
Chapter 10

Eigenvalues and Singular
Values

This chapter is about eigenvalues and singular values of matrices. Computational
algorithms and sensitivity to perturbations are both discussed.

10.1 Eigenvalue and Singular Value Decompositions
An eigenvalue and eigenvector of a square matrix A are a scalar λ and a nonzero
vector x so that

Ax = λx.

A singular value and pair of singular vectors of a square or rectangular matrix A
are a nonnegative scalar σ and two nonzero vectors u and v so that

Av = σu,

AHu = σv.

The superscript on AH stands for Hermitian transpose and denotes the complex
conjugate transpose of a complex matrix. If the matrix is real, then AT denotes the
same matrix. In Matlab, these transposed matrices are denoted by A’.

The term “eigenvalue” is a partial translation of the German “eigenwert.” A
complete translation would be something like “own value” or “characteristic value,”
but these are rarely used. The term “singular value” relates to the distance between
a matrix and the set of singular matrices.

Eigenvalues play an important role in situations where the matrix is a trans-
formation from one vector space onto itself. Systems of linear ordinary differential
equations are the primary examples. The values of λ can correspond to frequencies
of vibration, or critical values of stability parameters, or energy levels of atoms.
Singular values play an important role where the matrix is a transformation from
one vector space to a different vector space, possibly with a different dimension.
Systems of over- or underdetermined algebraic equations are the primary examples.

September 16, 2013

1



2 Chapter 10. Eigenvalues and Singular Values

The definitions of eigenvectors and singular vectors do not specify their nor-
malization. An eigenvector x, or a pair of singular vectors u and v, can be scaled by
any nonzero factor without changing any other important properties. Eigenvectors
of symmetric matrices are usually normalized to have Euclidean length equal to one,
∥x∥2 = 1. On the other hand, the eigenvectors of nonsymmetric matrices often have
different normalizations in different contexts. Singular vectors are almost always
normalized to have Euclidean length equal to one, ∥u∥2 = ∥v∥2 = 1. You can still
multiply eigenvectors, or pairs of singular vectors, by −1 without changing their
lengths.

The eigenvalue-eigenvector equation for a square matrix can be written

(A− λI)x = 0, x ̸= 0.

This implies that A− λI is singular and hence that

det(A− λI) = 0.

This definition of an eigenvalue, which does not directly involve the corresponding
eigenvector, is the characteristic equation or characteristic polynomial of A. The
degree of the polynomial is the order of the matrix. This implies that an n-by-n
matrix has n eigenvalues, counting multiplicities. Like the determinant itself, the
characteristic polynomial is useful in theoretical considerations and hand calcula-
tions, but does not provide a sound basis for robust numerical software.

Let λ1, λ2, . . . , λn be the eigenvalues of a matrix A, let x1, x2, . . . , xn be a set
of corresponding eigenvectors, let Λ denote the n-by-n diagonal matrix with the λj

on the diagonal, and let X denote the n-by-n matrix whose jth column is xj . Then

AX = XΛ.

It is necessary to put Λ on the right in the second expression so that each column of
X is multiplied by its corresponding eigenvalue. Now make a key assumption that
is not true for all matrices—assume that the eigenvectors are linearly independent.
Then X−1 exists and

A = XΛX−1,

with nonsingular X. This is known as the eigenvalue decomposition of the matrix A.
If it exists, it allows us to investigate the properties of A by analyzing the diagonal
matrix Λ. For example, repeated matrix powers can be expressed in terms of powers
of scalars:

Ap = XΛpX−1.

If the eigenvectors of A are not linearly independent, then such a diagonal decom-
position does not exist and the powers of A exhibit a more complicated behavior.

If T is any nonsingular matrix, then

A = TBT−1

is known as a similarity transformation and A and B are said to be similar. If
Ax = λx and x = Ty, then By = λy. In other words, a similarity transforma-
tion preserves eigenvalues. The eigenvalue decomposition is an attempt to find a
similarity transformation to diagonal form.
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Written in matrix form, the defining equations for singular values and vectors
are

AV = UΣ,

AHU = V ΣH .

Here Σ is a matrix the same size as A that is zero except possibly on its main
diagonal. It turns out that singular vectors can always be chosen to be perpendicular
to each other, so the matrices U and V , whose columns are the normalized singular
vectors, satisfy UHU = I and V HV = I. In other words, U and V are orthogonal
if they are real, or unitary if they are complex. Consequently,

A = UΣV H ,

with diagonal Σ and orthogonal or unitary U and V . This is known as the singular
value decomposition, or SVD, of the matrix A.

In abstract linear algebra terms, eigenvalues are relevant if a square, n-by-n
matrix A is thought of as mapping n-dimensional space onto itself. We try to find
a basis for the space so that the matrix becomes diagonal. This basis might be
complex even if A is real. In fact, if the eigenvectors are not linearly independent,
such a basis does not even exist. The SVD is relevant if a possibly rectangular,
m-by-n matrix A is thought of as mapping n-space onto m-space. We try to find
one change of basis in the domain and a usually different change of basis in the
range so that the matrix becomes diagonal. Such bases always exist and are always
real if A is real. In fact, the transforming matrices are orthogonal or unitary, so
they preserve lengths and angles and do not magnify errors.

If A is m by n with m larger than n, then in the full SVD, U is a large, square
m-by-m matrix. The last m − n columns of U are “extra”; they are not needed

A = U Σ V’

A = U Σ V’

Figure 10.1. Full and economy SVDs.
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to reconstruct A. A second version of the SVD that saves computer memory if A
is rectangular is known as the economy-sized SVD. In the economy version, only
the first n columns of U and first n rows of Σ are computed. The matrix V is
the same n-by-n matrix in both decompositions. Figure 10.1 shows the shapes of
the various matrices in the two versions of the SVD. Both decompositions can be
written A = UΣV H , even though the U and Σ in the economy decomposition are
submatrices of the ones in the full decomposition.

10.2 A Small Example
An example of the eigenvalue and singular value decompositions of a small, square
matrix is provided by one of the test matrices from the Matlab gallery.

A = gallery(3)

The matrix is

A =

−149 −50 −154
537 180 546
−27 −9 −25

 .

This matrix was constructed in such a way that the characteristic polynomial factors
nicely:

det(A− λI) = λ3 − 6λ2 + 11λ− 6

= (λ− 1)(λ− 2)(λ− 3).

Consequently, the three eigenvalues are λ1 = 1, λ2 = 2, and λ3 = 3, and

Λ =

 1 0 0
0 2 0
0 0 3

 .

The matrix of eigenvectors can be normalized so that its elements are all integers:

X =

 1 −4 7
−3 9 −49
0 1 9

 .

It turns out that the inverse of X also has integer entries:

X−1 =

 130 43 133
27 9 28
−3 −1 −3

 .

These matrices provide the eigenvalue decomposition of our example:

A = XΛX−1.

The SVD of this matrix cannot be expressed so neatly with small integers.
The singular values are the positive roots of the equation

σ6 − 668737σ4 + 4096316σ2 − 36 = 0,

but this equation does not factor nicely. The Symbolic Toolbox statement
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svd(sym(A))

returns exact formulas for the singular values, but the overall length of the result is
922 characters. So we compute the SVD numerically.

