Starting diary file "diary-2016-02-10.txt" on Wed Feb 10 2016 12:29 PM. load midtermgrades max(G) ans = 98 sum(G == 98) ans = 2 median(G) ans = 82 mean(G) ans = 78.0943 hist(G, 0:10:100) clc A = randn(4) A = -1.9184 0.0772 -1.8290 -0.2273 -0.1311 0.3756 2.0915 1.5938 -0.7686 0.3956 0.3591 0.1552 2.3900 -0.1125 -0.7943 0.1786 max(max(abs(A))) ans = 2.3900 norm(A) ans = 3.3650 norm(A,2) ans = 3.3650 clear clc A = [2 -1 0 ; -1 2 -1 ; 0 -1 2] A = 2 -1 0 -1 2 -1 0 -1 2 [V,D] = eig(A) V = -0.5000 -0.7071 0.5000 -0.7071 0.0000 -0.7071 -0.5000 0.7071 0.5000 D = 0.5858 0 0 0 2.0000 0 0 0 3.4142 v1 = V(:,1) v1 = -0.5000 -0.7071 -0.5000 v2 = V(:,2) v2 = -0.7071 0.0000 0.7071 A*v1 ans = -0.2929 -0.4142 -0.2929 D(1,1)*v1 ans = -0.2929 -0.4142 -0.2929 size(v1) ans = 3 1 size(v2) ans = 3 1 v1' * v2 ans = 2.2204e-16 V V = -0.5000 -0.7071 0.5000 -0.7071 0.0000 -0.7071 -0.5000 0.7071 0.5000 V' ans = -0.5000 -0.7071 -0.5000 -0.7071 0.0000 0.7071 0.5000 -0.7071 0.5000 V' * V ans = 1.0000 0.0000 -0.0000 0.0000 1.0000 -0.0000 -0.0000 -0.0000 1.0000 V V = -0.5000 -0.7071 0.5000 -0.7071 0.0000 -0.7071 -0.5000 0.7071 0.5000 A*V - V* D ans = 1.0e-15 * -0.4441 -0.4441 0 0.3886 0.3747 -0.4441 0.1110 0 -0.2220 lambda = diag(D) lambda = 0.5858 2.0000 3.4142 v1 = V(:,1) v1 = -0.5000 -0.7071 -0.5000 v2 = V(:,2) v2 = -0.7071 0.0000 0.7071 v3 = V(:,3) v3 = 0.5000 -0.7071 0.5000 A1 = v1 * lambda(1) * v1' A1 = 0.1464 0.2071 0.1464 0.2071 0.2929 0.2071 0.1464 0.2071 0.1464 A2 = v2 * lambda(2) * v2' A2 = 1.0000 -0.0000 -1.0000 -0.0000 0.0000 0.0000 -1.0000 0.0000 1.0000 A3 = v3 * lambda(3) * v3' A3 = 0.8536 -1.2071 0.8536 -1.2071 1.7071 -1.2071 0.8536 -1.2071 0.8536 A1+A2+A3 ans = 2.0000 -1.0000 0.0000 -1.0000 2.0000 -1.0000 0.0000 -1.0000 2.0000 A A = 2 -1 0 -1 2 -1 0 -1 2 clc clear load temperature whos Name Size Bytes Class Attributes A100 10000x10000 873608 double sparse A4 16x16 2048 double b100 10000x1 80000 double b4 16x1 128 double A = A4 A = Columns 1 through 9 4 -1 0 0 -1 0 0 0 0 -1 4 -1 0 0 -1 0 0 0 0 -1 4 -1 0 0 -1 0 0 0 0 -1 4 0 0 0 -1 0 -1 0 0 0 4 -1 0 0 -1 0 -1 0 0 -1 4 -1 0 0 0 0 -1 0 0 -1 4 -1 0 0 0 0 -1 0 0 -1 4 0 0 0 0 0 -1 0 0 0 4 0 0 0 0 0 -1 0 0 -1 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Columns 10 through 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 -1 0 0 0 0 -1 0 0 -1 0 0 0 4 -1 0 0 -1 0 0 -1 4 -1 0 0 -1 0 0 -1 4 0 0 0 -1 0 0 0 4 -1 0 0 -1 0 0 -1 4 -1 0 0 -1 0 0 -1 4 -1 0 0 -1 0 0 -1 4 spy(A) [V, D] =eig(A); V V = ... diag(D) ans = 0.7639 1.7639 1.7639 2.7639 3.0000 3.0000 4.0000 4.0000 4.0000 4.0000 5.0000 5.0000 5.2361 6.2361 6.2361 7.2361 spynum(A) approximation(A) clc spy S =spyimg; size(S) ans = 108 91 rank(S) ans = 87 approximation(S)