CS110a Winter 2005 Midterm

Name:

Perm No:

Open book and notes, no computers. Raise your hand if you have any doubt.

1. [20 points, 5 per part] Let x, p, and A be defined by the Matlab statements:
$\mathrm{x}=[314159] ;$
$\mathrm{p}=\left[\begin{array}{lll}3 & 1 & 2\end{array}\right]$;
$A=[123$; $456 ; 789]$;
What is the value of y after each of the following?
(a) $y=x(p)$
(b) $y(p)=x$
(c) $y=A\left(\left[\begin{array}{ll}1 & 1],:)\end{array}\right.\right.$
(d) $y=A(p, p)$
2. [20 points, 10 per part] What is the output? Show at least the first 3 lines and last 3 lines. Partial credit for answers that have the right idea but not quite the right numbers.
(a) $\mathrm{x}=1$;
while $x+x>x$;
$x=10 * x$
end;
(b) $\mathrm{x}=1$;
while $1+x>x ;$
$\mathrm{x}=10 * \mathrm{x}$
end;
3. [20 points, 10 per part]
(a) Suppose A is an n by n symmetric, positive definite matrix and b is a column vector of dimension n. Recall that the Cholesky factor R of A is the upper triangular matrix such that $\mathrm{R}, * \mathrm{R}=\mathrm{A}$. Fill in the blanks below to compute the solution x to $\mathrm{A} * \mathrm{x}=\mathrm{b}$. You may use R but not A .
$R=\operatorname{chol}(A) ;$
$\mathrm{y}=$
 \backslash
--_-_-_- ;
$\mathrm{x}=$ \qquad \backslash \qquad
(b) Now suppose in addition that p is a permutation vector, that is, a vector whose elements are the integers 1 through n in some order. Fill in the blanks to compute the solution x to $\mathrm{A} * \mathrm{x}=\mathrm{b}$. Again you may not use A.
$R=\operatorname{chol}(A(p, p)) ;$

4. [21 points, 3 per part] Suppose that:
```
A = [1 1 1 ; 1 2 3 ; 1 3 6];
x = A \ [6 ; 14 ; 25];
y = A * [4 ; -1 ; 0];
[L,U,p] = lutx(A);
R = chol(A);
C = inv(A);
```

Choose an answer 1-7 to match each letter:
(a) x _--
(e) p _-_
(b) y _--
(f) R _-_
(c) L _-_
(g) C _-_
(d) U _--
(1) $\begin{array}{lll}1 & 0 & 0 \\ & 1 & 1\end{array} 0$

1 . 5 1
(6) 1

2
3
(2) 3
$\begin{array}{lll}-3 & 5 & -2\end{array}$
$\begin{array}{lll}1 & -2 & 1\end{array}$
(7) 1

3
2
(3) $1 \begin{array}{lll}\text { (3) } & 1 & 1\end{array}$
$\begin{array}{lll}0 & 2 & 5 \\ 0 & 0 & -.5\end{array}$
(4) $1 \begin{array}{lll}1 & 1\end{array}$
$0 \quad 1 \quad 2$
$0 \quad 0 \quad 1$
(5) 3

2
1
5. [19 points] Find a 3 by 3 matrix A and a 3 -vector b such that $\mathrm{x}=\mathrm{bslashtx}(\mathrm{A}, \mathrm{b})$
will produce the message
Warning: Divide by zero