[U,S,V] = svd(A)

produces

U =

-0.2691 -0.6798 0.6822

0.9620 -0.1557 0.2243

-0.0463 0.7167 0.6959

S =

817.7597 0 0

0 2.4750 0

0 0 0.0030

V =

0.6823 -0.6671 0.2990

0.2287 -0.1937 -0.9540

0.6944 0.7193 0.0204

The expression U*S*V’ generates the original matrix to within roundoff error.
For gallery(3), notice the big difference between the eigenvalues, 1, 2, and

3, and the singular values, 817, 2.47, and 0.003. This is related, in a way that we
will make more precise later, to the fact that this example is very far from being a
symmetric matrix.

10.3 eigshow
The function eigshow is available in the Matlab demos directory. The input to
eigshow is a real, 2-by-2 matrix A, or you can choose an A from a pull-down list
in the title. The default A is

A =

(
1/4 3/4
1 1/2

)
.

Initially, eigshow plots the unit vector x = [1, 0]′, as well as the vector Ax, which
starts out as the first column of A. You can then use your mouse to move x, shown
in green, around the unit circle. As you move x, the resulting Ax, shown in blue,
also moves. The first four subplots in Figure 10.2 show intermediate steps as x
traces out a green unit circle. What is the shape of the resulting orbit of Ax? An
important, and nontrivial, theorem from linear algebra tells us that the blue curve
is an ellipse. eigshow provides a “proof by GUI” of this theorem.

The caption for eigshow says “Make Ax parallel to x.” For such a direction
x, the operator A is simply a stretching or magnification by a factor λ. In other
words, x is an eigenvector and the length of Ax is the corresponding eigenvalue.
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Figure 10.2. eigshow.

The last two subplots in Figure 10.2 show the eigenvalues and eigenvectors
of our 2-by-2 example. The first eigenvalue is positive, so Ax lies on top of the
eigenvector x. The length of Ax is the corresponding eigenvalue; it happens to be
5/4 in this example. The second eigenvalue is negative, so Ax is parallel to x, but
points in the opposite direction. The length of Ax is 1/2, and the corresponding
eigenvalue is actually −1/2.

You might have noticed that the two eigenvectors are not the major and
minor axes of the ellipse. They would be if the matrix were symmetric. The default
eigshow matrix is close to, but not exactly equal to, a symmetric matrix. For other
matrices, it may not be possible to find a real x so that Ax is parallel to x. These
examples, which we pursue in the exercises, demonstrate that 2-by-2 matrices can
have fewer than two real eigenvectors.

The axes of the ellipse do play a key role in the SVD. The results produced
by the svd mode of eigshow are shown in Figure 10.3. Again, the mouse moves
x around the unit circle, but now a second unit vector, y, follows x, staying per-
pendicular to it. The resulting Ax and Ay traverse the ellipse, but are not usually
perpendicular to each other. The goal is to make them perpendicular. If they are,
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Figure 10.3. eigshow(svd).

they form the axes of the ellipse. The vectors x and y are the columns of U in the
SVD, the vectors Ax and Ay are multiples of the columns of V , and the lengths of
the axes are the singular values.

10.4 Characteristic Polynomial
Let A be the 20-by-20 diagonal matrix with 1, 2, . . . , 20 on the diagonal. Clearly, the
eigenvalues of A are its diagonal elements. However, the characteristic polynomial
det(A− λI) turns out to be

λ20 − 210λ19 + 20615λ18 − 1256850λ17 + 53327946λ16

−1672280820λ15 + 40171771630λ14 − 756111184500λ13

+11310276995381λ12 − 135585182899530λ11

+1307535010540395λ10 − 10142299865511450λ9

+63030812099294896λ8 − 311333643161390640λ7

+1206647803780373360λ6 − 3599979517947607200λ5

+8037811822645051776λ4 − 12870931245150988800λ3

+13803759753640704000λ2 − 8752948036761600000λ

+2432902008176640000.

The coefficient of −λ19 is 210, which is the sum of the eigenvalues. The coefficient
of λ0, the constant term, is 20!, which is the product of the eigenvalues. The other
coefficients are various sums of products of the eigenvalues.

We have displayed all the coefficients to emphasize that doing any floating-
point computation with them is likely to introduce large roundoff errors. Merely
representing the coefficients as IEEE floating-point numbers changes five of them.
For example, the last 3 digits of the coefficient of λ4 change from 776 to 392. To
16 significant digits, the exact roots of the polynomial obtained by representing the
coefficients in floating point are as follows.
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1.000000000000001

2.000000000000960

2.999999999866400

4.000000004959441

4.999999914734143

6.000000845716607

6.999994555448452

8.000024432568939

8.999920011868348

10.000196964905369

10.999628430240644

12.000543743635912

12.999380734557898

14.000547988673800

14.999626582170547

16.000192083038474

16.999927734617732

18.000018751706040

18.999996997743892

20.000000223546401

We see that just storing the coefficients in the characteristic polynomial as double-
precision floating-point numbers changes the computed values of some of the eigen-
values in the fifth significant digit.

This particular polynomial was introduced by J. H. Wilkinson around 1960.
His perturbation of the polynomial was different than ours, but his point was the
same, namely that representing a polynomial in its power form is an unsatisfactory
way to characterize either the roots of the polynomial or the eigenvalues of the
corresponding matrix.

10.5 Symmetric and Hermitian Matrices
A real matrix is symmetric if it is equal to its transpose, A = AT . A complex
matrix is Hermitian if it is equal to its complex conjugate transpose, A = AH . The
eigenvalues and eigenvectors of a real symmetric matrix are real. Moreover, the
matrix of eigenvectors can be chosen to be orthogonal. Consequently, if A is real
and A = AT , then its eigenvalue decomposition is

A = XΛXT ,

with XTX = I = XXT . The eigenvalues of a complex Hermitian matrix turn
out to be real, although the eigenvectors must be complex. Moreover, the matrix
of eigenvectors can be chosen to be unitary. Consequently, if A is complex and
A = AH , then its eigenvalue decomposition is

A = XΛXH ,

with Λ real and XHX = I = XXH .
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For symmetric and Hermitian matrices, the eigenvalues and singular values
are obviously closely related. A nonnegative eigenvalue, λ ≥ 0, is also a singular
value, σ = λ. The corresponding vectors are equal to each other, u = v = x. A
negative eigenvalue, λ < 0, must reverse its sign to become a singular value, σ = |λ|.
One of the corresponding singular vectors is the negative of the other, u = −v = x.

10.6 Eigenvalue Sensitivity and Accuracy
The eigenvalues of some matrices are sensitive to perturbations. Small changes in
the matrix elements can lead to large changes in the eigenvalues. Roundoff errors
introduced during the computation of eigenvalues with floating-point arithmetic
have the same effect as perturbations in the original matrix. Consequently, these
roundoff errors are magnified in the computed values of sensitive eigenvalues.

To get a rough idea of this sensitivity, assume that A has a full set of linearly
independent eigenvectors and use the eigenvalue decomposition

A = XΛX−1.

Rewrite this as
Λ = X−1AX.

Now let δA denote some change in A, caused by roundoff error or any other kind
of perturbation. Then

Λ + δΛ = X−1(A+ δA)X.

Hence
δΛ = X−1δAX.

Taking matrix norms,

∥δΛ∥ ≤ ∥X−1∥∥X∥∥δA∥ = κ(X )∥δA∥,

where κ(X ) is the matrix condition number introduced in Chapter 2, Linear Equa-
tions. Note that the key factor is the condition of X, the matrix of eigenvectors,
not the condition of A itself.

