
Chapter 7

Ordinary Differential
Equations

Matlab has several different functions for the numerical solution of ordinary dif-
ferential equations. This chapter describes the simplest of these functions and then
compares all of the functions for efficiency, accuracy, and special features. Stiffness
is a subtle concept that plays an important role in these comparisons.

7.1 Integrating Differential Equations
The initial value problem for an ordinary differential equation involves finding a
function y(t) that satisfies

dy(t)

dt
= f(t, y(t))

together with the initial condition

y(t0) = y0.

A numerical solution to this problem generates a sequence of values for the indepen-
dent variable, t0, t1, . . . , and a corresponding sequence of values for the dependent
variable, y0, y1, . . . , so that each yn approximates the solution at tn:

yn ≈ y(tn), n = 0, 1,

Modern numerical methods automatically determine the step sizes

hn = tn+1 − tn

so that the estimated error in the numerical solution is controlled by a specified
tolerance.

The fundamental theorem of calculus gives us an important connection be-
tween differential equations and integrals:

y(t+ h) = y(t) +

∫ t+h

t

f(s, y(s))ds.

September 17, 2013

1

2 Chapter 7. Ordinary Differential Equations

We cannot use numerical quadrature directly to approximate the integral because we
do not know the function y(s) and so cannot evaluate the integrand. Nevertheless,
the basic idea is to choose a sequence of values of h so that this formula allows us
to generate our numerical solution.

One special case to keep in mind is the situation where f(t, y) is a function of
t alone. The numerical solution of such simple differential equations is then just a
sequence of quadratures:

yn+1 = yn +

∫ tn+1

tn

f(s)ds.

Throughout this chapter, we frequently use “dot” notation for derivatives:

ẏ =
dy(t)

dt
and ÿ =

d2y(t)

dt2
.

7.2 Systems of Equations
Many mathematical models involve more than one unknown function, and second-
and higher order derivatives. These models can be handled by making y(t) a vector-
valued function of t. Each component is either one of the unknown functions or one
of its derivatives. The Matlab vector notation is particularly convenient here.

For example, the second-order differential equation describing a simple har-
monic oscillator

ẍ(t) = −x(t)

becomes two first-order equations. The vector y(t) has two components, x(t) and
its first derivative ẋ(t):

y(t) =

[
x(t)
ẋ(t)

]
.

Using this vector, the differential equation is

ẏ(t) =

[
ẋ(t)
−x(t)

]
=

[
y2(t)
−y1(t)

]
.

The Matlab function defining the differential equation has t and y as input
arguments and should return f(t, y) as a column vector. For the harmonic oscillator,
the function could be an M-file containing

function ydot = harmonic(t,y)

ydot = [y(2); -y(1)]

A more compact version uses matrix multiplication in an anonymous function,

f = @(t,y) [0 1; -1 0]*y

7.3. Linearized Differential Equations 3

In both cases, the variable t has to be included as the first argument, even though
it is not explicitly involved in the differential equation.

A slightly more complicated example, the two-body problem, describes the
orbit of one body under the gravitational attraction of a much heavier body. Using
Cartesian coordinates, u(t) and v(t), centered in the heavy body, the equations are

ü(t) = −u(t)/r(t)3,

v̈(t) = −v(t)/r(t)3,

where
r(t) =

√
u(t)2 + v(t)2.

The vector y(t) has four components:

y(t) =

u(t)
v(t)
u̇(t)
v̇(t)

 .

The differential equation is

ẏ(t) =

u̇(t)
v̇(t)

−u(t)/r(t)3

−v(t)/r(t)3

 .

The Matlab function could be

function ydot = twobody(t,y)

r = sqrt(y(1)^2 + y(2)^2);

ydot = [y(3); y(4); -y(1)/r^3; -y(2)/r^3];

A more compact Matlab function is

ydot = @(t,y) [y(3:4); -y(1:2)/norm(y(1:2))^3]

Despite the use of vector operations, the second M-file is not significantly more
efficient than the first.

7.3 Linearized Differential Equations
The local behavior of the solution to a differential equation near any point (tc, yc)
can be analyzed by expanding f(t, y) in a two-dimensional Taylor series:

f(t, y) = f(tc, yc) + α(t− tc) + J(y − yc) + · · · ,

where

α =
∂f

∂t
(tc, yc), J =

∂f

∂y
(tc, yc).

4 Chapter 7. Ordinary Differential Equations

The most important term in this series is usually the one involving J , the Jacobian.
For a system of differential equations with n components,

d

dt

y1(t)
y2(t)
...

yn(t)

 =

f1(t, y1, . . . , yn)
f2(t, y1, . . . , yn)

...
fn(t, y1, . . . , yn)

 ,

the Jacobian is an n-by-n matrix of partial derivatives:

J =

∂f1
∂y1

∂f1
∂y2

. . . ∂f1
∂yn

∂f2
∂y1

∂f2
∂y2

. . . ∂f2
∂yn

...
...

...
∂fn
∂y1

∂fn
∂y2

. . . ∂fn
∂yn

 .

The influence of the Jacobian on the local behavior is determined by the
solution to the linear system of ordinary differential equations

ẏ = Jy.

Let λk = µk+ iνk be the eigenvalues of J and Λ = diag(λk) the diagonal eigenvalue
matrix. If there is a linearly independent set of corresponding eigenvectors V , then

J = V ΛV −1.

The linear transformation
V x = y

transforms the local system of equations into a set of decoupled equations for the
individual components of x:

ẋk = λkxk.

The solutions are
xk(t) = eλk(t−tc)x(tc).

A single component xk(t) grows with t if µk is positive, decays if µk is negative,
and oscillates if νk is nonzero. The components of the local solution y(t) are linear
combinations of these behaviors.

For example, the harmonic oscillator

ẏ =

[
0 1
−1 0

]
y

is a linear system. The Jacobian is simply the matrix

J =

[
0 1
−1 0

]
.

The eigenvalues of J are ±i and the solutions are purely oscillatory linear combi-
nations of eit and e−it.

7.4. Single-Step Methods 5

A nonlinear example is the two-body problem

ẏ(t) =

y3(t)
y4(t)

−y1(t)/r(t)
3

−y2(t)/r(t)
3

 ,

where

r(t) =
√
y1(t)2 + y2(t)2.

In exercise 7.8, we ask you to show that the Jacobian for this system is

J =
1

r5

0 0 r5 0
0 0 0 r5

2y21 − y22 3y1y2 0 0
3y1y2 2y22 − y21 0 0

 .

It turns out that the eigenvalues of J just depend on the radius r(t):

λ =
1

r3/2

√
2
i

−
√
2

−i

 .

We see that one eigenvalue is real and positive, so the corresponding component
of the solution is growing. One eigenvalue is real and negative, corresponding to a
decaying component. Two eigenvalues are purely imaginary, corresponding to os-
cillatory components. However, the overall global behavior of this nonlinear system
is quite complicated and is not described by this local linearized analysis.

7.4 Single-Step Methods
The simplest numerical method for the solution of initial value problems is Euler’s
method. It uses a fixed step size h and generates the approximate solution by

yn+1 = yn + hf(tn, yn),

tn+1 = tn + h.

The Matlab code would use an initial point t0, a final point tfinal, an initial
value y0, a step size h, and a function f. The primary loop would simply be

t = t0;

y = y0;

while t <= tfinal

y = y + h*f(t,y)

t = t + h

end

6 Chapter 7. Ordinary Differential Equations

Note that this works perfectly well if y0 is a vector and f returns a vector.
As a quadrature rule for integrating f(t), Euler’s method corresponds to a

rectangle rule where the integrand is evaluated only once, at the left-hand endpoint
of the interval. It is exact if f(t) is constant, but not if f(t) is linear. So the error
is proportional to h. Tiny steps are needed to get even a few digits of accuracy.
But, from our point of view, the biggest defect of Euler’s method is that it does not
provide an error estimate. There is no automatic way to determine what step size
is needed to achieve a specified accuracy.

If Euler’s method is followed by a second function evaluation, we begin to
get a viable algorithm. There are two natural possibilities, corresponding to the
midpoint rule and the trapezoid rule for quadrature. The midpoint analogue uses
Euler to step halfway across the interval, evaluates the function at this intermediate
point, then uses that slope to take the actual step:

s1 = f(tn, yn),

s2 = f

(
tn +

h

2
, yn +

h

2
s1

)
,

yn+1 = yn + hs2,

tn+1 = tn + h.

The trapezoid analogue uses Euler to take a tentative step across the interval,
evaluates the function at this exploratory point, then averages the two slopes to
take the actual step:

s1 = f(tn, yn),

s2 = f(tn + h, yn + hs1),

yn+1 = yn + h
s1 + s2

2
,

tn+1 = tn + h.

If we were to use both of these methods simultaneously, they would produce
two different values for yn+1. The difference between the two values would provide
an error estimate and a basis for picking the step size. Furthermore, an extrapolated
combination of the two values would be more accurate than either one individually.

Continuing with this approach is the idea behind single-step methods for in-
tegrating ordinary differential equations. The function f(t, y) is evaluated several
times for values of t between tn and tn+1 and values of y obtained by adding linear
combinations of the values of f to yn. The actual step is taken using another linear
combination of the function values. Modern versions of single-step methods use yet
another linear combination of function values to estimate error and determine step
size.

Single-step methods are often called Runge–Kutta methods, after the two Ger-
man applied mathematicians who first wrote about them around 1905. The classical
Runge–Kutta method was widely used for hand computation before the invention
of digital computers and is still popular today. It uses four function evaluations per

7.4. Single-Step Methods 7

step:

s1 = f(tn, yn),

s2 = f

(
tn +

h

2
, yn +

h

2
s1

)
,

s3 = f

(
tn +

h

2
, yn +

h

2
s2

)
,

s4 = f(tn + h, yn + hs3),

yn+1 = yn +
h

6
(s1 + 2s2 + 2s3 + s4),

tn+1 = tn + h.

If f(t, y) does not depend on y, then classical Runge–Kutta has s2 = s3 and the
method reduces to Simpson’s quadrature rule.

Classical Runge–Kutta does not provide an error estimate. The method is
sometimes used with a step size h and again with step size h/2 to obtain an error
estimate, but we now know more efficient methods.

Several of the ordinary differential equation solvers in Matlab, including the
textbook solver we describe later in this chapter, are single-step or Runge–Kutta
solvers. A general single-step method is characterized by a number of parameters,
αi, βi,j , γi, and δi. There are k stages. Each stage computes a slope, si, by
evaluating f(t, y) for a particular value of t and a value of y obtained by taking
linear combinations of the previous slopes:

si = f

tn + αih, yn + h

i−1∑
j=1

βi,jsj

 , i = 1, . . . , k.

The proposed step is also a linear combination of the slopes:

yn+1 = yn + h
k∑

i=1

γisi.

An estimate of the error that would occur with this step is provided by yet another
linear combination of the slopes:

en+1 = h
k∑

i=1

δisi.

If this error is less than the specified tolerance, then the step is successful and yn+1

is accepted. If not, the step is a failure and yn+1 is rejected. In either case, the
error estimate is used to compute the step size h for the next step.

The parameters in these methods are determined by matching terms in Taylor
series expansions of the slopes. These series involve powers of h and products of
various partial derivatives of f(t, y). The order of a method is the exponent of the
smallest power of h that cannot be matched. It turns out that one, two, three, and

8 Chapter 7. Ordinary Differential Equations

four stages yield methods of order one, two, three, and four, respectively. But it
takes six stages to obtain a fifth-order method. The classical Runge–Kutta method
has four stages and is fourth order.

