MODULE FOR SCIENTIFIC COMPUTING FREDERIC G. GIBOU

Solving Diffusion Problems

Diffusion phenomena are ubiquitous in science and engineering. For example, diffusion describes
the spread of particles through random motion from regions of higher concentration to regions of lower
concentration. Consider for instance Oxygen molecules diffusing across cell membranes into cells, and
carbon dioxide molecules diffusing out, the diffusion of sugar in a cup or the spread of perfume in a
room. The basic equation for the diffusion of a species u is given by:

ou

where D is the diffusion constant, u is the temperature and S is the source term. The same equation
is also valid to describe heat conduction through metals as well as other phenomena such as the effect
of viscosity in a fluid.

It is possible to solve the heat equation analytically for very special cases, but more often than not,
it is necessary to use computer simulations to solve a typical problem in science and engineering. This
module describes the numerical approximations of diffusion problems in one and two spatial dimensions
and their implementation in MATLAB:

1 The Steady-State Diffusion Equation in 1D

node 1 node 2 node 3 node 4 node 5 node 6
—>

Ax

Figure 1: Discretization of a one dimensional domain with m = 6 nodes. The solution u at the red
nodes will be given the value of the boundary conditions through the function BC, while at the blue
nodes the solution will be approximated using (3).

Consider the heat equation in one spatial dimensions:

ou 0%u
ot~ Po T

MODULE FOR SCIENTIFIC COMPUTING FREDERIC G. GIBOU

where D is the diffusion constant, u is the temperature and S is the source term. At steady-state, we
have:

9%u

Doz =5 @

which is called the Poisson equation. This equation simply gives the temperature distribution when
the system is untouched for a very long time, i.e. t — co. We assume that the value of the temperature
is given on the walls of the domain by a function called BC. The source term is also given by a function
S. In order to find a numerical solution, we discretize the computational domain into m nodes, at
which we can write an approximation to equation (2), as illustrated in figure 1. Such a numerical
approximation can be written as:

Uiyl — 2ui + Uiy
Az?

D =Sr, (3)

where u; = u(x;) and Az is the distance between two adjacent grid nodes. This approximation allows
to write an equation for each node of the grid i. More precisely, the approximation (3) will give an
equation for all interior nodes, whereas for the nodes on the domain’s walls, the values of u are simply
given by the boundary conditions. Writing these equations gives a linear system:

Au = rhs.

In the example of the grid in figure 1, if we define the coefficients:

2 1 1
= D— =—D—, L=—-D—
¢ Az?’ i Az?’ Az?’
then the linear system is written as:
1 0 0 0 0 O Uy BC,
L CR O 0 0 u9 SQ
0 L C R 0 0 uz | Ss
0 0 L C R O Uy o 54
0 0 0 L C R us S5
0 O 0 0 0 1 Uue BOG
X N—— T

MODULE FOR SCIENTIFIC COMPUTING FREDERIC G. GIBOU

A MATLAB code to solve the Poisson equation in one spatial dimension is given next:

function outvar=Steady_State_Heat(a,b,BC_a,BC_b,n)
x=linspace(a,b,n);
dx=(b-a)/(n-1);

A=zeros(n,n);

A(1,1)=1; A(n,n)=1;

rhs(1)=BC_a; rhs(n)=BC_b;

for i=2:n-1
A(i,i)=2/dx/dx; A(i,i-1)=-1/dx/dx; A(i,i+1)=-1/dx/dx;
rths(i)=-(x(i)+3)*exp(x(i));

end

outvar=A\rhs’;

exact=(x+1) .*exp(x);

plot(x,exact,’r’,x,outvar, ’bo’);

legend (’Exact’,’Numerical’);

xlabel(’x’) ;ylabel (’Temperature’);

title(’Numerical Solution of the Temperature distribution’);
end

2 The Diffusion Equation in 1D

node 1 node 2 node 3 node 4 node 5 node 6
—>

Ax

Figure 2: Discretization of a one dimensional domain with m = 6 nodes. The solution u at the red
nodes will be given the value of the boundary conditions through the function BC, while at the blue
nodes the solution will be approximated using (5).

MODULE FOR SCIENTIFIC COMPUTING FREDERIC G. GIBOU

Consider the heat equation in one spatial dimensions:

o _D8x2+s (4)

where D is the diffusion constant, u is the temperature and S is the source term. We assume that the
value of the temperature is given on the walls of the domain by a function called BC. The source term
is also given by a function S. In order to find a numerical solution, we discretize the computational
domain into m nodes, at which we can write an approximation to equation (4), as illustrated in figure
2. Such a numerical approximation can be written as:

s
=D + 57,
At Az?2

where u]' = u(z;,t"), Ax is the given space step and At is the given time step. We can rewrite this
approximation as:

At
w4 Dﬁ (—umt! + 2uf™ — w) = Wl + AtSP (5)

This approximation allows to write an equation for each grid node i. More precisely, the approximation
(5) will give an equation for all interior nodes, whereas for the nodes on the domain’s walls, the values
of u are simply given by the boundary conditions. Writing these equations gives a linear system:

Au™tt = rhs.