This simple analysis tells us that, in terms of matrix norms, a perturbation
∥δA∥ can be magnified by a factor as large as κ(X ) in ∥δΛ∥. However, since δΛ is
usually not a diagonal matrix, this analysis does not immediately say how much the
eigenvalues themselves may be affected. Nevertheless, it leads to the correct overall
conclusion:

The sensitivity of the eigenvalues is estimated by the condition number
of the matrix of eigenvectors.

You can use the function condest to estimate the condition number of the
eigenvector matrix. For example,

A = gallery(3)

[X,lambda] = eig(A);

condest(X)
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yields

1.2002e+003

A perturbation in gallery(3) could result in perturbations in its eigenvalues that
are 1.2 ·103 times as large. This says that the eigenvalues of gallery(3) are slightly
badly conditioned.

A more detailed analysis involves the left eigenvectors, which are row vectors
yH that satisfy

yHA = λyH .

In order to investigate the sensitivity of an individual eigenvalue, assume that A
varies with a perturbation parameter and let Ȧ denote the derivative with respect
to that parameter. Differentiate both sides of the equation

Ax = λx

to get
Ȧx+Aẋ = λ̇x+ λẋ.

Multiply through by the left eigenvector:

yHȦx+ yHAẋ = yH λ̇x+ yHλẋ.

The second terms on each side of this equation are equal, so

λ̇ =
yHȦx

yHx
.

Taking norms,

|λ̇| ≤ ∥y∥∥x∥
yHx

∥Ȧ∥.

Define the eigenvalue condition number to be

κ(λ,A) =
∥y∥∥x∥
yHx

.

Then
|λ̇| ≤ κ(λ,A)∥Ȧ∥.

In other words, κ(λ,A) is the magnification factor relating a perturbation in the
matrix A to the resulting perturbation in an eigenvalue λ. Notice that κ(λ,A) is
independent of the normalization of the left and right eigenvectors, y and x, and
that

κ(λ,A) ≥ 1.

If you have already computed the matrix X whose columns are the right
eigenvectors, one way to compute the left eigenvectors is to let

Y H = X−1.
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Then, since
Y HA = ΛY H ,

the rows of Y H are the left eigenvectors. In this case, the left eigenvectors are
normalized so that

Y HX = I,

so the denominator in κ(λ,A) is yHx = 1 and

κ(λ,A) = ∥y∥∥x∥.

Since ∥x∥ ≤ ∥X∥ and ∥y∥ ≤ ∥X−1∥, we have

κ(λ,A) ≤ κ(X ).

The condition number of the eigenvector matrix is an upper bound for the individual
eigenvalue condition numbers.

The Matlab function condeig computes eigenvalue condition numbers. Con-
tinuing with the gallery(3) example,

A = gallery(3)

lambda = eig(A)

kappa = condeig(A)

yields

lambda =

1.0000

2.0000

3.0000

kappa =

603.6390

395.2366

219.2920

This indicates that λ1 = 1 is slightly more sensitive than λ2 = 2 or λ3 = 3. A
perturbation in gallery(3) may result in perturbations in its eigenvalues that are
200 to 600 times as large. This is consistent with the cruder estimate of 1.2 · 103
obtained from condest(X).

To test this analysis, let’s make a small random perturbation in A = gallery(3)

and see what happens to its eigenvalues.

format long

delta = 1.e-6;

lambda = eig(A + delta*randn(3,3))

lambda =

0.999992726236368

2.000126280342648

2.999885428250414
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The perturbation in the eigenvalues is

lambda - (1:3)’

ans =

1.0e-003 *

-0.007273763631632

0.126280342648055

-0.114571749586290

This is smaller than, but roughly the same size as, the estimates provided by
condeig and the perturbation analysis.

delta*condeig(A)

ans =

1.0e-003 *

0.603638964957869

0.395236637991454

0.219292042718315

If A is real and symmetric, or complex and Hermitian, then its right and left
eigenvectors are the same. In this case,

yHx = ∥y∥∥x∥,

so, for symmetric and Hermitian matrices,

κ(λ,A) = 1.

The eigenvalues of symmetric and Hermitian matrices are perfectly well conditioned.
Perturbations in the matrix lead to perturbations in the eigenvalues that are roughly
the same size. This is true even for multiple eigenvalues.

At the other extreme, if λk is a multiple eigenvalue that does not have a cor-
responding full set of linearly independent eigenvectors, then the previous analysis
does not apply. In this case, the characteristic polynomial for an n-by-n matrix can
be written

p(λ) = det(A− λI) = (λ− λk)
mq(λ),

where m is the multiplicity of λk and q(λ) is a polynomial of degree n − m that
does not vanish at λk. A perturbation in the matrix of size δ results in a change in
the characteristic polynomial from p(λ) = 0 to something like

p(λ) = O(δ).

In other words,
(λ− λk)

m = O(δ)/q(λ).

The roots of this equation are

λ = λk +O(δ1/m).
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This mth root behavior says that multiple eigenvalues without a full set of eigen-
vectors are extremely sensitive to perturbation.

As an artificial, but illustrative, example, consider the 16-by-16 matrix with
2’s on the main diagonal, 1’s on the superdiagonal, δ in the lower left-hand corner,
and 0’s elsewhere:

A =


2 1

2 1
. . .

. . .

2 1
δ 2

 .

The characteristic equation is
(λ− 2)16 = δ.

If δ = 0, this matrix has an eigenvalue of multiplicity 16 at λ = 2, but there is
only 1 eigenvector to go along with this multiple eigenvalue. If δ is on the order of
floating-point roundoff error, that is, δ ≈ 10−16, then the eigenvalues are on a circle
in the complex plane with center at 2 and radius

(10−16)1/16 = 0.1.

A perturbation on the size of roundoff error changes the eigenvalue from 2.0000 to
16 different values, including 1.9000, 2.1000, and 2.0924 + 0.0383i. A tiny change
in the matrix elements causes a much larger change in the eigenvalues.

Essentially the same phenomenon, but in a less obvious form, explains the
behavior of another Matlab gallery example,

A = gallery(5)

The matrix is

A =

-9 11 -21 63 -252

70 -69 141 -421 1684

-575 575 -1149 3451 -13801

3891 -3891 7782 -23345 93365

1024 -1024 2048 -6144 24572

The computed eigenvalues, obtained from lambda = eig(A), are

lambda =

-0.0408

-0.0119 + 0.0386i

-0.0119 - 0.0386i

0.0323 + 0.0230i

0.0323 - 0.0230i

How accurate are these computed eigenvalues?
The gallery(5) matrix was constructed in such a way that its characteristic

equation is
λ5 = 0.
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Figure 10.4. plot(eig(gallery(5))).

You can confirm this by noting that A5, which is computed without any roundoff
error, is the zero matrix. The characteristic equation can easily be solved by hand.
All five eigenvalues are actually equal to zero. The computed eigenvalues give little
indication that the “correct” eigenvalues are all zero. We certainly have to admit
that the computed eigenvalues are not very accurate.

The Matlab eig function is doing as well as can be expected on this problem.
The inaccuracy of the computed eigenvalues is caused by their sensitivity, not by
anything wrong with eig. The following experiment demonstrates this fact. Start
with

A = gallery(5)

e = eig(A)

plot(real(e),imag(e),’r*’,0,0,’ko’)

axis(.1*[-1 1 -1 1])

axis square

Figure 10.4 shows that the computed eigenvalues are the vertices of a regular pen-
tagon in the complex plane, centered at the origin. The radius is about 0.04.