The names of the Matlab ordinary differential equation solvers are all of the
form odennxx with digits nn indicating the order of the underlying method and
a possibly empty xx indicating some special characteristic of the method. If the
error estimate is obtained by comparing formulas with different orders, the digits nn
indicate these orders. For example, ode45 obtains its error estimate by comparing
a fourth-order and a fifth-order formula.

7.5 The BS23 Algorithm
Our textbook function ode23tx is a simplified version of the function ode23 that is
included with Matlab. The algorithm is due to Bogacki and Shampine [3, 6]. The
“23” in the function names indicates that two simultaneous single-step formulas,
one of second order and one of third order, are involved.

The method has three stages, but there are four slopes si because, after the
first step, the s1 for one step is the s4 from the previous step. The essentials are

s1 = f(tn, yn),

s2 = f

(
tn +

h

2
, yn +

h

2
s1

)
,

s3 = f

(
tn +

3

4
h, yn +

3

4
hs2

)
,

tn+1 = tn + h,

yn+1 = yn +
h

9
(2s1 + 3s2 + 4s3),

s4 = f(tn+1, yn+1),

en+1 =
h

72
(−5s1 + 6s2 + 8s3 − 9s4).

The simplified pictures in Figure 7.1 show the starting situation and the three
stages. We start at a point (tn, yn) with an initial slope s1 = f(tn, yn) and an
estimate of a good step size, h. Our goal is to compute an approximate solution
yn+1 at tn+1 = tn + h that agrees with the true solution y(tn+1) to within the
specified tolerances.

The first stage uses the initial slope s1 to take an Euler step halfway across
the interval. The function is evaluated there to get the second slope, s2. This slope
is used to take an Euler step three-quarters of the way across the interval. The
function is evaluated again to get the third slope, s3. A weighted average of the
three slopes,

s =
1

9
(2s1 + 3s2 + 4s3),

is used for the final step all the way across the interval to get a tentative value for
yn+1. The function is evaluated once more to get s4. The error estimate then uses

7.5. The BS23 Algorithm 9

tn tn+h

yn
s1

tn tn+h/2

yn

s1

s2

tn tn+3*h/4

yn

s2

s3

tn tn+h

yn

ynp1

s

s4

Figure 7.1. BS23 algorithm.

all four slopes:

en+1 =
h

72
(−5s1 + 6s2 + 8s3 − 9s4).

If the error is within the specified tolerance, then the step is successful, the tentative
value of yn+1 is accepted, and s4 becomes the s1 of the next step. If the error is
too large, then the tentative yn+1 is rejected and the step must be redone. In either
case, the error estimate en+1 provides the basis for determining the step size h for
the next step.

The first input argument of ode23tx specifies the function f(t, y). This argu-
ment can be either

• a function handle, or

• an anonymous function.

The function should accept two arguments—usually, but not necessarily, t and y.
The result of evaluating the character string or the function should be a column
vector containing the values of the derivatives, dy/dt.

The second input argument of ode23tx is a vector, tspan, with two compo-
nents, t0 and tfinal. The integration is carried out over the interval

t0 ≤ t ≤ tfinal.

One of the simplifications in our textbook code is this form of tspan. Other Mat-
lab ordinary differential equation solvers allow more flexible specifications of the
integration interval.

10 Chapter 7. Ordinary Differential Equations

The third input argument is a column vector, y0, providing the initial value
of y0 = y(t0). The length of y0 tells ode23tx the number of differential equations
in the system.

A fourth input argument is optional and can take two different forms. The
simplest, and most common, form is a scalar numerical value, rtol, to be used
as the relative error tolerance. The default value for rtol is 10−3, but you can
provide a different value if you want more or less accuracy. The more complicated
possibility for this optional argument is the structure generated by the Matlab
function odeset. This function takes pairs of arguments that specify many different
options for the Matlab ordinary differential equation solvers. For ode23tx, you
can change the default values of three quantities: the relative error tolerance, the
absolute error tolerance, and the M-file that is called after each successful step. The
statement

opts = odeset(’reltol’,1.e-5, ’abstol’,1.e-8, ...

’outputfcn’,@myodeplot)

creates a structure that specifies the relative error tolerance to be 10−5, the absolute
error tolerance to be 10−8, and the output function to be myodeplot.

The output produced by ode23tx can be either graphic or numeric. With no
output arguments, the statement

ode23tx(F,tspan,y0);

produces a dynamic plot of all the components of the solution. With two output
arguments, the statement

[tout,yout] = ode23tx(F,tspan,y0);

generates a table of values of the solution.

7.6 ode23tx
Let’s examine the code for ode23tx. Here is the preamble.

function [tout,yout] = ode23tx(F,tspan,y0,arg4,varargin)

%ODE23TX Solve non-stiff differential equations.

% Textbook version of ODE23.

%

% ODE23TX(F,TSPAN,Y0) with TSPAN = [T0 TFINAL]

% integrates the system of differential equations

% dy/dt = f(t,y) from t = T0 to t = TFINAL.

% The initial condition is y(T0) = Y0.

%

% The first argument, F, is a function handle or an

% anonymous function that defines f(t,y). This function

% must have two input arguments, t and y, and must

% return a column vector of the derivatives, dy/dt.

7.6. ode23tx 11

%

% With two output arguments, [T,Y] = ODE23TX(...)

% returns a column vector T and an array Y where Y(:,k)

% is the solution at T(k).

%

% With no output arguments, ODE23TX plots the solution.

%

% ODE23TX(F,TSPAN,Y0,RTOL) uses the relative error

% tolerance RTOL instead of the default 1.e-3.

%

% ODE23TX(F,TSPAN,Y0,OPTS) where OPTS = ...

% ODESET(’reltol’,RTOL,’abstol’,ATOL,’outputfcn’,@PLTFN)

% uses relative error RTOL instead of 1.e-3,

% absolute error ATOL instead of 1.e-6, and calls PLTFN

% instead of ODEPLOT after each step.

%

% More than four input arguments, ODE23TX(F,TSPAN,Y0,

% RTOL,P1,P2,..), are passed on to F, F(T,Y,P1,P2,..).

%

% ODE23TX uses the Runge-Kutta (2,3) method of

% Bogacki and Shampine.

%

% Example

% tspan = [0 2*pi];

% y0 = [1 0]’;

% F = ’[0 1; -1 0]*y’;

% ode23tx(F,tspan,y0);

%

% See also ODE23.

Here is the code that parses the arguments and initializes the internal variables.

rtol = 1.e-3;

atol = 1.e-6;

plotfun = @odeplot;

if nargin >= 4 & isnumeric(arg4)

rtol = arg4;

elseif nargin >= 4 & isstruct(arg4)

if ~isempty(arg4.RelTol), rtol = arg4.RelTol; end

if ~isempty(arg4.AbsTol), atol = arg4.AbsTol; end

if ~isempty(arg4.OutputFcn),

plotfun = arg4.OutputFcn; end

end

t0 = tspan(1);

tfinal = tspan(2);

tdir = sign(tfinal - t0);

plotit = (nargout == 0);

12 Chapter 7. Ordinary Differential Equations

threshold = atol / rtol;

hmax = abs(0.1*(tfinal-t0));

t = t0;

y = y0(:);

% Initialize output.

if plotit

plotfun(tspan,y,’init’);

else

tout = t;

yout = y.’;

end

The computation of the initial step size is a delicate matter because it requires some
knowledge of the overall scale of the problem.

s1 = F(t, y, varargin{:});

r = norm(s1./max(abs(y),threshold),inf) + realmin;

h = tdir*0.8*rtol^(1/3)/r;

Here is the beginning of the main loop. The integration starts at t = t0 and
increments t until it reaches tfinal. It is possible to go “backward,” that is, have
tfinal < t0.

while t ~= tfinal

hmin = 16*eps*abs(t);

if abs(h) > hmax, h = tdir*hmax; end

if abs(h) < hmin, h = tdir*hmin; end

% Stretch the step if t is close to tfinal.

if 1.1*abs(h) >= abs(tfinal - t)

h = tfinal - t;

end

Here is the actual computation. The first slope s1 has already been computed. The
function defining the differential equation is evaluated three more times to obtain
three more slopes.

s2 = F(t+h/2, y+h/2*s1, varargin{:});

s3 = F(t+3*h/4, y+3*h/4*s2, varargin{:});

tnew = t + h;

ynew = y + h*(2*s1 + 3*s2 + 4*s3)/9;

s4 = F(tnew, ynew, varargin{:});

Here is the error estimate. The norm of the error vector is scaled by the ratio of the
absolute tolerance to the relative tolerance. The use of the smallest floating-point
number, realmin, prevents err from being exactly zero.

7.7. Examples 13

e = h*(-5*s1 + 6*s2 + 8*s3 - 9*s4)/72;

err = norm(e./max(max(abs(y),abs(ynew)),threshold),

... inf) + realmin;

Here is the test to see if the step is successful. If it is, the result is plotted or
appended to the output vector. If it is not, the result is simply forgotten.

if err <= rtol

t = tnew;

y = ynew;

if plotit

if plotfun(t,y,’’);

break

end

else

tout(end+1,1) = t;

yout(end+1,:) = y.’;

end

s1 = s4; % Reuse final function value to start new step.

end

The error estimate is used to compute a new step size. The ratio rtol/err is
greater than one if the current step is successful, or less than one if the current step
fails. A cube root is involved because the BS23 is a third-order method. This means
that changing tolerances by a factor of eight will change the typical step size, and
hence the total number of steps, by a factor of two. The factors 0.8 and 5 prevent
excessive changes in step size.

% Compute a new step size.

h = h*min(5,0.8*(rtol/err)^(1/3));

Here is the only place where a singularity would be detected.

if abs(h) <= hmin

warning(sprintf(...

’Step size %e too small at t = %e.\n’,h,t));

t = tfinal;

end

end

That ends the main loop. The plot function might need to finish its work.

if plotit

plotfun([],[],’done’);

end

7.7 Examples
Please sit down in front of a computer running Matlab. Make sure ode23tx is in
your current directory or on your Matlab path. Start your session by entering

14 Chapter 7. Ordinary Differential Equations

F = @(t,y) 0 ; ode23tx(F,[0 10],1)

This should produce a plot of the solution of the initial value problem

dy

dt
= 0,

y(0) = 1,

0 ≤ t ≤ 10.

The solution, of course, is a constant function, y(t) = 1.
Now you can press the up arrow key, use the left arrow key to space over to

the 0, and change it to something more interesting. Here are some examples. At
first, we’ll change just the 0 and leave the [0 10] and 1 alone.

F Exact solution

0 1

t 1+t^2/2

y exp(t)

-y exp(-t)

1/(1-3*t) 1-log(1-3*t)/3 (Singular)

2*y-y^2 2/(1+exp(-2*t))

Make up some of your own examples. Change the initial condition. Change the
accuracy by including 1.e-6 as the fourth argument.

Now let’s try the harmonic oscillator, a second-order differential equation writ-
ten as a pair of two first-order equations. First, create a function to specify the
equations. Use either

F = @(t,y) [y(2); -y(1)];

or

F = @(t,y) [0 1; -1 0]*y;

Then the statement

ode23tx(F,[0 2*pi],[1; 0])

plots two functions of t that you should recognize. If you want to produce a phase
plane plot, you have two choices. One possibility is to capture the output and plot
it after the computation is complete.

