CS 111: Review Quiz: Answer key

1.

$$
A^{T}=\left(\begin{array}{ccc}
3 & 0 & 1 \\
-1 & 1 & 0 \\
2 & 2 & -1
\end{array}\right), A^{2}=\left(\begin{array}{ccc}
11 & -4 & 2 \\
2 & 1 & 0 \\
2 & -1 & 3
\end{array}\right), A^{T} A=\left(\begin{array}{ccc}
10 & -3 & 5 \\
-3 & 2 & 0 \\
5 & 0 & 9
\end{array}\right)
$$

2. $\left\|(3,1,4,1,5)^{T}\right\|_{2}=\sqrt{52} \approx 7.2111$
3.

$$
\left(\begin{array}{ccc}
2 & -3 & 1 \\
0 & 2 & 3 \\
1 & 0 & 1
\end{array}\right) \times\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
1 \\
7 \\
4
\end{array}\right)
$$

4.

$$
x=\left(\begin{array}{l}
3 \\
2 \\
1
\end{array}\right)
$$

5. There are many answers to this. Here's one: In Matlab notation, take $A=\left[\begin{array}{ll}12 ; 24\end{array}\right]$ and $b=[3 ; 3]$. Explanation 1 (column view): Matrix A is singular, so the space spanned by its columns is only one-dimensional, and it consists of multiples of the vector $[1 ; 2]$, which do not inclue b. Explanation 2 (row view): The two lines described by the row form of $A x=b$ are parallel and hence do not intersect. Explanation 3 (brute force view): No matter what x is, the second entry of $A x$ will be equal to twice the first entry of $A x$, which rules out b.
6. There are many answers to this. Here's one: In Matlab notation, take $A=\left[\begin{array}{lll}1 & 2 ; 24\end{array}\right]$ and $b=[3 ; 6]$. Two solutions are $x=[1 ; 1]$ and $x=[3 ; 0]$.
7. No, its not possible to have exactly two solutions to $A x=b$. If x and y are two different solutions, then there are infinitely many solutions: $x+\alpha(y-x)$ is a solution for every α.
8. A has two eigenvalues, 3 and 5. Any multiple of $[1 ; 1]$ is an eigenvector corresponding to 3 , and any multiple of $[1 ;-1]$ is an eigenvector corresponding to 5 .
9. $f^{\prime}(x)=21 x^{2}-4 x+4$.
10. $\partial z / \partial x=e^{y / 2}$, and $\partial z / \partial y=(x / 2) e^{y / 2}$.
11. $f(x)=x^{3} / 3-\cos x+c$ for some constant c (any constant will do).
12. The height is maximum when the derivative $d h / d t$ is zero. $d h / d t=1280-32 t$, which is zero when $t=40$, at which time the height is $h=25600$ feet. The bullet hits the ground when $h=0$, which means $1280 t=16 t^{2}$, which means $t=1280 / 16=80$ seconds after firing. (The other solution to $h=0$ is of course $t=0$.)
13. $y=e^{x^{2} / 2}$.
