The "model problem"

- Graph is a regular square grid with n = k² vertices.
- For each i from 1 to n, except on the boundaries:

 $-x(i-k) - x(i-1) + 4^{*}x(i) - x(i+1) - x(i+k) = 0$

- n equations in n unknowns: $A^*x = b$
- Each row of A has at most 5 nonzeros.

Sparse matrix data structure (one example)

• Full:

- 2-dimensional array of real or complex numbers
- (nrows*ncols) memory

- Sparse:
 - compressed column storage (CSC)
 - about (2*nzs + ncols) memory

Graphs and Matrices

- Starting with the matrix:
 - One graph vertex for each row (or column) of the matrix
 - One graph edge (i,j) for each nonzero A(j,i) in the matrix
 - (Some people point the edges the opposite way, from rows to columns; either way is ok as long as it's consistent.)
- Or, starting with the graph:
 - The adjacency matrix has A(j,i)=1 if (i,j) is an edge.

Graphs and Sparse Matrices: Cholesky factorization

Fill: new nonzeros in factor

Symmetric Gaussian elimination: for j = 1 to n add edges between j's higher-numbered neighbors

G(A)

G⁺(A) [chordal]

Google and the Random Surfer

- An important page is one that lots of important pages point to.
- Start at any web page and follow links at random. Forever.
- You'll see "important" pages more often than unimportant ones.

Analyzing the Web with graphs and matrices

- Graph nodes are web pages
- Arrows between nodes are links between web pages
- Matrix entries are links from "column" pages to "row" pages
- The Page Rank comes from algebra on the matrix

Analyzing the Web with graphs and matrices

- Graph nodes are web pages
- Arrows between nodes are links between web pages
- Matrix entries are links from "column" pages to "row" pages
- The Page Rank comes from algebra on the matrix
- The matrix has about 1,000,000,000,000 rows & columns

Random Surfer Rule

An important page is one that many important pages point to.

- If there are no links out of this page, choose a page at random.
- Otherwise, with probability p (= .85), follow a random link out of this page.
- Or, with probability 1-p (= .15), choose a page at random.

A Page Rank Matrix

- Importance ranking of web pages
- Stationary distribution of a Markov chain
- Power method: matvec and vector arithmetic
- Matlab*P page ranking demo (from SC'03) on a web crawl of mit.edu (170,000 pages)