[t,y] = ode23tx(F,[0 2*pi],[1; 0])

plot(y(:,1),y(:,2),’-o’)

axis([-1.2 1.2 -1.2 1.2])

axis square

The more interesting possibility is to use a function that plots the solution
while it is being computed. Matlab provides such a function in odephas2.m. It is
accessed by using odeset to create an options structure.

7.7. Examples 15

opts = odeset(’reltol’,1.e-4,’abstol’,1.e-6, ...

’outputfcn’,@odephas2);

If you want to provide your own plotting function, it should be something like

function flag = phaseplot(t,y,job)

persistent p

if isequal(job,’init’)

p = plot(y(1),y(2),’o’,’erasemode’,’none’);

axis([-1.2 1.2 -1.2 1.2])

axis square

flag = 0;

elseif isequal(job,’’)

set(p,’xdata’,y(1),’ydata’,y(2))

pause(0.2)

flag = 0;

end

This is with

opts = odeset(’reltol’,1.e-4,’abstol’,1.e-6, ...

’outputfcn’,@phaseplot);

Once you have decided on a plotting function and created an options structure, you
can compute and simultaneously plot the solution with

ode23tx(F,[0 2*pi],[1; 0],opts)

Try this with other values of the tolerances.
Issue the command type twobody to see if there is an M-file twobody.m on

your path. If not, find the two or three lines of code earlier in this chapter and
create your own M-file. Then try

ode23tx(@twobody,[0 2*pi],[1; 0; 0; 1]);

The code, and the length of the initial condition, indicate that the solution has four
components. But the plot shows only three. Why? Hint: Find the zoom button on
the figure window toolbar and zoom in on the blue curve.

You can vary the initial condition of the two-body problem by changing the
fourth component.

y0 = [1; 0; 0; change_this];

ode23tx(@twobody,[0 2*pi],y0);

Graph the orbit, and the heavy body at the origin, with

y0 = [1; 0; 0; change_this];

[t,y] = ode23tx(@twobody,[0 2*pi],y0);

plot(y(:,1),y(:,2),’-’,0,0,’ro’)

axis equal

You might also want to use something other than 2π for tfinal.

16 Chapter 7. Ordinary Differential Equations

7.8 Lorenz Attractor
One of the world’s most extensively studied ordinary differential equations is the
Lorenz chaotic attractor. It was first described in 1963 by Edward Lorenz, an
M.I.T. mathematician and meteorologist who was interested in fluid flow models of
the earth’s atmosphere. An excellent reference is a book by Colin Sparrow [8].

We have chosen to express the Lorenz equations in a somewhat unusual way
involving a matrix-vector product:

ẏ = Ay.

The vector y has three components that are functions of t:

y(t) =

 y1(t)
y2(t)
y3(t)

 .

Despite the way we have written it, this is not a linear system of differential equa-
tions. Seven of the nine elements in the 3-by-3 matrix A are constant, but the other
two depend on y2(t):

A =

 −β 0 y2
0 −σ σ

−y2 ρ −1

 .

The first component of the solution, y1(t), is related to the convection in the atmo-
spheric flow, while the other two components are related to horizontal and vertical
temperature variation. The parameter σ is the Prandtl number, ρ is the normal-
ized Rayleigh number, and β depends on the geometry of the domain. The most
popular values of the parameters, σ = 10, ρ = 28, and β = 8/3, are outside the
ranges associated with the earth’s atmosphere.

The deceptively simple nonlinearity introduced by the presence of y2 in the
system matrix A changes everything. There are no random aspects to these equa-
tions, so the solutions y(t) are completely determined by the parameters and the
initial conditions, but their behavior is very difficult to predict. For some values of
the parameters, the orbit of y(t) in three-dimensional space is known as a strange
attractor. It is bounded, but not periodic and not convergent. It never intersects
itself. It ranges chaotically back and forth around two different points, or attractors.
For other values of the parameters, the solution might converge to a fixed point,
diverge to infinity, or oscillate periodically. See Figures 7.2 and 7.3.

Let’s think of η = y2 as a free parameter, restrict ρ to be greater than one,
and study the matrix

A =

 −β 0 η
0 −σ σ
−η ρ −1

 .

It turns out that A is singular if and only if

η = ±
√
β(ρ− 1).

7.8. Lorenz Attractor 17

0 5 10 15 20 25 30

y3

y2

y1

t

Figure 7.2. Three components of Lorenz attractor.

−25 −20 −15 −10 −5 0 5 10 15 20 25
−25

−20

−15

−10

−5

0

5

10

15

20

25

y2

y3

Figure 7.3. Phase plane plot of Lorenz attractor.

The corresponding null vector, normalized so that its second component is equal to
η, is ρ− 1

η
η

 .

With two different signs for η, this defines two points in three-dimensional space.

18 Chapter 7. Ordinary Differential Equations

These points are fixed points for the differential equation. If

y(t0) =

 ρ− 1
η
η

 ,

then, for all t,

ẏ(t) =

 0
0
0

 ,

and so y(t) never changes. However, these points are unstable fixed points. If y(t)
does not start at one of these points, it will never reach either of them; if it tries to
approach either point, it will be repulsed.

We have provided an M-file, lorenzgui.m, that facilitates experiments with
the Lorenz equations. Two of the parameters, β = 8/3 and σ = 10, are fixed. A
uicontrol offers a choice among several different values of the third parameter, ρ.
A simplified version of the program for ρ = 28 would begin with

rho = 28;

sigma = 10;

beta = 8/3;

eta = sqrt(beta*(rho-1));

A = [-beta 0 eta

0 -sigma sigma

-eta rho -1];

The initial condition is taken to be near one of the attractors.

yc = [rho-1; eta; eta];

y0 = yc + [0; 0; 3];

The time span is infinite, so the integration will have to be stopped by another
uicontrol.

tspan = [0 Inf];

opts = odeset(’reltol’,1.e-6,’outputfcn’,@lorenzplot);

ode45(@lorenzeqn, tspan, y0, opts, A);

The matrix A is passed as an extra parameter to the integrator, which sends it on to
lorenzeqn, the subfunction defining the differential equation. The extra parameter
machinery included in the function functions allows lorenzeqn to be written in a
particularly compact manner.

function ydot = lorenzeqn(t,y,A)

A(1,3) = y(2);

A(3,1) = -y(2);

ydot = A*y;

Most of the complexity of lorenzgui is contained in the plotting subfunction,
lorenzplot. It not only manages the user interface controls, it must also anticipate
the possible range of the solution in order to provide appropriate axis scaling.

7.9. Stiffness 19

7.9 Stiffness
Stiffness is a subtle, difficult, and important concept in the numerical solution of
ordinary differential equations. It depends on the differential equation, the initial
conditions, and the numerical method. Dictionary definitions of the word “stiff”
involve terms like “not easily bent,” “rigid,” and “stubborn.” We are concerned
with a computational version of these properties.

A problem is stiff if the solution being sought varies slowly, but there are
nearby solutions that vary rapidly, so the numerical method must take
small steps to obtain satisfactory results.

Stiffness is an efficiency issue. If we weren’t concerned with how much time a
computation takes, we wouldn’t be concerned about stiffness. Nonstiff methods
can solve stiff problems; they just take a long time to do it.

A model of flame propagation provides an example. We learned about this
example from Larry Shampine, one of the authors of the Matlab ordinary differ-
ential equation suite. If you light a match, the ball of flame grows rapidly until it
reaches a critical size. Then it remains at that size because the amount of oxygen
being consumed by the combustion in the interior of the ball balances the amount
available through the surface. The simple model is

ẏ = y2 − y3,

y(0) = δ,

0 ≤ t ≤ 2/δ.

The scalar variable y(t) represents the radius of the ball. The y2 and y3 terms come
from the surface area and the volume. The critical parameter is the initial radius,
δ, which is “small.” We seek the solution over a length of time that is inversely
proportional to δ.

At this point, we suggest that you start up Matlab and actually run our
examples. It is worthwhile to see them in action. We will start with ode45, the
workhorse of the Matlab ordinary differential equation suite. If δ is not very small,
the problem is not very stiff. Try δ = 0.01 and request a relative error of 10−4.

delta = 0.01;

F = @(t,y) y^2 - y^3;

opts = odeset(’RelTol’,1.e-4);

ode45(F,[0 2/delta],delta,opts);

With no output arguments, ode45 automatically plots the solution as it is computed.
You should get a plot of a solution that starts at y = 0.01, grows at a modestly
increasing rate until t approaches 100, which is 1/δ, then grows rapidly until it
reaches a value close to 1, where it remains.

Now let’s see stiffness in action. Decrease δ by three orders of magnitude. (If
you run only one example, run this one.)

delta = 0.00001;

ode45(F,[0 2/delta],delta,opts);

20 Chapter 7. Ordinary Differential Equations

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

0.2

0.4

0.6

0.8

1

ode45

0.98 1 1.02 1.04 1.06 1.08 1.1 1.12

x 10
4

0.9999

1

1.0001

Figure 7.4. Stiff behavior of ode45.

You should see something like Figure 7.4, although it will take a long time
to complete the plot. If you get tired of watching the agonizing progress, click
the stop button in the lower left corner of the window. Turn on zoom, and use
the mouse to explore the solution near where it first approaches steady state. You
should see something like the detail in Figure 7.4. Notice that ode45 is doing its
job. It’s keeping the solution within 10−4 of its nearly constant steady state value.
But it certainly has to work hard to do it. If you want an even more dramatic
demonstration of stiffness, decrease the tolerance to 10−5 or 10−6.

This problem is not stiff initially. It only becomes stiff as the solution ap-
proaches steady state. This is because the steady state solution is so “rigid.” Any
solution near y(t) = 1 increases or decreases rapidly toward that solution. (We
should point out that “rapidly” here is with respect to an unusually long time
scale.)

What can be done about stiff problems? You don’t want to change the dif-
ferential equation or the initial conditions, so you have to change the numerical
method. Methods intended to solve stiff problems efficiently do more work per
step, but can take much bigger steps. Stiff methods are implicit. At each step they
use Matlab matrix operations to solve a system of simultaneous linear equations
that helps predict the evolution of the solution. For our flame example, the matrix
is only 1 by 1, but even here, stiff methods do more work per step than nonstiff
methods.

7.9. Stiffness 21

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

0.2

0.4

0.6

0.8

1

ode23s

0.98 1 1.02 1.04 1.06 1.08 1.1 1.12

x 10
4

0.9999

1

1.0001

Figure 7.5. Stiff behavior of ode23s.

Let’s compute the solution to our flame example again, this time with one of
the ordinary differential equation solvers in Matlab whose name ends in “s” for
“stiff.”

delta = 0.00001;

ode23s(F,[0 2/delta],delta,opts);

Figure 7.5 shows the computed solution and the zoom detail. You can see that
ode23s takes many fewer steps than ode45. This is actually an easy problem for a
stiff solver. In fact, ode23s takes only 99 steps and uses just 412 function evalua-
tions, while ode45 takes 3040 steps and uses 20179 function evaluations. Stiffness
even affects graphical output. The print files for the ode45 figures are much larger
than those for the ode23s figures.

Imagine you are returning from a hike in the mountains. You are in a narrow
canyon with steep slopes on either side. An explicit algorithm would sample the
local gradient to find the descent direction. But following the gradient on either side
of the trail will send you bouncing back and forth across the canyon, as with ode45.
You will eventually get home, but it will be long after dark before you arrive. An
implicit algorithm would have you keep your eyes on the trail and anticipate where
each step is taking you. It is well worth the extra concentration.

