Solving a system?

$$
A x=b
$$

Is dividing by the left the same as dividing by the right?
$A x=b$ is not the same as $x A=b$.

Careful with the divide, Eugene!

$A x=b$ is not the same as $x A=b$.
So be careful when you do a division!

$$
\begin{gathered}
A x=b \\
A^{-1} A x=A^{-1} b \\
x=A^{-1} b
\end{gathered}
$$

Solving the system

In general, you don't want to calculate an inverse. An inverse might lose information.

$$
\begin{gathered}
x=147 / 49=3 \\
x=(1 / 49) * 147=3.00000 \\
\text { What is wrong here? }
\end{gathered}
$$

The LU Decomposition

$$
[L, U, P]=l u(A)
$$

L is a lower triangular matrix
U is an upper triangular matrix
P is the permulation matrix, and

$$
L U=P A
$$

Diagonal systems are easier to solve

$U y=b$ can be solved by back substitution.

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
0 & 5 & 2 \\
0 & 0 & 4
\end{array}\right) x=\left(\begin{array}{l}
3 \\
4 \\
6
\end{array}\right)
$$

Similarly, $L x=b$ can be solved by forward substitution.

Gaussian Elimination

- Problem

$$
\begin{aligned}
& 2 x_{1}+1 x_{2}+1 x_{3}=4 \\
& 1 x_{1}+4 x_{2}+1 x_{3}=6 \\
& 2 x_{1}+2 x_{2}+6 x_{3}=10
\end{aligned}
$$

- Step one:

$$
\begin{aligned}
& A(2,:)=A(2,:)-A(1,:) / 2 \\
& 2 x_{1}+1 x_{2}+1 x_{3}=4 \\
& 0 x_{1}+7 / 2 x_{2}+1 / 2 x_{3}=4 \\
& 2 x_{1}+2 x_{2}+6 x_{3}=10
\end{aligned}
$$

- Step three:

$$
A(3,:)=A(3,:) / 2-A(1,:) / 2
$$

$$
\begin{aligned}
& 2 x_{1}+1 x_{2}+1 x_{3}=4 \\
& 0 x_{1}+7 / 2 x_{2}+1 / 2 x_{3}=4 \\
& 0 x_{1}+1 / 2 x_{2}+5 / 2 x_{3}=3
\end{aligned}
$$

- Step four:
$A(3,:)=A(3,:) * 2-A(2,:) * 2 / 7$
$2 x_{1}+1 x_{2}+1 x_{3}=4$
$0 x_{1}+7 / 2 x_{2}+1 / 2 x_{3}=4$
$0 x_{1}+0 x_{2}+34 / 7 x_{3}=34 / 7$

Phew!

But wait!

The A looks suspiciously familiar! Indeed, $U=A$ after doing these steps. So in effect, Gaussian Elimination is doing an $L U$ decomposition. We can get the L as well, if we keep the constants used to obtain U in this fashion. The permutation matrix P, helps us pivot on the correct value, to ensure numerical stability.

Now what?

To solve $A x=b$, do the following

- $[L, U, P]=l u(A)$
- $L y=P b$
- $U x=y$

The two triangular solves are very easy, and most of the work is in the LU decomposition.