Now repeat the experiment with a matrix where each element is perturbed
by a single roundoff error. The elements of gallery(5) vary over four orders of
magnitude, so the correct scaling of the perturbation is obtained with

e = eig(A + eps*randn(5,5).*A)

Put this statement, along with the plot and axis commands, on a single line and
use the up arrow to repeat the computation several times. You will see that the
pentagon flips orientation and that its radius varies between 0.03 and 0.07, but that
the computed eigenvalues of the perturbed problems behave pretty much like the
computed eigenvalues of the original matrix.

The experiment provides evidence for the fact that the computed eigenvalues
are the exact eigenvalues of a matrix A + E, where the elements of E are on the
order of roundoff error compared to the elements of A. This is the best we can
expect to achieve with floating-point computation.
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10.7 Singular Value Sensitivity and Accuracy
The sensitivity of singular values is much easier to characterize than the sensitivity
of eigenvalues. The singular value problem is always perfectly well conditioned. A
perturbation analysis would involve an equation like

Σ + δΣ = UH(A+ δA)V.

But, since U and V are orthogonal or unitary, they preserve norms. Consequently,
∥δΣ∥ = ∥δA∥. Perturbations of any size in any matrix cause perturbations of
roughly the same size in its singular values. There is no need to define condition
numbers for singular values because they would always be equal to one. The Mat-
lab function svd always computes singular values to full floating-point accuracy.

We have to be careful about what we mean by “same size” and “full accu-
racy.” Perturbations and accuracy are measured relative the norm of the matrix
or, equivalently, the largest singular value:

∥A∥2 = σ1.

The accuracy of the smaller singular values is measured relative to the largest one.
If, as is often the case, the singular values vary over several orders of magnitude,
the smaller ones might not have full accuracy relative to themselves. In particular,
if the matrix is singular, then some of the σi must be zero. The computed values
of these σi will usually be on the order of ϵ∥A∥, where ϵ is eps, the floating-point
accuracy parameter.

This can be illustrated with the singular values of gallery(5). The state-
ments

A = gallery(5)

format long e

svd(A)

produce

1.010353607103610e+05

1.679457384066493e+00

1.462838728086173e+00

1.080169069985614e+00

4.944703870149949e-14

The largest element of A is 93365, and we see that the largest singular value is a
little larger, about 105. There are three singular values near 100. Recall that all the
eigenvalues of this matrix are zero, so the matrix is singular and the smallest singular
value should theoretically be zero. The computed value is somewhere between ϵ and
ϵ∥A∥.
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Now let’s perturb the matrix. Let this infinite loop run for a while.

while 1

clc

svd(A+eps*randn(5,5).*A)

pause(.25)

end

This produces varying output like this.

1.010353607103610e+005

1.67945738406****e+000

1.46283872808****e+000

1.08016906998****e+000

*.****************-0**

The asterisks show the digits that change as we make the random perturbations.
The 15-digit format does not show any changes in σ1. The changes in σ2, σ3, and
σ4 are smaller than ϵ∥A∥, which is roughly 10−11. The computed value of σ5 is all
roundoff error, less than 10−11.

The gallery(5) matrix was constructed to have very special properties for
the eigenvalue problem. For the singular value problem, its behavior is typical of
any singular matrix.

10.8 Jordan and Schur Forms
The eigenvalue decomposition attempts to find a diagonal matrix Λ and a nonsin-
gular matrix X so that

A = XΛX−1.

There are two difficulties with the eigenvalue decomposition. A theoretical difficulty
is that the decomposition does not always exist. A numerical difficulty is that, even
if the decomposition exists, it might not provide a basis for robust computation.

The solution to the nonexistence difficulty is to get as close to diagonal as
possible. This leads to the Jordan canonical form (JCF). The solution to the ro-
bustness difficulty is to replace “diagonal” with “triangular” and to use orthogonal
and unitary transformations. This leads to the Schur form.

A defective matrix is a matrix with at least one multiple eigenvalue that does
not have a full set of linearly independent eigenvectors. For example, gallery(5)
is defective; zero is an eigenvalue of multiplicity five that has only one eigenvector.

The JCF is the decomposition

A = XJX−1.

If A is not defective, then the JCF is the same as the eigenvalue decomposition.
The columns of X are the eigenvectors and J = Λ is diagonal. But if A is defective,
then X consists of eigenvectors and generalized eigenvectors. The matrix J has the
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eigenvalues on the diagonal and ones on the superdiagonal in positions correspond-
ing to the columns of X that are not ordinary eigenvectors. The rest of the elements
of J are zero.

The function jordan in theMatlab Symbolic Toolbox uses unlimited-precision
rational arithmetic to try to compute the JCF of small matrices whose entries are
small integers or ratios of small integers. If the characteristic polynomial does not
have rational roots, the Symbolic Toolbox regards all the eigenvalues as distinct
and produces a diagonal JCF.

The JCF is a discontinuous function of the matrix. Almost any perturbation
of a defective matrix can cause a multiple eigenvalue to separate into distinct values
and eliminate the ones on the superdiagonal of the JCF. Matrices that are nearly
defective have badly conditioned sets of eigenvectors, and the resulting similarity
transformations cannot be used for reliable numerical computation.

A numerically satisfactory alternative to the JCF is provided by the Schur
form. Any matrix can be transformed to upper triangular form by a unitary simi-
larity transformation:

B = THAT.

The eigenvalues of A are on the diagonal of its Schur form B. Since unitary trans-
formations are perfectly well conditioned, they do not magnify any errors.

For example,

A = gallery(3)

[T,B] = schur(A)

produces

A =

-149 -50 -154

537 180 546

-27 -9 -25

T =

0.3162 -0.6529 0.6882

-0.9487 -0.2176 0.2294

0.0000 0.7255 0.6882

B =

1.0000 -7.1119 -815.8706

0 2.0000 -55.0236

0 0 3.0000

The diagonal elements of B are the eigenvalues of A. If A were symmetric, B would
be diagonal. In this case, the large off-diagonal elements of B measure the lack of
symmetry in A.

10.9 The QR Algorithm
The QR algorithm is one of the most important, widely used, and successful tools
we have in technical computation. Several variants of it are in the mathematical
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core of Matlab. They compute the eigenvalues of real symmetric matrices, real
nonsymmetric matrices, and pairs of complex matrices, and the singular values of
general matrices. These functions are used, in turn, to find zeros of polynomials,
to solve special linear systems, and to assess stability, and for many other tasks in
various toolboxes.

Dozens of people have contributed to the development of the various QR
algorithms. The first complete implementation and an important convergence analy-
sis are due to J. H. Wilkinson. Wilkinson’s book, The Algebraic Eigenvalue Problem
[56], as well as two fundamental papers, was published in 1965.

The QR algorithm is based on repeated use of the QR factorization that we
described in Chapter 5, Least Squares. The letter “Q” denotes orthogonal and uni-
tary matrices and the letter “R” denotes right, or upper, triangular matrices. The
qr function in Matlab factors any matrix, real or complex, square or rectangular,
into the product of a matrix Q with orthonormal columns and matrix R that is
nonzero only its upper, or right, triangle.