This flame problem is also interesting because it involves the Lambert W
function, W (z). The differential equation is separable. Integrating once gives an

22 Chapter 7. Ordinary Differential Equations

0 20 40 60 80 100 120 140 160 180 200

0

0.2

0.4

0.6

0.8

1

t

1/(lambertw(99 exp(99−t))+1)

Figure 7.6. Exact solution for the flame example.

implicit equation for y as a function of t:

1

y
+ log

(
1

y
− 1

)
=

1

δ
+ log

(
1

δ
− 1

)
− t.

This equation can be solved for y. The exact analytical solution to the flame model
turns out to be

y(t) =
1

W (aea−t) + 1
,

where a = 1/δ− 1. The function W (z), the Lambert W function, is the solution to

W (z)eW (z) = z.

With Matlab and the Symbolic Math Toolbox, the statements

y = dsolve(’Dy = y^2 - y^3’,’y(0) = 1/100’);

y = simplify(y);

pretty(y)

ezplot(y,0,200)

produce

1

lambertw(0, 99 exp(99 - t)) + 1

and the plot of the exact solution shown in Figure 7.6. If the initial value 1/100 is
decreased and the time span 0 ≤ t ≤ 200 increased, the transition region becomes
narrower.

The Lambert W function is named after J. H. Lambert (1728–1777). Lambert
was a colleague of Euler and Lagrange’s at the Berlin Academy of Sciences and
is best known for his laws of illumination and his proof that π is irrational. The
function was “rediscovered” a few years ago by Corless, Gonnet, Hare, and Jeffrey,
working on Maple, and by Don Knuth [4].

7.10. Events 23

7.10 Events
So far, we have been assuming that the tspan interval, t0 ≤ t ≤ tfinal, is a given
part of the problem specification, or we have used an infinite interval and a GUI
button to terminate the computation. In many situations, the determination of
tfinal is an important aspect of the problem.

One example is a body falling under the force of gravity and encountering
air resistance. When does it hit the ground? Another example is the two-body
problem, the orbit of one body under the gravitational attraction of a much heavier
body. What is the period of the orbit? The events feature of the Matlab ordinary
differential equation solvers provides answers to such questions.

Events detection in ordinary differential equations involves two functions,
f(t, y) and g(t, y), and an initial condition, (t0, y0). The problem is to find a function
y(t) and a final value t∗ so that

ẏ = f(t, y),

y(t0) = y0,

and
g(t∗, y(t∗)) = 0.

A simple model for the falling body is

ÿ = −1 + ẏ2,

with initial conditions y(0) = 1, ẏ(0) = 0. The question is, for what t does y(t) = 0?
The code for the function f(t, y) is

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

0

0.2

0.4

0.6

0.8

1

t

y

Falling body

tfinal = 1.6585

Figure 7.7. Event handling for falling object.

24 Chapter 7. Ordinary Differential Equations

function ydot = f(t,y)

ydot = [y(2); -1+y(2)^2];

With the differential equation written as a first-order system, y becomes a vector
with two components and so g(t, y) = y1. The code for g(t, y) is

function [gstop,isterminal,direction] = g(t,y)

gstop = y(1);

isterminal = 1;

direction = [];

The first output, gstop, is the value that we want to make zero. Setting the second
output, isterminal, to one indicates that the ordinary differential equation solver
should terminate when gstop is zero. Setting the third output, direction, to
the empty matrix indicates that the zero can be approached from either direction.
With these two functions available, the following statements compute and plot the
trajectory shown in Figure 7.7.

opts = odeset(’events’,@g);

y0 = [1; 0];

[t,y,tfinal] = ode45(@f,[0 Inf],y0,opts);

tfinal

plot(t,y(:,1),’-’,[0 tfinal],[1 0],’o’)

axis([-.1 tfinal+.1 -.1 1.1])

xlabel(’t’)

ylabel(’y’)

title(’Falling body’)

text(1.2, 0, [’tfinal = ’ num2str(tfinal)])

The terminating value of t is found to be tfinal = 1.6585.
The three sections of code for this example can be saved in three separate

M-files, with two functions and one script, or they can all be saved in one function
M-file. In the latter case, f and g become subfunctions and have to appear after
the main body of code.

Events detection is particularly useful in problems involving periodic phenom-
ena. The two-body problem provides a good example. Here is the first portion of a
function M-file, orbit.m. The input parameter is reltol, the desired local relative
tolerance.

function orbit(reltol)

y0 = [1; 0; 0; 0.3];

opts = odeset(’events’,@(t,y)gstop(t,y,y0),’reltol’,reltol);

[t,y,te,ye] = ode45(@(t,y)twobody(t,y,y0),[0 2*pi],y0,opts);

tfinal = te(end)

yfinal = ye(end,1:2)

plot(y(:,1),y(:,2),’-’,0,0,’ro’)

axis([-.1 1.05 -.35 .35])

The function ode45 is used to compute the orbit. The first input argument is
a function handle, @twobody, that references the function defining the differential

7.10. Events 25

equations. The second argument to ode45 is any overestimate of the time interval
required to complete one period. The third input argument is y0, a 4-vector that
provides the initial position and velocity. The light body starts at (1, 0), which
is a point with a distance 1 from the heavy body, and has initial velocity (0, 0.3),
which is perpendicular to the initial position vector. The fourth input argument is
an options structure created by odeset that overrides the default value for reltol
and that specifies a function gstop that defines the events we want to locate. The
last argument is y0, an “extra” argument that ode45 passes on to both twobody

and gstop.
The code for twobody has to be modified to accept a third argument, even

though it is not used.

function ydot = twobody(t,y,y0)

r = sqrt(y(1)^2 + y(2)^2);

ydot = [y(3); y(4); -y(1)/r^3; -y(2)/r^3];

The ordinary differential equation solver calls the gstop function at every step
during the integration. This function tells the solver whether or not it is time to
stop.

function [val,isterm,dir] = gstop(t,y,y0)

d = y(1:2)-y0(1:2);

v = y(3:4);

val = d’*v;

isterm = 1;

dir = 1;

The 2-vector d is the difference between the current position and the starting point.
The 2-vector v is the velocity at the current position. The quantity val is the inner
product between these two vectors. Mathematically, the stopping function is

g(t, y) = ḋ(t)T d(t),

where
d = (y1(t)− y1(0), y2(t)− y2(0))

T .

Points where g(t, y(t)) = 0 are the local minimum or maximum of d(t)T d(t). By
setting dir = 1, we indicate that the zeros of g(t, y) must be approached from
below, so they correspond to minima. By setting isterm = 1, we indicate that
computation of the solution should be terminated at the first minimum. If the
orbit is truly periodic, then any minima of d occur when the body returns to its
starting point.

Calling orbit with a very loose tolerance

orbit(2.0e-3)

produces

tfinal =

26 Chapter 7. Ordinary Differential Equations

2.350871977619482

yfinal =

0.981076599011125 -0.000125191385574

and plots Figure 7.8.

0 0.2 0.4 0.6 0.8 1

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Figure 7.8. Periodic orbit computed with loose tolerance.

You can see from both the value of yfinal and the graph that the orbit does
not quite return to the starting point. We need to request more accuracy.

orbit(1.0e-6)

produces

tfinal =

2.380258461717980

yfinal =

0.999985939055197 0.000000000322391

Now the value of yfinal is close enough to y0 that the graph of the orbit is effec-
tively closed.

7.11 Multistep Methods
A single-step numerical method has a short memory. The only information passed
from one step to the next is an estimate of the proper step size and, perhaps, the
value of f(tn, yn) at the point the two steps have in common.

As the name implies, a multistep method has a longer memory. After an initial
start-up phase, a pth-order multistep method saves up to perhaps a dozen values of

7.12. The MATLAB ODE Solvers 27

the solution, yn−p+1, yn−p+2, . . . , yn−1, yn, and uses them all to compute yn+1. In
fact, these methods can vary both the order, p, and the step size, h.

Multistep methods tend to be more efficient than single-step methods for
problems with smooth solutions and high accuracy requirements. For example, the
orbits of planets and deep space probes are computed with multistep methods.

7.12 The MATLAB ODE Solvers
This section is derived from the Algorithms portion of the Matlab Reference Man-
ual page for the ordinary differential equation solvers.

ode45 is based on an explicit Runge–Kutta (4, 5) formula, the Dormand–
Prince pair. It is a one-step solver. In computing y(tn+1), it needs only the solution
at the immediately preceding time point, y(tn). In general, ode45 is the first func-
tion to try for most problems.

ode23 is an implementation of an explicit Runge–Kutta (2, 3) pair of Bogacki
and Shampine’s. It is often more efficient than ode45 at crude tolerances and in
the presence of moderate stiffness. Like ode45, ode23 is a one-step solver.

ode113 uses a variable-order Adams–Bashforth–Moulton predictor-corrector
algorithm. It is often more efficient than ode45 at stringent tolerances and if the
ordinary differential equation file function is particularly expensive to evaluate.
ode113 is a multistep solver—it normally needs the solutions at several preceding
time points to compute the current solution.

The above algorithms are intended to solve nonstiff systems. If they appear
to be unduly slow, try using one of the stiff solvers below.

ode15s is a variable-order solver based on the numerical differentiation formu-
las (NDFs). Optionally, it uses the backward differentiation formulas (BDFs, also
known as Gear’s method), which are usually less efficient. Like ode113, ode15s is
a multistep solver. Try ode15s if ode45 fails or is very inefficient and you suspect
that the problem is stiff, or if you are solving a differential-algebraic problem.

ode23s is based on a modified Rosenbrock formula of order two. Because it is
a one-step solver, it is often more efficient than ode15s at crude tolerances. It can
solve some kinds of stiff problems for which ode15s is not effective.

ode23t is an implementation of the trapezoidal rule using a “free” interpolant.
Use this solver if the problem is only moderately stiff and you need a solution
without numerical damping. ode23t can solve differential-algebraic equations.

ode23tb is an implementation of TR-BDF2, an implicit Runge–Kutta formula
with a first stage that is a trapezoidal rule step and a second stage that is a BDF
of order two. By construction, the same iteration matrix is used in evaluating
both stages. Like ode23s, this solver is often more efficient than ode15s at crude
tolerances.

Here is a summary table from the Matlab Reference Manual. For each
function, it lists the appropriate problem type, the typical accuracy of the method,
and the recommended area of usage.

• ode45. Nonstiff problems, medium accuracy. Use most of the time. This
should be the first solver you try.

28 Chapter 7. Ordinary Differential Equations

• ode23. Nonstiff problems, low accuracy. Use for large error tolerances or
moderately stiff problems.

• ode113. Nonstiff problems, low to high accuracy. Use for stringent error tol-
erances or computationally intensive ordinary differential equation functions.

• ode15s. Stiff problems, low to medium accuracy. Use if ode45 is slow (stiff
systems) or there is a mass matrix.

• ode23s. Stiff problems, low accuracy. Use for large error tolerances with stiff
systems or with a constant mass matrix.

• ode23t. Moderately stiff problems, low accuracy. Use for moderately stiff
problems where you need a solution without numerical damping.

• ode23tb. Stiff problems, low accuracy. Use for large error tolerances with
stiff systems or if there is a mass matrix.

7.13 Errors
Errors enter the numerical solution of the initial value problem from two sources:

• discretization error,

• roundoff error.

Discretization error is a property of the differential equation and the numerical
method. If all the arithmetic could be performed with infinite precision, discretiza-
tion error would be the only error present. Roundoff error is a property of the
computer hardware and the program. It is usually far less important than the
discretization error, except when we try to achieve very high accuracy.

