAN test sets. We generate the
prevalence distributions for the generated nodes and for the
test set users and apply the mean squared average as a penalty
function. The difference between the modeled nodes and the
test set users is summarized in Table II. The errors are small
and have the same magnitude with the errors used to stop the
halving iteration process when we searched for the test set
size (see Figure 9).

D. Session length distribution validation

To compare the session time distributions, we sort the
generated and test data and plot them on the same graph.
The sessions generated by the mobility model trained with
the April 2004 data are depicted in Figure 10. Ideally the
generated sessions should have the same duration as the
sessions in the test set and, therefore, be located on the
dotted median. We observe that the mobility model estimates
pretty well the sessions shorter than 120 minutes and slightly
underestimates longer sessions.

To quantitize the fitness of the session length distribution
we apply a penalty function on the generated and test set
distributions. We use the error average instead of the mean
squared errors, to express the error with the same unit as used
in the distribution (minutes). The deviation of the generated
session length from the test data is depicted in Figure 11. The
deviation of the two distributions (generated and test set) is
generally small. For the 2004 traces the mean error is less
than 3 minutes for sessions of up to 400 minutes. Since 97%
of the sessions recorded in the 2004 traces are shorter than
250 minutes (see Figure 6), we consider this error acceptable.
For the 2003 traces, the mean error increases quicker than the
error of the 2004 traces. At session length of 400 minutes, the
models generate an error of 14 and 18 minutes (for the two
2003 test sets).

To sum up, in this section we showed that the WLAN
mobility model maps the real-world mobility characteristics
to the abstract world of network simulators with a very small
error. The four parameter sets of the mobility model are able
to generate sessions for the modeled nodes with very small
error rates, both for the spatial component of the mobility, as
well as for the temporal component.

VI. THE VALUE SPACE OF THE MODEL PARAMETERS

In this section we analyze the parameter space of the
WLAN mobility model and study how different values of the
parameters influence the mobility of the modeled nodes. To
facilitate the comparison of the WLAN mobility model with
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Fig. 10. Comparison between session length generated by the WLAN
mobility model and session length from the test set.
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Fig. 11. The deviation of the generated sessions against session duration.

other mobility models presented in the literature, we use the
average speed and the average relative speed. The average
speed is computed as the average speed of all modeled nodes
at every time unit during the simulation. The average relative
speed uses the standard definition from physics.

To determine the parameter space of the WLAN mobility
model, we analyze the effect of each parameter on the mobility
of the generated scenario. The first parameter we consider is
the simulation time tsim. The mobility characteristics of the
WLAN model should be independent of the simulation time.
We observe however, that the common simulation time of 900
seconds, used in most of the mobile system studies, is too
short for the model to display the mobility characteristics of
the WLAN. Depicted in Figure 12 is the average relative speed
of the modeled nodes plotted against simulation time. The
average relative speed stabilizes at about 3000-4000 seconds
of simulation time.

Since the probabilities used to select the next destination
of a node (psame, pneigh, pnon neigh) have to sum up to 1, we
consider them together in our analysis. To assess the influence
of the three probabilities on the mobility of the simulated
nodes, we vary each of the probabilities from 0 to 1 (in
0.2 increments). We generate mobility scenarios for each of
the probability values and compute the average speed of the
modeled nodes. The average speed plotted against probability
variance is depicted in Figure 13. The measurements show that
for psame = 1 the average speed is low. For this parameter
setting, the mobility is low because the nodes choose a location
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Fig. 12. The average relative speed as a function of simulation time.
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Fig. 13. The average speed depending on the movement probabilities.

in the same cell as their new destination. The average speed
increases when pneigh = 1, because the next destination of
a node will always be a neighboring cell. The average speed
reaches its peek when pnon neigh = 1. In this case, the next
destination of a node is a non-neighboring cell.

If we consider the three probabilities as the three dimensions
of a space, the value space of all three parameters are points
on the plane that cuts the three axes at the value of 1. The
value space of the three probabilities and the abstract way they
influence node mobility is highlighted in Figure 14.

The population size (N ) together with the environment size
(Cwidth, Cx, Cy, Cz) determine the density of the simulated
nodes. Since the node trajectories are generated independently
for each node, the mobility should not depend on the node
density. To study the influence of node density on the mobility,
we generate mobility scenarios for 200 nodes moving in
increasingly smaller environments (from 140 cells to 40 cells).
This setting generates nodes densities commonly used in
network simulations: 20-80 nodes per square kilometer. As
expected, the average speed of the nodes for different node
densities did not show a clear trend. Depicted in Figure 15 is
the average speed plotted against node density, for two runs
of the WLAN mobility model with the same parameter set.
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VII. RELATED WORK

The work presented in this paper builds on previous work
done in two research areas: mobility modeling for network
simulations and wireless network analysis. We first present
other mobility models for network simulation; we briefly
describe the functionality and the parameter sets of each
model. For an in-depth study of various mobility models, we
refer the interested reader to the survey done by Camp et
al. [1].