Using the qr function, a simple variant of the QR algorithm, known as the
single-shift algorithm, can be expressed as a Matlab one-liner. Let A be any square
matrix. Start with

n = size(A,1)

I = eye(n,n)

Then one step of the single-shift QR iteration is given by

s = A(n,n); [Q,R] = qr(A - s*I); A = R*Q + s*I

If you enter this on one line, you can use the up arrow key to iterate. The
quantity s is the shift; it accelerates convergence. The QR factorization makes the
matrix triangular:

A− sI = QR.

Then the reverse-order multiplication RQ restores the eigenvalues because

RQ+ sI = QT (A− sI)Q+ sI = QTAQ,

so the new A is orthogonally similar to the original A. Each iteration effectively
transfers some “mass” from the lower to the upper triangle while preserving the
eigenvalues. As the iterations are repeated, the matrix often approaches an upper
triangular matrix with the eigenvalues conveniently displayed on the diagonal.

For example, start with A = gallery(3).

-149 -50 -154

537 180 546

-27 -9 -25

The first iterate,

28.8263 -259.8671 773.9292

1.0353 -8.6686 33.1759

-0.5973 5.5786 -14.1578
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already has its largest elements in the upper triangle. After five more iterations, we
have

2.7137 -10.5427 -814.0932

-0.0767 1.4719 -76.5847

0.0006 -0.0039 1.8144

As we know, this matrix was contrived to have its eigenvalues equal to 1, 2, and 3.
We can begin to see these three values on the diagonal. Five more iterations gives

3.0716 -7.6952 802.1201

0.0193 0.9284 158.9556

-0.0000 0.0000 2.0000

One of the eigenvalues has been computed to full accuracy and the below-diagonal
element adjacent to it has become zero. It is time to deflate the problem and
continue the iteration on the 2-by-2 upper left submatrix.

The QR algorithm is never practiced in this simple form. It is always preceded
by a reduction to Hessenberg form, in which all the elements below the subdiagonal
are zero. This reduced form is preserved by the iteration, and the factorizations can
be done much more quickly. Furthermore, the shift strategy is more sophisticated
and is different for various forms of the algorithm.

The simplest variant involves real, symmetric matrices. The reduced form in
this case is tridiagonal. Wilkinson provided a shift strategy that allowed him to
prove a global convergence theorem. Even in the presence of roundoff error, we do
not know of any examples that cause the implementation in Matlab to fail.

The SVD variant of the QR algorithm is preceded by a reduction to a bidiago-
nal form that preserves the singular values. It has the same guaranteed convergence
properties as the symmetric eigenvalue iteration.

The situation for real, nonsymmetric matrices is much more complicated. In
this case, the given matrix has real elements, but its eigenvalues may well be com-
plex. Real matrices are used throughout, with a double-shift strategy that can
handle two real eigenvalues, or a complex conjugate pair. Even thirty years ago,
counterexamples to the basic iteration were known and Wilkinson introduced an
‘ad hoc’ shift to handle them. But no one has been able to prove a complete con-
vergence theorem. In principle, it is possible for the eig function in Matlab to fail
with an error message about lack of convergence.

10.10 eigsvdgui
Figures 10.5 and 10.6 are snapshots of the output produced by eigsvdgui showing
steps in the computation of the eigenvalues of a nonsymmetric matrix and of a
symmetric matrix. Figure 10.7 is a snapshot of the output produced by eigsvdgui

showing steps in the computation of the singular values of a nonsymmetric matrix.
The first phase in the computation shown in Figure 10.5 of the eigenvalues of

a real, nonsymmetric, n-by-n matrix is a sequence of n − 2 orthogonal similarity
transformations. The kth transformation uses Householder reflections to introduce
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zeros below the subdiagonal in the kth column. The result of this first phase is
known as a Hessenberg matrix; all the elements below the first subdiagonal are
zero.

for k = 1:n-2

u = A(:,k);

u(1:k) = 0;

sigma = norm(u);

if sigma ~= 0

if u(k+1) < 0, sigma = -sigma; end

u(k+1) = u(k+1) + sigma;

rho = 1/(sigma*u(k+1));

v = rho*A*u;

w = rho*(u’*A)’;

gamma = rho/2*u’*v;

v = v - gamma*u;

w = w - gamma*u;

A = A - v*u’ - u*w’;

A(k+2:n,k) = 0;

end

end

The second phase uses the QR algorithm to introduce zeros in the first subdi-
agonal. A real, nonsymmetric matrix will usually have some complex eigenvalues,
so it is not possible to completely transform it to the upper triangular Schur form.
Instead, a real Schur form with 1-by-1 and 2-by-2 submatrices on the diagonal is
produced. Each 1-by-1 matrix is a real eigenvalue of the original matrix. The
eigenvalues of each 2-by-2 block are a pair of complex conjugate eigenvalues of the
original matrix.

The computation of the eigenvalues of a symmetric matrix shown in Figure
10.6 also has two phases. The result of the first phase is a matrix that is both
symmetric and Hessenberg, so it is tridiagonal. Then, since all the eigenvalues
of a real, symmetric matrix are real, the QR iterations in the second phase can
completely zero the subdiagonal and produce a real, diagonal matrix containing the
eigenvalues.

Figure 10.7 shows the output produced by eigsvdgui as it computes the
singular values of a nonsymmetric matrix. Multiplication by any orthogonal matrix
preserves singular values, so it is not necessary to use similarity transformations.
The first phase uses a Householder reflection to introduce zeros below the diagonal
in each column, then a different Householder reflection to introduce zeros to the
right of the first superdiagonal in the corresponding row. This produces an upper
bidiagonal matrix with the same singular values as the original matrix. The QR
iterations then zero the superdiagonal to produce a diagonal matrix containing the
singular values.
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Figure 10.5. eigsvdgui, nonsymmetric matrix.

Figure 10.6. eigsvdgui, symmetric matrix.

Figure 10.7. eigsvdgui, SVD.

10.11 Principal Components
Principal component analysis, or PCA, approximates a general matrix by a sum
of a few “simple” matrices. By “simple” we mean rank one; all of the rows are
multiples of each other, and so are all of the columns. Let A be any real m-by-n
matrix. The economy-sized SVD

A = UΣV T

can be rewritten

A = E1 + E2 + · · ·+ Ep,

where p = min(m,n). The component matrices Ek are rank one outer products:

Ek = σkukv
T
k .
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Each column of Ek is a multiple of uk, the kth column of U , and each row is a
multiple of vTk , the transpose of the kth column of V . The component matrices are
orthogonal to each other in the sense that

EjE
T
k = 0, j ̸= k.

The norm of each component matrix is the corresponding singular value

∥Ek∥ = σk.

Consequently, the contribution each Ek makes to reproducing A is determined by
the size of the singular value σk.

If the sum is truncated after r < p terms,

Ar = E1 + E2 + · · ·+ Er,

the result is a rank r approximation to the original matrix A. In fact, Ar is the
closest rank r approximation to A. It turns out that the error in this approximation
is

∥A−Ar∥ = σr+1.

Since the singular values are in decreasing order, the accuracy of the approximation
increases as the rank increases.

PCA is used in a wide range of fields, including statistics, earth sciences, and
archaeology. The description and notation also vary widely. Perhaps the most
common description is in terms of eigenvalues and eigenvectors of the cross-product
matrix ATA. Since

ATAV = V Σ2,

the columns of V are the eigenvectors ATA. The columns of U , scaled by the
singular values, can then be obtained from

UΣ = AV.