Discretization error can be assessed from two points of view, local and global.
Local discretization error is the error that would be made in one step if the previous
values were exact and if there were no roundoff error. Let un(t) be the solution of
the differential equation determined not by the original initial condition at t0 but
by the value of the computed solution at tn. That is, un(t) is the function of t
defined by

u̇n = f(t, un),

un(tn) = yn.

The local discretization error dn is the difference between this theoretical solution
and the computed solution (ignoring roundoff) determined by the same data at tn:

dn = yn+1 − un(tn+1).

Global discretization error is the difference between the computed solution,
still ignoring roundoff, and the true solution determined by the original initial con-
dition at t0, that is,

en = yn − y(tn).

7.13. Errors 29

The distinction between local and global discretization error can be easily seen
in the special case where f(t, y) does not depend on y. In this case, the solution

is simply an integral, y(t) =
∫ t

t0
f(τ)dτ . Euler’s method becomes a scheme for

numerical quadrature that might be called the “composite lazy man’s rectangle
rule.” It uses function values at the left-hand ends of the subintervals rather than
at the midpoints: ∫ tN

t0

f(τ)dτ ≈
N−1∑
0

hnf(tn).

The local discretization error is the error in one subinterval:

dn = hnf(tn)−
∫ tn+1

tn

f(τ)dτ,

and the global discretization error is the total error:

eN =
N−1∑
n=0

hnf(tn)−
∫ tN

t0

f(τ)dτ.

In this special case, each of the subintegrals is independent of the others (the sum
could be evaluated in any order), so the global error is the sum of the local errors:

eN =
N−1∑
n=0

dn.

In the case of a genuine differential equation where f(t, y) depends on y, the
error in any one interval depends on the solutions computed for earlier intervals.
Consequently, the relationship between the global error and the local errors is related
to the stability of the differential equation. For a single scalar equation, if the partial
derivative ∂f/∂y is positive, then the solution y(t) grows as t increases and the
global error will be greater than the sum of the local errors. If ∂f/∂y is negative,
then the global error will be less than the sum of the local errors. If ∂f/∂y changes
sign, or if we have a nonlinear system of equations where ∂f/∂y is a varying matrix,
the relationship between eN and the sum of the dn can be quite complicated and
unpredictable.

Think of the local discretization error as the deposits made to a bank account
and the global error as the overall balance in the account. The partial derivative
∂f/∂y acts like an interest rate. If it is positive, the overall balance is greater than
the sum of the deposits. If it is negative, the final error balance might well be less
than the sum of the errors deposited at each step.

Our code ode23tx, like all the production codes in Matlab, only attempts
to control the local discretization error. Solvers that try to control estimates of the
global discretization error are much more complicated, are expensive to run, and
are not very successful.

A fundamental concept in assessing the accuracy of a numerical method is its
order. The order is defined in terms of the local discretization error obtained if the

30 Chapter 7. Ordinary Differential Equations

method is applied to problems with smooth solutions. A method is said to be of
order p if there is a number C so that

|dn| ≤ Chp+1
n .

The number C might depend on the partial derivatives of the function defining the
differential equation and on the length of the interval over which the solution is
sought, but it should be independent of the step number n and the step size hn.
The above inequality can be abbreviated using “big-oh notation”:

dn = O(hp+1
n).

For example, consider Euler’s method:

yn+1 = yn + hnf(tn, yn).

Assume the local solution un(t) has a continuous second derivative. Then, using
Taylor series near the point tn,

un(t) = un(tn) + (t− tn)u
′
n(tn) +O((t− tn)

2).

Using the differential equation and the initial condition defining un(t),

un(tn+1) = yn + hnf(tn, yn) +O(h2
n).

Consequently,
dn = yn+1 − un(tn+1) = O(h2

n).

We conclude that p = 1, so Euler’s method is first order. The Matlab naming
conventions for ordinary differential equation solvers would imply that a function
using Euler’s method by itself, with fixed step size and no error estimate, should be
called ode1.

Now consider the global discretization error at a fixed point t = tf . As ac-
curacy requirements are increased, the step sizes hn will decrease, and the total
number of steps N required to reach tf will increase. Roughly, we shall have

N =
tf − t0

h
,

where h is the average step size. Moreover, the global error eN can be expressed as
a sum of N local errors coupled by factors describing the stability of the equations.
These factors do not depend in a strong way on the step sizes, and so we can say
roughly that if the local error is O(hp+1), then the global error will be N ·O(hp+1) =
O(hp). This is why p+ 1 was used instead of p as the exponent in the definition of
order.

For Euler’s method, p=1, so decreasing the average step size by a factor of
2 decreases the average local error by a factor of roughly 2p+1=4, but about twice
as many steps are required to reach tf , so the global error is decreased by a factor
of only 2p=2. With higher order methods, the global error for smooth solutions is
reduced by a much larger factor.

7.13. Errors 31

It should be pointed out that in discussing numerical methods for ordinary
differential equations, the word “order” can have any of several different meanings.
The order of a differential equation is the index of the highest derivative appearing.
For example, d2y/dt2 = −y is a second-order differential equation. The order of
a system of equations sometimes refers to the number of equations in the system.
For example, ẏ = 2y − yz, ż = −z + yz is a second-order system. The order of a
numerical method is what we have been discussing here. It is the power of the step
size that appears in the expression for the global error.

One way of checking the order of a numerical method is to examine its behavior
if f(t, y) is a polynomial in t and does not depend on y. If the method is exact for
tp−1, but not for tp, then its order is not more than p. (The order could be less
than p if the method’s behavior for general functions does not match its behavior
for polynomials.) Euler’s method is exact if f(t, y) is constant, but not if f(t, y) = t,
so its order is not greater than one.

With modern computers, using IEEE floating-point double-precision arith-
metic, the roundoff error in the computed solution only begins to become important
if very high accuracies are requested or the integration is carried out over a long
interval. Suppose we integrate over an interval of length L = tf − t0. If the roundoff
error in one step is of size ϵ, then the worst the roundoff error can be after N steps
of size h = L

N is something like

Nϵ =
Lϵ

h
.

For a method with global discretization error of size Chp, the total error is something
like

Chp +
Lϵ

h
.

For the roundoff error to be comparable with the discretization error, we need

h ≈
(
Lϵ

C

) 1
p+1

.

The number of steps taken with this step size is roughly

N ≈ L

(
C

Lϵ

) 1
p+1

.

Here are the numbers of steps for various orders p if L = 20: C = 100, and
ϵ = 2−52:

p N
1 4.5 · 1017
3 5,647,721
5 37,285
10 864

These values of p are the orders for Euler’s method and for the Matlab
functions ode23 and ode45, and a typical choice for the order in the variable-
order method used by ode113. We see that the low-order methods have to take an

32 Chapter 7. Ordinary Differential Equations

impractically large number of steps before this worst-case roundoff error estimate
becomes significant. Even more steps are required if we assume the roundoff error at
each step varies randomly. The variable-order multistep function ode113 is capable
of achieving such high accuracy that roundoff error can be a bit more significant
with it.

7.14 Performance
We have carried out an experiment to see how all this applies in practice. The
differential equation is the harmonic oscillator

ẍ(t) = −x(t)

with initial conditions x(0) = 1, ẋ(0) = 0, over the interval 0 ≤ t ≤ 10π. The
interval is five periods of the periodic solution, so the global error can be computed
simply as the difference between the initial and final values of the solution. Since
the solution neither grows nor decays with t, the global error should be roughly
proportional to the local error.

The following Matlab script uses odeset to change both the relative and the
absolute tolerances. The refinement level is set so that one step of the algorithm
generates one row of output.

y0 = [1 0];

for k = 1:13

tol = 10^(-k);

opts = odeset(’reltol’,tol,’abstol’,tol,’refine’,1);

tic

[t,y] = ode23(@harmonic,[0 10*pi],y0’,opts);

time = toc;

steps = length(t)-1;

err = max(abs(y(end,:)-y0));

end

The differential equation is defined in harmonic.m.

function ydot = harmonic(t,y)

ydot = [y(2); -y(1)];

The script was run three times, with ode23, ode45, and ode113. The first
plot in Figure 7.9 shows how the global error varies with the requested tolerance
for the three routines. We see that the actual error tracks the requested tolerance
quite well. For ode23, the global error is about 36 times the tolerance; for ode45,
it is about 4 times the tolerance; and for ode113, it varies between 1 and 45 times
the tolerance.

The second plot in Figure 7.9 shows the numbers of steps required. The results
also fit our model quite well. Let τ denote the tolerance 10−k. For ode23, the
number of steps is about 10τ−1/3, which is the expected behavior for a third-order
method. For ode45, the number of steps is about 9τ−1/5, which is the expected

7.14. Performance 33

10
−12

10
−8

10
−4

10
0

er
ro

r

10
2

10
3

10
4

10
5

st
ep

s

ode23
ode45
ode113

10
−13

10
−10

10
−7

10
−4

10
−1

10
−1

10
0

10
1

10
2

tim
e

tol

Figure 7.9. Performance of ordinary differential equation solvers.

behavior for a fifth-order method. For ode113, the number of steps reflects the fact
that the solution is very smooth, so the method was often able to use its maximum
order, 13.

The third plot in Figure 7.9 shows the execution times, in seconds, on an
800 MHz Pentium III laptop. For this problem, ode45 is the fastest method for
tolerances of roughly 10−6 or larger, while ode113 is the fastest method for more
stringent tolerances. The low-order method, ode23, takes a very long time to obtain

34 Chapter 7. Ordinary Differential Equations

high accuracy.
This is just one experiment, on a problem with a very smooth and stable

solution.

7.15 Further Reading
The Matlab ordinary differential equation suite is described in [7]. Additional
material on the numerical solution of ordinary differential equations, and especially
stiffness, is available in Ascher and Petzold [1], Brennan, Campbell, and Petzold [2],
and Shampine [6].

Exercises

7.1. The standard form of an ODE initial value problem is:

ẏ = f(t, y), y(t0) = y0.

Express this ODE problem in the standard form.

ü =
v

1 + t2
− sin r,

v̈ =
−u

1 + t2
+ cos r,

where r =
√
u̇2 + v̇2. The initial conditions are

u(0) = 1, v(0) = u̇(0) = v̇(0) = 0.

7.2. You invest $100 in a savings account paying 6% interest per year. Let y(t)
be the amount in your account after t years. If the interest is compounded
continuously, then y(t) solves the ODE initial value problem

Exercises 35

ẏ = ry, r = .06

y(0) = 100.

Compounding interest at a discrete time interval, h, corresponds to using a
finite difference method to approximate the solution to the differential equa-
tion. The time interval h is expressed as a fraction of a year. For example,
compounding monthly has h = 1/12. The quantity yn, the balance after n
time intervals, approximates the continuously compounded balance y(nh).
The banking industry effectively uses Euler’s method to compute compound
interest.

y0 = y(0),

yn+1 = yn + hryn.

This exercise asks you to investigate the use of higher order difference methods
to compute compound interest. What is the balance in your account after 10
years with each of the following methods of compounding interest?

Euler’s method, yearly.

Euler’s method, monthly.

Midpoint rule, monthly.

Trapezoid rule, monthly.

BS23 algorithm, monthly.

Continuous compounding.

7.3. (a) Show experimentally or algebraically that the BS23 algorithm is exact for
f(t, y) = 1, f(t, y) = t, and f(t, y) = t2, but not for f(t, y) = t3.
(b) When is the ode23 error estimator exact?

7.4. The error function erf(x) is usually defined by an integral,

erf(x) =
2√
π

∫ x

0

e−x2

dx,

but it can also be defined as the solution to the differential equation

y′(x) =
2√
π
e−x2

,

y(0) = 0.

