The "model problem"

- Graph is a regular square grid with $\mathrm{n}=\mathrm{k}^{2}$ vertices.
- For each i from 1 to n , except on the boundaries:

$$
-x(i-k)-x(i-1)+4^{*} x(i)-x(i+1)-x(i+k)=0
$$

- n equations in n unknowns: $\mathrm{A}^{*} \mathrm{x}=\mathrm{b}$
- Each row of A has at most 5 nonzeros.

Sparse matrix data structure (one example)

31	0	53
0	59	0
41	26	0

- (nrows*ncols) memory
- 2-dimensional array of real or complex numbers

- Sparse:
- compressed column storage (CSC)
- about (2*nzs + ncols) memory

Graphs and Matrices

- Starting with the matrix:
- One graph vertex for each row (or column) of the matrix
- One graph edge (i,j) for each nonzero $A(j, i)$ in the matrix
- (Some people point the edges the opposite way, from rows to columns; either way is ok as long as it's consistent.)
- Or, starting with the graph:
- The adjacency matrix has $A(j, i)=1$ if (i, j) is an edge.

Graphs and Sparse Matrices: Cholesky factorization

Fill: new nonzeros in factor

G(A)

$\mathrm{G}^{+}(\mathrm{A})$
[chordal]

Symmetric Gaussian elimination: for $\mathbf{j}=1$ to n add edges between j's higher-numbered neighbors

Google and the Random Surfer

How does Google figure out which web pages are most important?

- An important page is one that lots of important pages point to.
- Start at any web page and follow links at random. Forever.
- You'll see "important" pages more often than unimportant ones.

Analyzing the Web with graphs and matrices

- Graph nodes are web pages
- Arrows between nodes are links between web pages
- Matrix entries are links from "column" pages to "row" pages
- The Page Rank comes from algebra on the matrix

Analyzing the Web with graphs and matrices

- Graph nodes are web pages
- Arrows between nodes are links between web pages
- Matrix entries are links from "column" pages to "row" pages
- The Page Rank comes from algebra on the matrix
- The matrix has about 1,000,000,000,000 rows \& columns

Random Surfer Rule

An important page is one that many important pages point to.

- If there are no links out of this page, choose a page at random.
- Otherwise, with probability p (= .85), follow a random link out of this page.
- Or, with probability 1-p (= .15), choose a page at random.

A Page Rank Matrix

- Importance ranking of web pages
-Stationary distribution of a Markov chain
-Power method: matvec and vector arithmetic
-Matlab*P page ranking demo (from SC'03) on a web crawl of mit.edu (170,000 pages)