The data matrix A is frequently standardized by subtracting the means of the
columns and dividing by their standard deviations. If this is done, the cross-product
matrix becomes the correlation matrix.

Factor analysis is a closely related technique that makes additional statistical
assumptions about the elements of A and modifies the diagonal elements of ATA
before computing the eigenvalues and eigenvectors.

For a simple example of PCA on the unmodified matrix A, suppose we measure
the height and weight of six subjects and obtain the following data.

A =

47 15

93 35

53 15

45 10

67 27

42 10
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Figure 10.8. PCA of data.

The dark bars in Figure 10.8 plot this data.
We expect height and weight to be strongly correlated. We believe there is one

underlying component—let’s call it “size”—that predicts both height and weight.
The statement

[U,S,V] = svd(A,0)

sigma = diag(S)

produces

U =

0.3153 0.1056

0.6349 -0.3656

0.3516 0.3259

0.2929 0.5722

0.4611 -0.4562

0.2748 0.4620

V =

0.9468 0.3219

0.3219 -0.9468

sigma =

156.4358

8.7658

Notice that σ1 is much larger than σ2.
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The rank one approximation to A is

E1 = sigma(1)*U(:,1)*V(:,1)’

E1 =

46.7021 15.8762

94.0315 31.9657

52.0806 17.7046

43.3857 14.7488

68.2871 23.2139

40.6964 13.8346

In other words, the single underlying principal component is

size = sigma(1)*U(:,1)

size =

49.3269

99.3163

55.0076

45.8240

72.1250

42.9837

The two measured quantities are then well approximated by
height ≈ size*V(1,1)

weight ≈ size*V(2,1)

The light bars in Figure 10.8 plot these approximations.

.
A larger example involves digital image processing. The statements

load detail

subplot(2,2,1)

image(X)

colormap(gray(64))

axis image, axis off

r = rank(X)

title([’rank = ’ int2str(r)])

produce the first subplot in Figure 10.9. The matrix X obtained with the load

statement is 359 by 371 and is numerically of full rank. Its elements lie between
1 and 64 and serve as indices into a gray-scale color map. The resulting picture
is a detail from Albrecht Dürer’s etching “Melancolia II,” showing a 4-by-4 magic
square. The statements

[U,S,V] = svd(X,0);

sigma = diag(S);

semilogy(sigma,’.’)
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rank = 359 rank = 1

rank = 20 rank = 100

Figure 10.9. Principal components of Dürer’s magic square.

produce the logarithmic plot of the singular values of X shown in Figure 10.10. We
see that the singular values decrease rapidly. There are one greater than 104 and
only six greater than 103.
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Figure 10.10. Singular values (log scale).

The other three subplots in Figure 10.9 show the images obtained from prin-
cipal component approximations to X with r = 1, r = 20, and r = 100. The rank
one approximation shows the horizontal and vertical lines that result from a single
outer product, E1 = σ1u1v

T
1 . This checkerboard-like structure is typical of low-
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rank principal component approximations to images. The individual numerals are
recognizable in the r = 20 approximation. There is hardly any visible difference
between the r = 100 approximation and the full-rank image.

Although low-rank matrix approximations to images do require less computer
storage and transmission time than the full-rank image, there are more effective
data compression techniques. The primary uses of PCA in image processing involve
feature recognition.

10.12 Circle Generator
The following algorithm was used to plot circles on some of the first computers
with graphical displays. At the time, there was no Matlab and no floating-point
arithmetic. Programs were written in machine language and arithmetic was done
on scaled integers. The circle-generating program looked something like this.

x = 32768

y = 0

L: load y

shift right 5 bits

add x

store in x

change sign

shift right 5 bits

add y

store in y

plot x y

go to L

Why does this generate a circle? In fact, does it actually generate a circle? There
are no trig functions, no square roots, no multiplications or divisions. It’s all done
with shifts and additions.

The key to this algorithm is the fact that the new x is used in the computation
of the new y. This was convenient on computers at the time because it meant you
needed only two storage locations, one for x and one for y. But, as we shall see, it
is also why the algorithm comes close to working at all.

Here is a Matlab version of the same algorithm.

h = 1/32;

x = 1;

y = 0;

while 1

x = x + h*y;

y = y - h*x;

plot(x,y,’.’)

drawnow

end
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The M-file circlegen lets you experiment with various values of the step size
h. It provides an actual circle in the background. Figure 10.11 shows the output for
the carefully chosen default value, h = 0.20906. It’s not quite a circle. However,
circlegen(h) generates better circles with smaller values of h. Try circlegen(h)

for various h yourself.
If we let (xn, yn) denote the nth point generated, then the iteration is

xn+1 = xn + hyn,
yn+1 = yn − hxn+1.

The key is the fact that xn+1 appears on the right in the second equation. Substi-

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

h = 0.20906

Figure 10.11. circlegen.

tuting the first equation into the second gives

xn+1 = xn + hyn,
yn+1 = −hxn + (1− h2)yn.

Let’s switch to matrix-vector notation. Let xn now denote the 2-vector spec-
ifying the nth point and let A be the circle generator matrix

A =

(
1 h
−h 1− h2

)
.

With this notation, the iteration is simply

xn+1 = Axn.
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This immediately leads to
xn = Anx0.

So, the question is, for various values of h, how do powers of the circle generator
matrix behave?

For most matrices A, the behavior of An is determined by its eigenvalues. The
Matlab statement

[X,Lambda] = eig(A)

produces a diagonal eigenvalue matrix Λ and a corresponding eigenvector matrix X
so that

AX = XΛ.

If X−1 exists, then
A = XΛX−1

and
An = XΛnX−1.

Consequently, the powers An remain bounded if the eigenvector matrix is nonsin-
gular and the eigenvalues λk, which are the diagonal elements of Λ, satisfy

|λk| ≤ 1.

Here is an easy experiment. Enter the line

h = 2*rand, A = [1 h; -h 1-h^2], lambda = eig(A), abs(lambda)

Repeatedly press the up arrow key, then the Enter key. You should eventually
become convinced, at least experimentally, of the following:

For any h in the interval 0 < h < 2, the eigenvalues of the circle gener-
ator matrix A are complex numbers with absolute value 1.

The Symbolic Toolbox provides some assistance in actually proving this fact.

syms h

A = [1 h; -h 1-h^2]

lambda = simplify(eig(A))

creates a symbolic version of the iteration matrix and finds its eigenvalues.

A =

[ 1, h]

[ -h, 1 - h^2]

lambda =

1 - h^2/2 - (h*(h^2 - 4)^(1/2))/2

(h*(h^2 - 4)^(1/2))/2 - h^2/2 + 1
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The statement

abs(lambda)

does not do anything useful, in part because we have not yet made any assumptions
about the symbolic variable h.

We note that the eigenvalues will be complex if the quantity involved in the
square root is negative, that is, if |h| < 2. The determinant of a matrix should be
the product of its eigenvalues. This is confirmed with

d = det(A)

or

d = simple(prod(lambda))

Both produce

d =

1

Consequently, if |h| < 2, the eigenvalues, λ, are complex and their product is 1, so
they must satisfy |λ| = 1.