Use ode23tx to solve this differential equation on the interval 0 ≤ x ≤ 2.
Compare the results with the built-in Matlab function erf(x) at the points
chosen by ode23tx.

7.5. (a) Write an M-file named myrk4.m, in the style of ode23tx.m, that imple-
ments the classical Runge–Kutta fixed step size algorithm. Instead of an
optional fourth argument rtol or opts, the required fourth argument should
be the step size h. Here is the proposed preamble.

36 Chapter 7. Ordinary Differential Equations

% function [tout,yout] = myrk4(F,tspan,y0,h,varargin)

% MYRK4 Classical fourth-order Runge-Kutta.

% Usage is the same as ODE23TX except the fourth

% argument is a fixed step size h.

% MYRK4(F,TSPAN,Y0,H) with TSPAN = [T0 TF] integrates

% the system of differential equations y’ = f(t,y)

% from t = T0 to t = TF. The initial condition

% is y(T0) = Y0.

% With no output arguments, MYRK4 plots the solution.

% With two output arguments, [T,Y] = MYRK4(..) returns

% T and Y so that Y(:,k) is the approximate solution at

% T(k). More than four input arguments,

% MYRK4(..,P1,P2,..), are passed on to F,

% F(T,Y,P1,P2,...).

(b) Roughly, how should the error behave if the step size h for classical Runge–
Kutta is cut in half? (Hint: Why is there a “4” in the name of myrk4?) Run
an experiment to illustrate this behavior.
(c) If you integrate the simple harmonic oscillator ÿ = −y over one full period,
0 ≤ t ≤ 2π, you can compare the initial and final values of y to get a measure
of the global accuracy. If you use your myrk4 with a step size h = π/50,
you should find that it takes 100 steps and computes a result with an error
of about 10−6. Compare this with the number of steps required by ode23,
ode45, and ode113 if the relative tolerance is set to 10−6 and the refinement
level is set to one. This is a problem with a very smooth solution, so you
should find that ode23 requires more steps, while ode45 and ode113 require
fewer.

7.6. The ordinary differential equation problem

ẏ = −1000(y − sin t) + cos t, y(0) = 1,

on the interval 0 ≤ t ≤ 1 is mildly stiff.
(a) Find the exact solution, either by hand or using dsolve from the Symbolic
Toolbox.
(b) Compute the solution with ode23tx. How many steps are required?
(c) Compute the solution with the stiff solver ode23s. How many steps are
required?
(d) Plot the two computed solutions on the same graph, with line style ’.’

for the ode23tx solution and ’o’ for the ode23s solution.
(e) Zoom in, or change the axis settings, to show a portion of the graph where
the solution is varying rapidly. You should see that both solvers are taking
small steps.
(f) Show a portion of the graph where the solution is varying slowly. You
should see that ode23tx is taking much smaller steps than ode23s.

Exercises 37

7.7. The following problems all have the same solution on 0 ≤ t ≤ π/2:

ẏ = cos t, y(0) = 0,

ẏ =
√
1− y2, y(0) = 0,

ÿ = −y, y(0) = 0, ẏ(0) = 1,

ÿ = − sin t, y(0) = 0, ẏ(0) = 1.

(a) What is the common solution y(t)?
(b) Two of the problems involve second derivatives, ÿ. Rewrite these problems
as first-order systems, ẏ = f(t, y), involving vectors y and f .
(c) What is the Jacobian, J = ∂f

∂y , for each problem? What happens to each

Jacobian as t approaches π/2?
(d) The work required by a Runge–Kutta method to solve an initial value
problem ẏ = f(t, y) depends on the function f(t, y), not just the solution,
y(t). Use odeset to set both reltol and abstol to 10−9. How much work
does ode45 require to solve each problem? Why are some problems more
work than others?
(e) What happens to the computed solutions if the interval is changed to
0 ≤ t ≤ π?
(f) What happens on 0 ≤ t ≤ π if the second problem is changed to

ẏ =
√
|1− y2|, y(0) = 0.

7.8. Use the jacobian and eig functions in the Symbolic Toolbox to verify that
the Jacobian for the two-body problem is

J =
1

r5

0 0 r5 0
0 0 0 r5

2y21 − y22 3y1y2 0 0
3y1y2 2y22 − y21 0 0

and that its eigenvalues are

λ =
1

r3/2

√
2
i

−
√
2

−i

 .

7.9. Verify that the matrix in the Lorenz equations

A =

 −β 0 η
0 −σ σ
−η ρ −1

is singular if and only if

η = ±
√
β(ρ− 1).

Verify that the corresponding null vector is ρ− 1
η
η

 .

38 Chapter 7. Ordinary Differential Equations

7.10. The Jacobian matrix J for the Lorenz equations is not A, but is closely related
to A. Find J , compute its eigenvalues at one of the fixed points, and verify
that the fixed point is unstable.

7.11. Find the largest value of ρ in the Lorenz equations for which the fixed point
is stable.

7.12. All the values of ρ available with lorenzgui except ρ = 28 give trajectories
that eventually settle down to stable periodic orbits. In his book on the
Lorenz equations, Sparrow classifies a periodic orbit by what we might call
its signature, a sequence of +’s and −’s specifying the order of the critical
points that the trajectory circles during one period. A single + or − would
be the signature of a trajectory that circles just one critical point, except that
no such orbits exist. The signature ‘+−’ indicates that the trajectory circles
each critical point once. The signature ‘+ + + − + − −−’ would indicate a
very fancy orbit that circles the critical points a total of eight times before
repeating itself.
What are the signatures of the four different periodic orbits generated by
lorenzgui? Be careful—each of the signatures is different, and ρ = 99.65 is
particularly delicate.

7.13. What are the periods of the periodic orbits generated for the different values
of ρ available with lorenzgui?

7.14. The Matlab demos directory contains an M-file, orbitode, that uses ode45
to solve an instance of the restricted three-body problem. This involves the
orbit of a light object around two heavier objects, such as an Apollo capsule
around the earth and the moon. Run the demo and then locate its source
code with the statements

orbitode

which orbitode

Make your own copy of orbitode.m. Find these two statements:

tspan = [0 7];

y0 = [1.2; 0; 0; -1.04935750983031990726];

These statements set the time interval for the integration and the initial
position and velocity of the light object. Our question is, Where do these
values come from? To answer this question, find the statement

[t,y,te,ye,ie] = ode45(@f,tspan,y0,options);

Remove the semicolon and insert three more statements after it:

te

ye

ie

Run the demo again. Explain how the values of te, ye, and ie are related
to tspan and y0.

Exercises 39

7.15. A classical model in mathematical ecology is the Lotka–Volterra predator-
prey model. Consider a simple ecosystem consisting of rabbits that have an
infinite supply of food and foxes that prey on the rabbits for their food. This
is modeled by a pair of nonlinear, first-order differential equations:

dr

dt
= 2r − αrf, r(0) = r0,

df

dt
= −f + αrf, f(0) = f0,

where t is time, r(t) is the number of rabbits, f(t) is the number of foxes,
and α is a positive constant. If α = 0, the two populations do not interact,
the rabbits do what rabbits do best, and the foxes die off from starvation. If
α > 0, the foxes encounter the rabbits with a probability that is proportional
to the product of their numbers. Such an encounter results in a decrease
in the number of rabbits and (for less obvious reasons) an increase in the
number of foxes.
The solutions to this nonlinear system cannot be expressed in terms of other
known functions; the equations must be solved numerically. It turns out that
the solutions are always periodic, with a period that depends on the initial
conditions. In other words, for any r(0) and f(0), there is a value t = tp when
both populations return to their original values. Consequently, for all t,

r(t+ tp) = r(t), f(t+ tp) = f(t).

(a) Compute the solution with r0 = 300, f0 = 150, and α = 0.01. You should
find that tp is close to 5. Make two plots, one of r and f as functions of t
and one a phase plane plot with r as one axis and f as the other.
(b) Compute and plot the solution with r0 = 15, f0 = 22, and α = 0.01. You
should find that tp is close to 6.62.
(c) Compute and plot the solution with r0 = 102, f0 = 198, and α = 0.01.
Determine the period tp either by trial and error or with an event handler.
(d) The point (r0, f0) = (1/α, 2/α) is a stable equilibrium point. If the popu-
lations have these initial values, they do not change. If the initial populations
are close to these values, they do not change very much. Let u(t) = r(t)−1/α
and v(t) = f(t)− 2/α. The functions u(t) and v(t) satisfy another nonlinear
system of differential equations, but if the uv terms are ignored, the system
becomes linear. What is this linear system? What is the period of its periodic
solutions?

7.16. Many modifications of the Lotka–Volterra predator-prey model (see previous
problem) have been proposed to more accurately reflect what happens in
nature. For example, the number of rabbits can be prevented from growing
indefinitely by changing the first equation as follows:

dr

dt
= 2

(
1− r

R

)
r − αrf, r(0) = r0,

df

dt
= −f + αrf, y(0) = y0,

40 Chapter 7. Ordinary Differential Equations

where t is time, r(t) is the number of rabbits, f(t) is the number of foxes, α
is a positive constant, and R is a positive constant. Because α is positive, dr

dt
is negative whenever r ≥ R. Consequently, the number of rabbits can never
exceed R.
For α = 0.01, compare the behavior of the original model with the behavior
of this modified model with R = 400. In making this comparison, solve the
equations with r0 = 300 and f0 = 150 over 50 units of time. Make four
different plots:

• number of foxes and number of rabbits versus time for the original model,

• number of foxes and number of rabbits versus time for the modified
model,

• number of foxes versus number of rabbits for the original model,

• number of foxes versus number of rabbits for the modified model.

For all plots, label all curves and all axes and put a title on the plot. For
the last two plots, set the aspect ratio so that equal increments on the x- and
y-axes are equal in size.

7.17. An 80-kg paratrooper is dropped from an airplane at a height of 600m. After
5 s the chute opens. The paratrooper’s height as a function of time, y(t), is
given by

ÿ = −g + α(t)/m,

y(0) = 600 m,

ẏ(0) = 0 m/s,

where g = 9.81 m/s2 is the acceleration due to gravity and m = 80 kg is
the paratrooper’s mass. The air resistance α(t) is proportional to the square
of the velocity, with different proportionality constants before and after the
chute opens.

α(t) =

{
K1ẏ(t)

2, t < 5 s,
K2ẏ(t)

2, t ≥ 5 s.

(a) Find the analytical solution for free-fall, K1 = 0,K2 = 0. At what height
does the chute open? How long does it take to reach the ground? What is the
impact velocity? Plot the height versus time and label the plot appropriately.
(b) Consider the case K1 = 1/15,K2 = 4/15. At what height does the chute
open? How long does it take to reach the ground? What is the impact veloc-
ity? Make a plot of the height versus time and label the plot appropriately.

7.18. Determine the trajectory of a spherical cannonball in a stationary Cartesian
coordinate system that has a horizontal x-axis, a vertical y-axis, and an origin
at the launch point. The initial velocity of the projectile in this coordinate
system has magnitude v0 and makes an angle with respect to the x-axis
of θ0 radians. The only forces acting on the projectile are gravity and the
aerodynamic drag, D, which depends on the projectile’s speed relative to
any wind that might be present. The equations describing the motion of the

Exercises 41

projectile are
ẋ = v cos θ, ẏ = v sin θ,

θ̇ = −g

v
cos θ, v̇ = −D

m
− g sin θ.