One of the most popular mobility models for mobile net-
working research is the Random Waypoint (RW) model [5].
This model is based on the assumption that the user’s move-
ments follow a walk-and-pause cycle. The environment in
which the nodes move is described as a flat surface without
restrictions. The spatial and temporal processes are uniform
random number generators. A user chooses a random desti-
nation and moves to that destination at a randomly chosen
speed. Once at the destination, the user stops for a pause
time. The walk-pause cycle is repeated for the entire time
of the simulation. The parameters of the model are the
population size, the simulation time, the environment size, the
maximum speed, and the maximum pause time. The number
of parameters is relatively low, since the only restrictions on

the node movement are the maximum speed and the bounds
of the environment. Variants of the RW model use different
components of the physical mobility (e.g., direction and travel
time) to determine the next destination. However, the main
idea remains the same: random destinations are approached at
random speeds. Based on observation from the WLAN trace,
we show that the mobility in a WLAN setting is not modeled
properly by a completely random model. The parameters that
are not modeled properly by random distributions are session
time and next destination.

Hong et al. [4] propose the Reference Point Group Mobility
Model (RPGM). This model is based on the assumption that
real users tend to move in groups. The path of a group is
determined by the movement of a logical center. The members
of a group move randomly in the neighborhood of the logical
center. The path of a group is defined explicitly by a set
of checkpoints along with the corresponding time intervals.
Besides simulation time and population size, the parameters
of the RPGM model are a group motion vector and a random
motion vector. The random motion vector determines how
the nodes move around the center of the group. The random
motion vector is basically a uniform random number generator
that selects the next destination of a node as a random point
within a specified radius from the group center. The group
motion vector determines the path of the logical center of the
group. This vector is not defined by the mobility model itself,
leaving open the path the group will follow.

Jardosh et al. [3] propose a mobility model in which the
modeled users walk around predefined (rectangle) obstacles.
A Voronoi diagram is used to determine the path of the
mobile nodes. The Voronoi diagram is formed by the corners
of the defined obstacles; it’s a planar graph whose edges
are line segments that are equidistant from two obstacle
corners. However, users still move between randomly selected
destinations at randomly selected speeds. This model can be
seen as a variation of the Random Waypoint model, where
the environment limits the trajectories of mobile nodes to the
Voronoi graph.

The second research area our work builds on is wireless
network analysis. Along with the increased availability and
popularity of wireless network installations, WLAN analysis
was used to determine the usage and usability of WLANs.
Tang and Baker [9] traced the mobility of 74 users in a
campus network for 12 weeks and a metropolitan-area network
with 24773 radios [11]. The authors examined the network
traces for overall user behavior, network traffic and load
characteristics. The user mobility is analyzed, but no steps
were taken in the direction of modeling user mobility.

Kotz and Essien [8] examined a campus wireless network
for eleven weeks. They captured a large user population –
1706 distinct users (network cards) – connecting to 476 access
points, spread over 161 buildings. Their work builds on the
analysis done by Tang and Baker [9] and confirms previous
observations for a larger WLAN setup.

Balachandran et al. [10] analyzed user mobility and network
usage during the three days of a major conference. They
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examined the behavior of 195 users connecting to four access
points. The authors study the behavior of the wireless user
by means of traffic and mobility. Balachandran et al. do a
first step in the direction of WLAN user mobility modeling
by proposing a simple mobility model. The user arrival times
are modeled by a Markov-Modulated Poisson Process and the
session length by a Pareto distribution. Given the relatively
small WLAN setting (4 access points), no modeling of the
spatial mobility component is done. We model the temporal
as well as the spatial characteristics of the WLAN mobility.

Balazinska and Castro [7] analyzed user mobility and net-
work usage for a corporate network. The network spans over
three buildings with 177 access points. The authors captured
the behavior of 1366 distinct users, connected to the network
over a period of four weeks. In their WLAN analysis, the
authors use persistence and prevalence as metrics to model
user mobility. No attempt is made in modeling the mobility
of the WLAN users. The overall analysis of the WLAN
trace confirms the observations from previous studies: WLAN
users spend most of their time at one location, visiting other
locations briefly.

Schwab and Bunt [12] investigate the usage of a campus
wireless network of 18 access points. The authors captured
the activity of 134 unique users during a one week period (in
January 2003). They present a new trace collection method-
ology based on the LEAP authentication system. The authors
analyze where, when and how much the wireless network is
being used. Although their analysis represents an important
step towards understanding WLAN mobility, the authors do
not attempt to model the mobility.

Based on the insights provided by previous WLAN analysis,
we provide a method to extract the mobility characteristics
recorded in a WLAN trace and use them (in the form of
model parameters) to generate mobility scenarios for network
simulations.

VIII. DISCUSSION

In this section, we compare the WLAN mobility model with
other mobility models. To compare the mobility models, we
use the IMPORTANT framework [6] described by Bai et al..
IMPORTANT is a framework to systematically analyze the
impact of mobility on the performance of routing protocols.
Bai et al. define the mobility parameters of the connectivity
graph, and study their impact on the routing protocols. The
parameters that have an influence on the mobile system’s be-
havior are the average relative speed (aRS), the average degree
of spatial dependence (aSD), and the average link duration
(aLD). For the relative speed, the authors use the standard
definition from physics. The degree of spatial dependence is
the extent of similarity of the velocities of two nodes not too
far apart. The average link duration is the duration of a link
averaged over node pairs.