Because
λ = 1− h2/2± h

√
−1 + h2/4,

it is plausible that, if we define θ by

cos θ = 1− h2/2

or
sin θ = h

√
1− h2/4,

then
λ = cos θ ± i sin θ.

The Symbolic Toolbox confirms this with

assume(h,’real’)

assumeAlso(h>0 & h<2)

theta = acos(1-h^2/2);

Lambda = [cos(theta)-i*sin(theta); cos(theta)+i*sin(theta)]

diff = simple(lambda-Lambda)

which produces

Lambda =

1 - h^2/2 - (1 - (h^2/2 - 1)^2)^(1/2)*i

(1 - (h^2/2 - 1)^2)^(1/2)*i - h^2/2 + 1

diff =

0

0
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In summary, this proves that, if |h| < 2, the eigenvalues of the circle generator
matrix are

λ = e±iθ.

The eigenvalues are distinct, and hence X must be nonsingular and

An = X

(
einθ 0
0 e−inθ

)
X−1.

If the step size h happens to correspond to a value of θ that is 2π/p, where p
is an integer, then the algorithm generates only p discrete points before it repeats
itself.

How close does our circle generator come to actually generating circles? In
fact, it generates ellipses. As the step size h gets smaller, the ellipses get closer to
circles. The aspect ratio of an ellipse is the ratio of its major axis to its minor axis.
It turns out that the aspect ratio of the ellipse produced by the generator is equal
to the condition number of the matrix of eigenvectors, X. The condition number of
a matrix is computed by the Matlab function cond(X) and is discussed in more
detail in Chapter 2, Linear Equations.

The solution to the 2-by-2 system of ordinary differential equations

ẋ = Qx,

where

Q =

(
0 1
−1 0

)
,

is a circle

x(t) =

(
cos t sin t
− sin t cos t

)
x(0).

So the iteration matrix (
cosh sinh
− sinh cosh

)
generates perfect circles. The Taylor series for cosh and sinh show that the iteration
matrix for our circle generator,

A =

(
1 h
−h 1− h2

)
,

approaches the perfect iterator as h gets small.

10.13 Further Reading
The reference books on matrix computation [6, 7, 8, 9, 10, 11] discuss eigenvalues.
In addition, the classic by Wilkinson [1] is still readable and relevant. ARPACK,
which underlies the sparse eigs function, is described in [2].
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Exercises
10.1. Match the following matrices to the following properties. For each matrix,

choose the most descriptive property. Each property can be matched to one
or more of the matrices.

magic(4) Symmetric
hess(magic(4)) Defective
schur(magic(5)) Orthogonal
pascal(6) Singular
hess(pascal(6)) Tridiagonal
schur(pascal(6)) Diagonal
orth(gallery(3)) Hessenberg form
gallery(5) Schur form
gallery(’frank’,12) Jordan form
[1 1 0; 0 2 1; 0 0 3]

[2 1 0; 0 2 1; 0 0 2]

10.2. (a) What is the largest eigenvalue of magic(n)? Why?
(b) What is the largest singular value of magic(n)? Why?

10.3. As a function of n, what are the eigenvalues of the n-by-n Fourier matrix,
fft(eye(n))?

10.4. Try this:

n = 101;

d = ones(n-1,1);

A = diag(d,1) + diag(d,-1);

e = eig(A)

plot(-(n-1)/2:(n-1)/2,e,’.’)

Do you recognize the resulting curve? Can you guess a formula for the eigen-
values of this matrix?

10.5. Plot the trajectories in the complex plane of the eigenvalues of the matrix A
with elements

ai,j =
1

i− j + t

as t varies over the interval 0 < t < 1. Your plot should look something like
Figure 10.12.

10.6. (a) In theory, the elements of the vector obtained from

condeig(gallery(5))

should be infinite. Why?
(b) In practice, the computed values are only about 1010. Why?
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Figure 10.12. Eigenvalue trajectories.

10.7. This exercise uses the Symbolic Toolbox to study a classic eigenvalue test
matrix, the Rosser matrix.
(a) You can compute the eigenvalues of the Rosser matrix exactly and order
them in increasing order with

R = sym(rosser)

e = eig(R)

[ignore,k] = sort(double(e))

e = e(k)

Why can’t you just use e = sort(eig(R))?
(b) You can compute and display the characteristic polynomial of R with

p = charpoly(R,’x’)

f = factor(p)

pretty(f)

Which terms in f correspond to which eigenvalues in e?
(c) What does each of these statements do?

e = eig(sym(rosser))

r = eig(rosser)

double(e) - r

double(e - r)

(d) Why are the results in (c) on the order of 10−12 instead of eps?
(e) Change R(1,1) from 611 to 612 and compute the eigenvalues of the
modified matrix. Why do the results appear in a different form?
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10.8. Both of the matrices

P = gallery(’pascal’,12)

F = gallery(’frank’,12)

have the property that, if λ is an eigenvalue, so is 1/λ. How well do the
computed eigenvalues preserve this property? Use condeig to explain the
different behavior for the two matrices.

10.9. Compare these three ways to compute the singular values of a matrix.

svd(A)

sqrt(eig(A’*A))

Z = zeros(size(A)); s = eig([Z A; A’ Z]); s = s(s>0)

10.10. Experiment with eigsvdgui on random symmetric and nonsymmetric ma-
trices, randn(n). Choose values of n appropriate for the speed of your com-
puter and investigate the three variants eig, symm, and svd. The title in the
eigsvdgui shows the number of iterations required. Roughly, how does the
number of iterations for the three different variants depend upon the order
of the matrix?

10.11. Pick a value of n and generate a matrix with

A = diag(ones(n-1,1),-1) + diag(1,n-1);

Explain any atypical behavior you observe with each of the following.

eigsvdgui(A,’eig’)

eigsvdgui(A,’symm’)

eigsvdgui(A,’svd’)

10.12. The NCM file imagesvd.m helps you investigate the use of PCA in digital
image processing. If you have them available, use your own photographs. If
you have access to the Matlab Image Processing Toolbox, you may want to
use its advanced features. However, it is possible to do basic image processing
without the toolbox.
For an m-by-n color image in JPEG format, the statement

X = imread(’myphoto.jpg’);

produces a three-dimensionalm-by-n-by-3 array X withm-by-n integer subar-
rays for the red, green, and blue intensities. It would be possible to compute
three separate m-by-n SVDs of the three colors. An alternative that requires
less work involves altering the dimensions of X with

X = reshape(X,m,3*n)

and then computing one m-by-3n SVD.
(a) The primary computation in imagesvd is done by

[V,S,U] = svd(X’,0)
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How does this compare with

[U,S,V] = svd(X,0)

(b) How does the choice of approximating rank affect the visual qualities of
the images? There are no precise answers here. Your results will depend
upon the images you choose and the judgments you make.

10.13. This exercise investigates a model of the human gait developed by Nikolaus
Troje at the Bio Motion Lab of Ruhr University in Bochum, Germany. Their
Web page provides an interactive demo [3]. Two papers describing the work
are also available on the Web [4, 5]. Troje’s data result from motion capture
experiments involving subjects wearing reflective markers walking on a tread-
mill. His model is a five-term Fourier series with vector-valued coefficients
obtained by principal component analysis of the experimental data. The
components, which are also known as postures or eigenpostures, correspond
to static position, forward motion, sideways sway, and two hopping/bouncing
movements that differ in the phase relationship between the upper and lower
portions of the body. The model is purely descriptive; it does not make any
direct use of physical laws of motion.
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Figure 10.13. Walker at rest.

