Starting diary file "diary-2016-02-10.txt" on Wed Feb 10 2016 12:29 PM.

load midtermgrades

max(G)
ans =
    98

sum(G == 98)
ans =
     2

median(G)
ans =
    82

mean(G)
ans =
   78.0943

hist(G, 0:10:100)
clc

A = randn(4)
A =
   -1.9184    0.0772   -1.8290   -0.2273
   -0.1311    0.3756    2.0915    1.5938
   -0.7686    0.3956    0.3591    0.1552
    2.3900   -0.1125   -0.7943    0.1786

max(max(abs(A)))
ans =
    2.3900

norm(A)
ans =
    3.3650

norm(A,2)
ans =
    3.3650

clear
clc

A = [2 -1 0 ; -1 2 -1 ; 0 -1 2]
A =
     2    -1     0
    -1     2    -1
     0    -1     2

[V,D] = eig(A)
V =
   -0.5000   -0.7071    0.5000
   -0.7071    0.0000   -0.7071
   -0.5000    0.7071    0.5000

D =
    0.5858         0         0
         0    2.0000         0
         0         0    3.4142

v1 = V(:,1)
v1 =
   -0.5000
   -0.7071
   -0.5000

v2 = V(:,2)
v2 =
   -0.7071
    0.0000
    0.7071

A*v1
ans =
   -0.2929
   -0.4142
   -0.2929

D(1,1)*v1
ans =
   -0.2929
   -0.4142
   -0.2929

size(v1)
ans =
     3     1
size(v2)
ans =
     3     1

v1' * v2
ans =
   2.2204e-16

V
V =
   -0.5000   -0.7071    0.5000
   -0.7071    0.0000   -0.7071
   -0.5000    0.7071    0.5000

V' 
ans =
   -0.5000   -0.7071   -0.5000
   -0.7071    0.0000    0.7071
    0.5000   -0.7071    0.5000

V' * V
ans =
    1.0000    0.0000   -0.0000
    0.0000    1.0000   -0.0000
   -0.0000   -0.0000    1.0000

V
V =
   -0.5000   -0.7071    0.5000
   -0.7071    0.0000   -0.7071
   -0.5000    0.7071    0.5000

A*V - V* D
ans =
   1.0e-15 *
   -0.4441   -0.4441         0
    0.3886    0.3747   -0.4441
    0.1110         0   -0.2220

lambda = diag(D)
lambda =
    0.5858
    2.0000
    3.4142

v1 = V(:,1)
v1 =
   -0.5000
   -0.7071
   -0.5000

v2 = V(:,2)
v2 =
   -0.7071
    0.0000
    0.7071

v3 = V(:,3)
v3 =
    0.5000
   -0.7071
    0.5000

A1 = v1 * lambda(1) * v1'
A1 =
    0.1464    0.2071    0.1464
    0.2071    0.2929    0.2071
    0.1464    0.2071    0.1464

A2 = v2 * lambda(2) * v2'
A2 =
    1.0000   -0.0000   -1.0000
   -0.0000    0.0000    0.0000
   -1.0000    0.0000    1.0000

A3 = v3 * lambda(3) * v3'
A3 =
    0.8536   -1.2071    0.8536
   -1.2071    1.7071   -1.2071
    0.8536   -1.2071    0.8536

A1+A2+A3
ans =
    2.0000   -1.0000    0.0000
   -1.0000    2.0000   -1.0000
    0.0000   -1.0000    2.0000
A
A =
     2    -1     0
    -1     2    -1
     0    -1     2
clc
clear

load temperature
whos
  Name          Size                Bytes  Class     Attributes

  A100      10000x10000            873608  double    sparse    
  A4           16x16                 2048  double              
  b100      10000x1                 80000  double              
  b4           16x1                   128  double              

A = A4
A =
  Columns 1 through 9
     4    -1     0     0    -1     0     0     0     0
    -1     4    -1     0     0    -1     0     0     0
     0    -1     4    -1     0     0    -1     0     0
     0     0    -1     4     0     0     0    -1     0
    -1     0     0     0     4    -1     0     0    -1
     0    -1     0     0    -1     4    -1     0     0
     0     0    -1     0     0    -1     4    -1     0
     0     0     0    -1     0     0    -1     4     0
     0     0     0     0    -1     0     0     0     4
     0     0     0     0     0    -1     0     0    -1
     0     0     0     0     0     0    -1     0     0
     0     0     0     0     0     0     0    -1     0
     0     0     0     0     0     0     0     0    -1
     0     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     0     0
  Columns 10 through 16
     0     0     0     0     0     0     0
     0     0     0     0     0     0     0
     0     0     0     0     0     0     0
     0     0     0     0     0     0     0
     0     0     0     0     0     0     0
    -1     0     0     0     0     0     0
     0    -1     0     0     0     0     0
     0     0    -1     0     0     0     0
    -1     0     0    -1     0     0     0
     4    -1     0     0    -1     0     0
    -1     4    -1     0     0    -1     0
     0    -1     4     0     0     0    -1
     0     0     0     4    -1     0     0
    -1     0     0    -1     4    -1     0
     0    -1     0     0    -1     4    -1
     0     0    -1     0     0    -1     4

spy(A)

[V, D] =eig(A);
V
V =
  ...

diag(D)
ans =
    0.7639
    1.7639
    1.7639
    2.7639
    3.0000
    3.0000
    4.0000
    4.0000
    4.0000
    4.0000
    5.0000
    5.0000
    5.2361
    6.2361
    6.2361
    7.2361

spynum(A)
approximation(A)
clc

spy

S =spyimg;
size(S)
ans =
   108    91
rank(S)
ans =
    87
approximation(S)