We compare the WLAN mobility model with the Random
Waypoint (RW) model and the Reference Point Group Model
(RPGM). Bai et al. compare the Random Waypoint model, the
RPGM model, the Manhattan model and the Freeway model.

TABLE III

COMPARISON OF THE WLAN MOBILITY MODEL WITH THE RANDOM

WAYPOINT MODEL (RW) AND THE RPGM MODEL.

Model Rel. speed Link duration Sp. dep.
[m/s] [s]

WLAN model 0.13 42.67 0.03
RW model 4 100 0.025
RPGM model 1 900 0.5

We do not consider the Manhattan and the Freeway models
because they are not suited for WLAN-like environments. For
RW and RPGM models, we use the results published by Bai et
al. [6] in their analysis. The authors model the mobility of 40
nodes over a time period of 900 seconds in an 1000x1000m
area. We compare the characteristics of the WLAN model with
the characteristics of the other models when the maximum
speed for the other models is set to 5m/s. For the WLAN
mobility model, we model the movement of 200 nodes over
10000 seconds in an environment of 1000x2500m. We model
a higher number of nodes because our evaluation showed that
200 nodes is the smallest population that still reflects the
mobility characteristics of the WLAN users. To preserve the
node density, we increase the size of the environment. We
model node movement over a longer time period because a
simulation time of 900 seconds is too short to display the
mobility characteristics of the WLAN (as shown in Figure 12).

The values of the mobility parameters for the compared
models are summarized in Table III. The data shows that the
average relative speed (aRS) of the WLAN mobility model
is one order of magnitude lower than the aRS of the other
models. The average link duration (aLD) is half of the aLD of
the Random Waypoint, and about 20 times lower than the
RPGM model. Because the nodes modeled by the RPGM
model move together and the topology within a group changes
rarely, the aLD value of the RPGM model is high. The average
spatial dependency (aSD) of the WLAN model is comparable
with the aSD of the Random Waypoint model, and is one oder
of magnitude lower that the aSD of the RPGM model. Again
this high spatial dependency for the RPGM model is explained
by the coordinated group movements.

Overall, the WLAN mobility model yields lower mobil-
ity characteristics than the mobility models used in today’s
network simulations. This is an indication that the systems
designed for WLAN-like environments and simulated with
today’s mobility models could grow in complexity to cope
with mobility rates that will not be reflected in reality.

IX. CONCLUSIONS

Simulations of wireless systems make many simplifying
assumptions to obtain a setup that is computationally tractable.
The movement of the nodes is one aspect (other important
aspects like signal propagation are beyond the scope of this
paper). This paper describes an executable mobility model that
uses parameters extracted from real-life mobility and generates
mobility scenarios based on these parameters. We define a
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parameter set that captures the mobility characteristics of a
WLAN and extracts these parameters from WLAN traces.
To allow others to compare measurements on their WLAN
with our observations, we present a framework that guides the
user from recording the wireless trace to generating mobility
scenarios using the WLAN mobility model.

We validated the WLAN mobility model by cross-
validation, using traces recorded with two different methods,
during the time frames May-July 2003 and April-May 2004 in
an university campus. The validation shows that the proposed
WLAN mobility model is successful in capturing the mobility
characteristics of the real-world movement with a very small
error.

For users that want to use the WLAN mobility model
without recording a WLAN trace in advance, we explore the
parameter value space and show how different parameter sets
influence the mobility of the modeled nodes.

The mobility model has a major influence on the behavior
of the simulated systems. Basing the parameters of the model
on real-life measurements is a challenge, but is a necessary
step towards better simulators. If we compare our results
with other mobility models we see that the commonly used
simulation time of 900 seconds is too short to display the
mobility characteristics of the kinds of WLAN settings that
we investigated. Furthermore, some models like the Random
Waypoint and RPGM models operate with nodes that are
more mobile than those that we observed in a wireless
network. While there may be environments that exhibit the
high mobility presumed by these models, for other setups these
models may guide the protocol designer to make decisions
that are not warranted by real-life situations. Understanding
the consequences and tradeoffs of mobility is a difficult topic,
but a model as presented here presents a way to characterize
environments and to compare protocols based on some aspects
of real networks. We look forward to see characterizations of
other networks with different properties (parameters) and hope
to direct protocol designers to spend their resources on those
parts of the design space that have a direct influence on end-
user performance.
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APPENDIX

A. List of model parameters
Parameter Description

tsim simulation time
N size of the simulated population

Cwidth width of a simulated cell
(Cx, Cy, Cz) number of cells for the three directions of the

environment
Amax maximum number of cells a node can visit

A = αi distribution of the number of visited cells
V (computed) set of cells a node will visit
nc (computed) the number of cells a nodes will visit

(|V | = nc)
psame probability to remain in the same cell
pneigh probability to move to a neighboring cell

pnon neigh probability to move to a non neighboring cell
vmax maximum speed of a node
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