The moving position v(t) of the human body is described by 45 functions
of time, which correspond to the location of 15 points in three-dimensional
space. Figure 10.13 is a static snapshot. The model is

v(t) = v1 + v2 sinωt+ v3 cosωt+ v4 sin 2ωt+ v5 cos 2ωt.

If the postures v1, . . . , v5 are regarded as the columns of a single 45-by-5 ma-
trix V , the calculation of v(t) for any t involves a matrix-vector multiplication.
The resulting vector can then be reshaped into a 15-by-3 array that exposes
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the spatial coordinates. For example, at t = 0, the time-varying coefficients
form the vector w = [1 0 1 0 1]’. Consequently, reshape(V*w,15,3) pro-
duces the coordinates of the initial position. The five postures for an indi-
vidual subject are obtained by a combination of principal component and
Fourier analysis. The individual characteristic frequency ω is an independent
speed parameter. If the postures are averaged over the subjects with a par-
ticular characteristic, the result is a model for the “typical” walker with that
characteristic. The characteristics available in the demo on the Web page in-
clude male/female, heavy/light, nervous/relaxed, and happy/sad. Our M-file
walker.m is based on the postures for a typical female walker, f1,. . . ,f5, and
a typical male walker, m1, . . . ,m5. Slider s1 varies the time increment and
hence the apparent walking speed. Sliders s2, . . . , s5 vary the amount that
each component contributes to the overall motion. Slider s6 varies a linear
combination of the female and male walkers. A slider setting greater than
1.0 overemphasizes the characteristic. Here is the complete model, including
the sliders:

f(t) = f1 + s2f2 sinωt+ s3f3 cosωt+ s4f4 sin 2ωt+ s5f5 cos 2ωt,

m(t) = m1 + s2m2 sinωt+ s3m3 cosωt+ s4m4 sin 2ωt+ s5m5 cos 2ωt,

v(t) = (f(t) +m(t))/2 + s6(f(t)−m(t))/2.

(a) Describe the visual differences between the gaits of the typical female and
male walkers.
(b) File walkers.mat contains four data sets. F and M are the postures of the
typical female and typical male obtained by analyzing all the subjects. A and
B are the postures of two individual subjects. Are A and B male or female?
(c) Modify walker.m to add a waving hand as an additional, artificial, pos-
ture.
(d) What does this program do?

load walkers

F = reshape(F,15,3,5);

M = reshape(M,15,3,5);

for k = 1:5

for j = 1:3

subplot(5,3,j+3*(k-1))

plot([F(:,j,k) M(:,j,k)])

ax = axis;

axis([1 15 ax(3:4)])

end

end

(e) Change walker.m to use a Fourier model parametrized by amplitude and
phase. The female walker is

f(t) = f1 + s2a1 sin (ωt+ s3ϕ1) + s4a2 sin (2ωt+ s5ϕ2).
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A similar formulation is used for the male walker. The linear combination of
the two walkers using s6 is unchanged. The amplitude and phase are

a1 =
√
f2
2 + f2

3 ,

a2 =
√
f2
4 + f2

5 ,

ϕ1 = tan−1(f3/f2),
ϕ2 = tan−1(f5/f4).

10.14. In English, and in many other languages, vowels are usually followed by con-
sonants and consonants are usually followed by vowels. This fact is revealed
by a principal component analysis of the digraph frequency matrix for a sam-
ple of text. English text uses 26 letters, so the digraph frequency matrix is
a 26-by-26 matrix, A, with counts of pairs of letters. Blanks and all other
punctuation are removed from the text and the entire sample is thought of
as circular or periodic, so the first letter follows the last letter. The matrix
entry ai,j is the number of times the ith letter is followed by the jth letter
in the text. The row and column sums of A are the same; they count the
number of times individual letters occur in the sample. So the fifth row and
fifth column usually have the largest sums because the fifth letter, which is
“E,” is usually the most frequent.
A principal component analysis of A produces a first component,

A ≈ σ1u1v
T
1 ,

that reflects the individual letter frequencies. The first right- and left-singular
vectors, u1 and v1, have elements that are all of the same sign and that are
roughly proportional to the corresponding frequencies. We are primarily
interested in the second principal component,

A ≈ σ1u1v
T
1 + σ2u2v

T
2 .

The second term has positive entries in vowel-consonant and consonant-vowel
positions and negative entries in vowel-vowel and consonant-consonant posi-
tions. The NCM collection contains a function digraph.m that carries out
this analysis. Figure 10.14 shows the output produced by analyzing Lincoln’s
Gettysburg Address with

digraph(’gettysburg.txt’)

The ith letter of the alphabet is plotted at coordinates (ui,2, vi,2). The dis-
tance of each letter from the origin is roughly proportional to its frequency,
and the sign patterns cause the vowels to be plotted in one quadrant and
the consonants to be plotted in the opposite quadrant. There is more detail.
The letter “N” is usually preceded by a vowel and often followed by another
consonant, like “D” or “G,” and so it shows up in a quadrant pretty much
by itself. On the other hand, “H” is often preceded by another consonant,
namely “T,” and followed by a vowel, “E,” so it also gets its own quadrant.
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Figure 10.14. The second principal component of a digraph matrix.

(a) Explain how digraph uses sparse to count letter pairs and create the
matrix. help sparse should be useful.
(b) Try digraph on other text samples. Roughly how many characters are
needed to see the vowel-consonant frequency behavior?
(c) Can you find any text with at least several hundred characters that does
not show the typical behavior?
(d) Try digraph on M-files or other source code. Do computer programs typ-
ically have the same vowel-consonant behavior as prose?
(e) Try digraph on samples from other languages. Hawaiian and Finnish
are particularly interesting. You may need to modify digraph to accom-
modate more or fewer than 26 letters. Do other languages show the same
vowel-consonant behavior as English?

10.15. Explain the behavior of circlegen for each of the following values of the
step size h. What, if anything, is special about these particular values? Is
the orbit a discrete set of points? Does the orbit stay bounded, grow linearly,
or grow exponentially? If necessary, increase the axis limits in circlegen so
that it shows the entire orbit. Recall that ϕ = (1+

√
5)/2 is the golden ratio:

h =
√

2− 2 cos (2π/30) (the default),
h = 1/ϕ,
h = ϕ,
h = 1.4140,
h =

√
2,

h = 1.4144,
h < 2,
h = 2,
h > 2.
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10.16. (a) Modify circlegen so that both components of the new point are deter-
mined from the old point, that is,

xn+1 = xn + hyn,
yn+1 = yn − hxn.

(This is the explicit Euler’s method for solving the circle ordinary differential
equation.) What happens to the “circles”? What is the iteration matrix?
What are its eigenvalues?
(b) Modify circlegen so that the new point is determined by solving a 2-by-2
system of simultaneous equations:

xn+1 − hyn+1 = xn,
yn+1 + hxn+1 = yn.

(This is the implicit Euler’s method for solving the circle ordinary differential
equation.) What happens to the “circles”? What is the iteration matrix?
What are its eigenvalues?

10.17. Modify circlegen so that it keeps track of the maximum and minimum
radius during the iteration and returns the ratio of these two radii as the value
of the function. Compare this computed aspect ratio with the eigenvector
condition number, cond(X), for various values of h.
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