Constants for this problem are the acceleration of gravity, g = 9.81m/s
2
, the

mass, m = 15 kg, and the initial speed, v0 = 50 m/s. The wind is assumed
to be horizontal and its speed is a specified function of time, w(t). The
aerodynamic drag is proportional to the square of the projectile’s velocity
relative to the wind:

D(t) =
cρs

2

(
(ẋ− w(t))2 + ẏ2

)
,

where c = 0.2 is the drag coefficient, ρ = 1.29 kg/m3 is the density of air,
and s = 0.25m2 is the projectile’s cross-sectional area.
Consider four different wind conditions.

• No wind. w(t) = 0 for all t.

• Steady headwind. w(t) = −10 m/s for all t.

• Intermittent tailwind. w(t) = 10 m/s if the integer part of t is even, and
zero otherwise.

• Gusty wind. w(t) is a Gaussian random variable with mean zero and
standard deviation 10 m/s.

The integer part of a real number t is denoted by ⌊t⌋ and is computed inMat-
lab by floor(t). A Gaussian random variable with mean 0 and standard
deviation σ is generated by sigma*randn (see Chapter 9, Random Numbers).
For each of these four wind conditions, carry out the following computations.
Find the 17 trajectories whose initial angles are multiples of 5 degrees, that
is, θ0 = kπ/36 radians, k = 1, 2, . . . , 17. Plot all 17 trajectories on one figure.
Determine which of these trajectories has the greatest downrange distance.
For that trajectory, report the initial angle in degrees, the flight time, the
downrange distance, the impact velocity, and the number of steps required
by the ordinary differential equation solver.
Which of the four wind conditions requires the most computation? Why?

7.19. In the 1968 Olympic games in Mexico City, Bob Beamon established a world
record with a long jump of 8.90m. This was 0.80m longer than the previous
world record. Since 1968, Beamon’s jump has been exceeded only once in
competition, by Mike Powell’s jump of 8.95m in Tokyo in 1991. After Bea-
mon’s remarkable jump, some people suggested that the lower air resistance
at Mexico City’s 2250m altitude was a contributing factor. This problem
examines that possibility.
The mathematical model is the same as the cannonball trajectory in the
previous exercise. The fixed Cartesian coordinate system has a horizontal
x-axis, a vertical y-axis, and an origin at the takeoff board. The jumper’s
initial velocity has magnitude v0 and makes an angle with respect to the
x-axis of θ0 radians. The only forces acting after takeoff are gravity and the

42 Chapter 7. Ordinary Differential Equations

aerodynamic drag, D, which is proportional to the square of the magnitude
of the velocity. There is no wind. The equations describing the jumper’s
motion are

ẋ = v cos θ, ẏ = v sin θ,

θ̇ = −g

v
cos θ, v̇ = −D

m
− g sin θ.

The drag is

D =
cρs

2

(
ẋ2 + ẏ2

)
.

Constants for this exercise are the acceleration of gravity, g = 9.81 m/s2, the
mass, m = 80 kg, the drag coefficient, c = 0.72, the jumper’s cross-sectional
area, s = 0.50m2, and the takeoff angle, θ0 = 22.5◦ = π/8 radians.
Compute four different jumps, with different values for initial velocity, v0,
and air density, ρ. The length of each jump is x(tf), where the air time, tf ,
is determined by the condition y(tf) = 0.
(a) “Nominal” jump at high altitude. v0 = 10 m/s and ρ = 0.94 kg/m3.
(b) “Nominal” jump at sea level. v0 = 10 m/s and ρ = 1.29 kg/m3.
(c) Sprinter’s approach at high altitude. ρ = 0.94 kg/m3. Determine v0 so
that the length of the jump is Beamon’s record, 8.90m.
(d) Sprinter’s approach at sea level. ρ = 1.29 kg/m3 and v0 is the value
determined in (c).
Present your results by completing the following table.

v0 theta0 rho distance

10.0000 22.5000 0.9400 ???

10.0000 22.5000 1.2900 ???

??? 22.5000 0.9400 8.9000

??? 22.5000 1.2900 ???

Which is more important, the air density or the jumper’s initial velocity?

7.20. A pendulum is a point mass at the end of a weightless rod of length L
supported by a frictionless pin. If gravity is the only force acting on the
pendulum, its oscillation is modeled by

θ̈ = −(g/L) sin θ.

Here θ is the angular position of the rod, with θ = 0 if the rod is hanging
down from the pin and θ = π if the rod is precariously balanced above the
pin. Take L = 30 cm and g = 981 cm/s2. The initial conditions are

θ(0) = θ0,
θ̇(0) = 0.

If the initial angle θ0 is not too large, then the approximation

sin θ ≈ θ

Exercises 43

leads to a linearized equation

θ̈ = −(g/L)θ

that is easily solved.
(a) What is the period of oscillation for the linearized equation?
If we do not make the assumption that θ0 is small and do not replace sin θ
by θ, then it turns out that the period T of the oscillatory motion is given by

T (θ0) = 4(L/g)1/2K(sin2 (θ0/2)),

where K(s2) is the complete elliptic integral of the first kind, given by

K(s2) =

∫ 1

0

dt√
1− s2t2

√
1− t2

.

(b) Compute and plot T (θ0) for 0 ≤ θ0 ≤ 0.9999π two different ways. Use the
Matlab function ellipke and also use numerical quadrature with quadtx.
Verify that the two methods yield the same results, to within the quadrature
tolerance.
(c) Verify that for small θ0 the linear equation and the nonlinear equation
have approximately the same period.
(d) Compute the solutions to the nonlinear model over one period for several
different values of θ0, including values near 0 and near π. Superimpose the
phase plane plots of the solutions on one graph.

7.21. What effect does the burning of fossil fuels have on the carbon dioxide in the
earth’s atmosphere? Even though today carbon dioxide accounts for only
about 350 parts per million of the atmosphere, any increase has profound
implications for our climate. An informative background article is available
at a Web site maintained by the Lighthouse Foundation [5].
A model developed by J. C. G. Walker [9] was brought to our attention by
Eric Roden. The model simulates the interaction of the various forms of
carbon that are stored in three regimes: the atmosphere, the shallow ocean,
and the deep ocean. The five principal variables in the model are all functions
of time:

p, partial pressure of carbon dioxide in the atmosphere;

σs, total dissolved carbon concentration in the shallow ocean;

σd, total dissolved carbon concentration in the deep ocean;

αs, alkalinity in the shallow ocean;

αd, alkalinity in the deep ocean.

Three additional quantities are involved in equilibrium equations in the shal-
low ocean:

hs, hydrogen carbonate in the shallow ocean;

cs, carbonate in the shallow ocean;

44 Chapter 7. Ordinary Differential Equations

ps, partial pressure of gaseous carbon dioxide in the shallow ocean.

The rate of change of the five principal variables is given by five ordinary
differential equations. The exchange between the atmosphere and the shallow
ocean involves a constant characteristic transfer time d and a source term f(t):

dp

dt
=

ps − p

d
+

f(t)

µ1
.

The equations describing the exchange between the shallow and deep oceans
involve vs and vd, the volumes of the two regimes:

dσs

dt
=

1

vs

(
(σd − σs)w − k1 −

ps − p

d
µ2

)
,

dσd

dt
=

1

vd
(k1 − (σd − σs)w) ,

dαs

dt
=

1

vs
((αd − αs)w − k2) ,

dαd

dt
=

1

vd
(k2 − (αd − αs)w) .

The equilibrium between carbon dioxide and the carbonates dissolved in the
shallow ocean is described by three nonlinear algebraic equations:

hs =
σs −

(
σ2
s − k3αs(2σs − αs)

)1/2
k3

,

cs =
αs − hs

2
,

ps = k4
h2
s

cs
.

The numerical values of the constants involved in the model are

d = 8.64,

µ1 = 4.95 · 102,
µ2 = 4.95 · 10−2,

vs = 0.12,

vd = 1.23,

w = 10−3,

k1 = 2.19 · 10−4,

k2 = 6.12 · 10−5,

k3 = 0.997148,

k4 = 6.79 · 10−2.

Exercises 45

The source term f(t) describes the burning of fossil fuels in the modern
industrial era. We will use a time interval that starts about a thousand years
ago and extends a few thousand years into the future:

1000 ≤ t ≤ 5000.

The initial values at t = 1000,

p = 1.00,

σs = 2.01,

σd = 2.23,

αs = 2.20,

αd = 2.26,

represent preindustrial equilibrium and remain nearly constant as long as the
source term f(t) is zero.
The following table describes one scenario for a source term f(t) that models
the release of carbon dioxide from burning fossil fuels, especially gasoline.
The amounts begin to be significant after 1850, peak near the end of this
century, and then decrease until the supply is exhausted.

year rate
1000 0.0
1850 0.0
1950 1.0
1980 4.0
2000 5.0
2050 8.0
2080 10.0
2100 10.5
2120 10.0
2150 8.0
2225 3.5
2300 2.0
2500 0.0
5000 0.0

Figure 7.10 shows this source term and its effect on the atmosphere and the
ocean. The three graphs in the lower half of the figure show the atmospheric,
shallow ocean, and deep ocean carbon. (The two alkalinity values are not
plotted at all because they are almost constant throughout this entire simu-
lation.) Initially, the carbon in the three regimes is nearly at equilibrium and
so the amounts hardly change before 1850.
Over the period 1850 ≤ t ≤ 2500, the upper half of Figure 7.10 shows the
additional carbon produced by burning fossil fuels entering the system, and
the lower half shows the system response. The atmosphere is the first to be
affected, showing more than a fourfold increase in 500 years. Almost half of
the carbon is then slowly transferred to the shallow ocean and eventually to
the deep ocean.

46 Chapter 7. Ordinary Differential Equations

(a) Reproduce Figure 7.10. Use pchiptx to interpolate the fuel table and
ode23tx with the default tolerances to solve the differential equations.
(b) How do the amounts of carbon in the three regimes at year 5000 compare
with the amounts at year 1000?
(c) When does the atmospheric carbon dioxide reach its maximum?
(d) These equations are mildly stiff, because the various chemical reactions
take place on very different time scales. If you zoom in on some portions of
the graphs, you should see a characteristic sawtooth behavior caused by the
small time steps required by ode23tx. Find such a region.
(e) Experiment with other Matlab ordinary differential equation solvers,
including ode23, ode45, ode113, ode23s, and ode15s. Try various tolerances
and report computational costs by using something like

odeset(’RelTol’,1.e-6,’AbsTol’,1.e-6,’stats’,’on’);

Which method is preferable for this problem?

7.22. This problem makes use of quadrature, ordinary differential equations, and
zero finding to study a nonlinear boundary value problem. The function y(x)
is defined on the interval 0 ≤ x ≤ 1 by

y′′ = y2 − 1,

1000 1500 2000 2500 3000 3500 4000 4500 5000
0

1

2

3

4

time (yr)

ca
rb

o
n

1000 1500 2000 2500 3000 3500 4000 4500 5000
0

5

10

15

fu
el

Carbon in the atmosphere and ocean

atmosphere
shallow
deep

fossil fuel

Figure 7.10. Carbon in the atmosphere and ocean.

Exercises 47

y(0) = 0,

y(1) = 1.

This problem can be solved four different ways. Plot the four solutions ob-
tained on a single figure, using subplot(2,2,1),..., subplot(2,2,4).

(a) Shooting method. Suppose we know the value of η = y′(0). Then we
could use an ordinary differential equation solver like ode23tx or ode45 to
solve the initial value problem

y′′ = y2 − 1,

y(0) = 0,

y′(0) = η.

on the interval 0 ≤ x ≤ 1. Each value of η determines a different solution
y(x; η) and corresponding value for y(1; η). The desired boundary condition
y(1) = 1 leads to the definition of a function of η:

f(η) = y(1; η)− 1.

Write a Matlab function whose argument is η. This function should solve
the ordinary differential equation initial problem and return f(η). Then use
fzero or fzerotx to find a value η∗ so that f(η∗) = 0. Finally, use this η∗
in the initial value problem to get the desired y(x). Report the value of η∗
you obtain.
(b) Quadrature. Observe that y′′ = y2 − 1 can be written

d

dx

(
(y′)2

2
− y3

3
+ y

)
= 0.

This means that the expression

κ =
(y′)2

2
− y3

3
+ y

is actually constant. Because y(0) = 0, we have y′(0) =
√
2κ. So, if we could

find the constant κ, the boundary value problem would be converted into an
initial value problem. Integrating the equation

dx

dy
=

1√
2(κ+ y3/3− y)

gives

x =

∫ y

0

h(y, κ) dy,

where

h(y, κ) =
1√

2(κ+ y3/3− y)
.

48 Chapter 7. Ordinary Differential Equations

This, together with the boundary condition y(1) = 1, leads to the definition
of a function g(κ):

g(κ) =

∫ 1

0

h(y, κ) dy − 1.

You need two Matlab functions, one that computes h(y, κ) and one that
computes g(κ). They can be two separate M-files, but a better idea is to
make h(y, κ) a function within g(κ). The function g(κ) should use quadtx

to evaluate the integral of h(y, κ). The parameter κ is passed as an extra
argument from g, through quadtx, to h. Then fzerotx can be used to find
a value κ∗ so that g(κ∗) = 0. Finally, this κ∗ provides the second initial
value necessary for an ordinary differential equation solver to compute y(x).
Report the value of κ∗ you obtain.
(c and d) Nonlinear finite differences. Partition the interval into n+ 1 equal
subintervals with spacing h = 1/(n+ 1):

xi = ih, i = 0, . . . , n+ 1.

Replace the differential equation with a nonlinear system of difference equa-
tions involving n unknowns, y1, y2, . . . , yn:

yi+1 − 2yi + yi−1 = h2(y2i − 1), i = 1, . . . , n.

The boundary conditions are y0 = 0 and yn+1 = 1.
A convenient way to compute the vector of second differences involves the
n-by-n tridiagonal matrix A with −2’s on the diagonal, 1’s on the super-
and subdiagonals, and 0’s elsewhere. You can generate a sparse form of this
matrix with

e = ones(n,1);

A = spdiags([e -2*e e],[-1 0 1],n,n);

The boundary conditions y0 = 0 and yn+1 = 1 can be represented by the
n-vector b, with bi = 0, i = 1, . . . , n− 1, and bn = 1. The vector formulation
of the nonlinear difference equation is

Ay + b = h2(y2 − 1),

where y2 is the vector containing the squares of the elements of y, that is,
the Matlab element-by-element power y.^2. There are at least two ways to
solve this system.
(c) Linear iteration. This is based on writing the difference equation in the
form

Ay = h2(y2 − 1)− b.

Start with an initial guess for the solution vector y. The iteration consists
of plugging the current y into the right-hand side of this equation and then
solving the resulting linear system for a new y. This makes repeated use of
the sparse backslash operator with the iterated assignment statement

Exercises 49

y = A\(h^2*(y.^2 - 1) - b)

It turns out that this iteration converges linearly and provides a robust
method for solving the nonlinear difference equations. Report the value of n
you use and the number of iterations required.
(d) Newton’s method. This is based on writing the difference equation in the
form

F (y) = Ay + b− h2(y2 − 1) = 0.

Newton’s method for solving F (y) = 0 requires a many-variable analogue
of the derivative F ′(y). The analogue is the Jacobian, the matrix of partial
derivatives

J =
∂Fi

∂yj
= A− h2diag(2y).

In Matlab, one step of Newton’s method would be

F = A*y + b - h^2*(y.^2 - 1);

J = A - h^2*spdiags(2*y,0,n,n);

y = y - J\F;

With a good starting guess, Newton’s method converges in a handful of iter-
ations. Report the value of n you use and the number of iterations required.

7.23. The double pendulum is a classical physics model system that exhibits chaotic
motion if the initial angles are large enough. The model, shown in Figure 7.11,
involves two weights, or bobs, attached by weightless, rigid rods to each other
and to a fixed pivot. There is no friction, so once initiated, the motion
continues forever. The motion is fully described by the two angles θ1 and θ2
that the rods make with the negative y-axis.

x

y

θ
1

θ
2

Figure 7.11. Double pendulum.

Let m1 and m2 be the masses of the bobs and ℓ1 and ℓ2 be the lengths of the

50 Chapter 7. Ordinary Differential Equations

rods. The positions of the bobs are

x1 = ℓ1 sin θ1, y1 = −ℓ1 cos θ1,

x2 = ℓ1 sin θ1 + ℓ2 sin θ2, y2 = −ℓ1 cos θ1 − ℓ2 cos θ2.

The only external force is gravity, denoted by g. Analysis based on the
Lagrangian formulation of classical mechanics leads to a pair of coupled,
second-order, nonlinear ordinary differential equations for the two angles θ1(t)
and θ2(t):

(m1 +m2)ℓ1θ̈1 +m2ℓ2θ̈2 cos (θ1 − θ2) = −g(m1 +m2) sin θ1

−m2ℓ2θ̇
2
2 sin (θ1 − θ2),

m2ℓ1θ̈1 cos (θ1 − θ2) +m2ℓ2θ̈2 = −gm2 sin θ2 +m2ℓ1θ̇
2
1 sin (θ1 − θ2).

To rewrite these equations as a first-order system, introduce the 4-by-1 col-
umn vector u(t):

u = [θ1, θ2, θ̇1, θ̇2]
T .

With m1 = m2 = ℓ1 = ℓ2 = 1, c = cos (u1 − u2), and s = sin (u1 − u2), the
equations become

u̇1 = u3,

u̇2 = u4,

2u̇3 + cu̇4 = −g sinu1 − su2
4,

cu̇3 + u̇4 = −g sinu2 + su2
3.

Let M = M(u) denote the 4-by-4 mass matrix

M =

1 0 0 0
0 1 0 0
0 0 2 c
0 0 c 1

and let f = f(u) denote the 4-by-1 nonlinear force function

f =

u3

u4

−g sinu1 − su2
4

−g sinu2 + su2
3

 .

In matrix-vector notation, the equations are simply

Mu̇ = f.

This is an implicit system of differential equations involving a nonconstant,
nonlinear mass matrix. The double pendulum problem is usually formulated
without the mass matrix, but larger problems, with more degrees of freedom,

Exercises 51

are frequently in implicit form. In some situations, the mass matrix is singular
and it is not possible to write the equations in explicit form.
The NCMM-file swinger provides an interactive graphical implementation of
these equations. The initial position is determined by specifying the starting
coordinates of the second bob, (x2, y2), either as arguments to swinger or
by using the mouse. In most situations, this does not uniquely determine the
starting position of the first bob, but there are only two possibilities and one
of them is chosen arbitrarily. The initial velocities, θ̇1 and θ̇2, are zero.
The numerical solution is carried out by ode23 because our textbook code,
ode23tx, cannot handle implicit equations. The call to ode23 involves using
odeset to specify the functions that generate the mass matrix and do the
plotting

opts = odeset(’mass’,@swingmass, ...

’outputfcn’,@swingplot);

ode23(@swingrhs,tspan,u0,opts);

The mass matrix function is

function M = swingmass(t,u)

c = cos(u(1)-u(2));

M = [1 0 0 0; 0 1 0 0; 0 0 2 c; 0 0 c 1];

The driving force function is

function f = swingrhs(t,u)

g = 1;

s = sin(u(1)-u(2));

f = [u(3); u(4); -2*g*sin(u(1))-s*u(4)^2;

-g*sin(u(2))+s*u(3)^2];

It would be possible to have just one ordinary differential equation function
that returns M\f, but we want to emphasize the implicit facility.
An internal function swinginit converts a specified starting point (x, y) to
a pair of angles (θ1, θ2). If (x, y) is outside the circle√

x2 + y2 > ℓ1 + ℓ2,

then the pendulum cannot reach the specified point. In this case, we straighten
out the pendulum with θ1 = θ2 and point it in the given direction. If (x, y) is
inside the circle of radius two, we return one of the two possible configurations
that reach to that point.
Here are some questions to guide your investigation of swinger.
(a) When the initial point is outside the circle of radius two, the two rods
start out as one. If the initial angle is not too large, the double pendulum
continues to act pretty much like a single pendulum. But if the initial angles
are large enough, chaotic motion ensues. Roughly what initial angles lead to
chaotic motion?
(b) The default initial condition is

52 Chapter 7. Ordinary Differential Equations

swinger(0.862,-0.994)

Why is this orbit interesting? Can you find any similar orbits?
(c) Run swinger for a while, then click on its stop button. Go to theMatlab
command line and type get(gcf,’userdata’). What is returned?
(d) Modify swinginit so that, when the initial point is inside the circle of
radius two, the other possible initial configuration is chosen.
(e) Modify swinger so that masses other than m1 = m2 = 1 are possible.
(f) Modify swinger so that lengths other than ℓ1 = ℓ2 = 1 are possible. This
is trickier than changing the masses because the initial geometry is involved.
(g) What role does gravity play? How would the behavior of a double pendu-
lum change if you could take it to the moon? How does changing the value of
g in swingrhs affect the speed of the graphics display, the step sizes chosen
by the ordinary differential equation solver, and the computed values of t?
(h) Combine swingmass and swingrhs into one function, swingode. Elimi-
nate the mass option and use ode23tx instead of ode23.
(i) Are these equations stiff?
(j) This is a difficult question. The statement swinger(0,2) tries to deli-
cately balance the pendulum above its pivot point. The pendulum does stay
there for a while, but then loses its balance. Observe the value of t displayed
in the title for swinger(0,2). What force knocks the pendulum away from
the vertical position? At what value of t does this force become noticeable?

Bibliography

[1] U. M. Ascher and L. R. Petzold, Computer Methods for Ordinary Dif-
ferential Equations and Differential-Algebraic Equations, SIAM, Philadelphia,
1998.

[2] K. E. Brenan, S. L. Campbell, and L. R. Petzold, Numerical Solution of
Initial Value Problems in Differential-Algebraic Equations, SIAM, Philadelphia,
1996.

[3] P. Bogacki and L. F. Shampine, A 3(2) pair of Runge-Kutta formulas, Ap-
plied Mathematics Letters, 2 (1989), pp. 1–9.

[4] R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E.
Knuth, On the Lambert W function, Advances in Computational Mathematics,
5 (1996), pp. 329–359.
http://www.apmaths.uwo.ca/~rcorless/frames/PAPERS/LambertW

[5] Lighthouse Foundation.
http://www.lighthouse-foundation.org

[6] L. F. Shampine, Numerical Solution of Ordinary Differential Equations, Chap-
man and Hall, New York, 1994.

[7] L. F. Shampine and M. W. Reichelt, The MATLAB ODE suite, SIAM
Journal on Scientific Computing, 18 (1997), pp. 1–22.

[8] C. Sparrow, The Lorenz Equations: Bifurcations, Chaos, and Strange Attrac-
tors, Springer-Verlag, New York, 1982.

[9] J. C. G. Walker, Numerical Adventures with Geochemical Cycles, Oxford
University Press, New York, 1991.

53