In the example of the grid in figure 2, if we define the coefficients:

C = 1+2DAA2, R:—D%, L:—D%,
then the linear system is written as:
1 0 0 0 0 O ul BOpH!
LCRO 0 0 ul uy ™t ArSH
0L CRO0 0 uf ug ™t 4+ ArSET
0 0 L CR 0 wpd || Wt Aty
00 0L CR up upg ™t 4+ ArSE
00 0 0 0 1 up BCy+
R
A yntl rhs

MODULE FOR SCIENTIFIC COMPUTING FREDERIC G. GIBOU

A MATLAB code to solve the heat equation in one spatial dimension is given next:

function outvar=Heat(a,b,n,dt,t_final)

aviobj = avifile(’My_Movie.avi’);
aviobj.Quality = 100;

x=linspace(a,b,n);
dx=(b-a)/(n-1);

A=zeros(n,n);
t=0; Un=cos(x); % Initial Guess.
while t<t_final % & count<...
if t+dt>t_final
dt=t_final-t;
end
t=t+dt;
A(1,1)=1; rhs(1)=cos(a)*exp(-t);
A(n,n)=1; rhs(n)=cos(b)*exp(-t);
for i=2:n-1
A(i,1)=1+2*dt/dx/dx; A(i,i-1)=-dt/dx/dx; A(i,i+1)=-dt/dx/dx;
rhs(i)=Un(i);
end

Unpl=A\rhs’;
Un=Unp1;
exact=cos(x) .*exp(-t);
plot(x,exact,’r’,x,Unpl,’bo’); axis([a b, 0 1]);
legend (’Exact’,’Numerical’);
xlabel(’x’) ;ylabel (’Temperature’);
s=sprintf (’Numerical Solution of the Temperature distribution at t =V4.2f°,t);
title(s);
% title(’Numerical Solution of the Temperature distribution’);
F=getframe(gca);
aviobj=addframe (aviobj,F);
pause (dt) ;

MODULE FOR SCIENTIFIC COMPUTING FREDERIC G. GIBOU

end
aviobj=close(aviobj);
outvar=Unpl;

end

3 The Steady-State Diffusion Equation in 2D

.(1,4) '(2,4) ‘(3,4) .(4,4)

node 13 node 14 node 15 node 16

‘(17 3) .(2, 3) .(3, 3) '(4, 3)

node 9 node 10 node 11 node 12

. . .(3’2) .(4’ 2)

(1,2) (2,2)

A node 5 node 6 node 7 node 8
.(1, 1) '(2, 1) '(37 1) .(47 1)
node 1 node 2 node 3 node 4

Az

Figure 3: Discretization of a two dimensional domain with m = 4 points in the x direction and n = 4
points in the y direction. A grid node is referenced by its ¢ and j indices. The ¢ index references the
it" location in the x direction, while the j index references the j** location in the y direction. The
solution u at red nodes will be given the value of the boundary conditions given by the function BC,

while at the blue nodes the solution will be approximated using (7).

MODULE FOR SCIENTIFIC COMPUTING FREDERIC G. GIBOU

Consider the heat equation in two spatial dimensions:

ou Pu
T _plZ =L =
ot <ax2*'ay2>'*5’

where D is the diffusion constant, u is the temperature and .S is the source term. At steady-state, we
have:

Pu 0%u
-0 (G +) = o

which is called the Poisson equation. We assume that the value of the temperature is given on the
walls of the domain by a function called BC. The source term is also given by a function S. In order
to find a numerical solution, we discretize the computational domain into m points in the z-direction
and n points in the y-direction, as illustrated in figure 3. This gives a grid with m X n grid nodes, at
which we can write an approximation to equation (6). Such a numerical approximation can be written
as:

Uitl,j = 2Uij +Uim1j Uil — 2Uij +Uij—1) _ g
_D< Az? + Ay =S (7)

where u; ; = u(x;, y;) and Az and Ay are the given space steps in the - and y- directions, respectively.
This approximation allows to write an equation for each grid node (4, j). We will write these equations,
node after node, with the convention that the first equation is written for (1,1) (we will call this node
1), then for (1,2) (we will call this node 2), and so on from left to right and bottom to top (see figure
3). The approximation (7) is valid for all interior nodes, whereas for the nodes on the domain’s walls
the values of u are simply given by the boundary conditions. Writing these equations gives a linear
system:

Au = rhs.

In the example of the grid in figure 3, if we define the coefficients:

2 2 1 1 1 1
¢ = p(->+-2), R=-D—, L=-D—y, T=-D—r B=-D—
(Aa:z + Ay2> ’ Az?’ Az?’ Ay?’ Ay?’

then the linear system is written as:

MODULE FOR SCIENTIFIC COMPUTING

FREDERIC G. GIBOU

1 0 0 OO OO O0OOOO0O O0OO0OO0O Q00 Uil BCi
0o 1.0 OO OOOUOUOOO0OO0OO0OO0O0 U1 BCs
O 0O 1000 0O O0OOTOTOTO0OTO0OO0OO0OTUO u3 1 BCs 4
o 0o 061000 0 O0OO0OTO0OTO0OO0OO0OO0O0 U41 BCy
o 0o 001 000 O0OO0OO0OO0OO0DO0O O00O0 U2 BC 2
0O B 0OOLCRUOOTOO0OO0OTO0O O0O0 U292 59,2
0O 0O BOOLU CRTGOU OTOTGO0OTUO0OO0DO0 U3 2 S3.0
o 0o 0Oo0O0 00 1 0 0 0 0 00 0°w0O0 Ug 2 BCy o
o 0o 000 0 0O 0 1T 0 0 0 00 00 U3 BC 3
O 0 00O B O OLCHRERU GOUO0OTTO0DO0 u2 3 So3
O 0 0O00O0O B O OLCRGOUGODTO u3 3 S33
o 0o 00O 0O O O0OO0OO0OTO0O 1T 00 00 Ug3 BCy3
o 0o 000 0 0 0 0 0 0 01 o0 00 U14 BCi 4
o 0o 0Oo0O0O 00O 0O O0OO0OTO0O O0OO0D1 00 U2 4 BCs 4
o 0o 000 0 0 0 0 O0O O0O O0OO0OO0 10 U3 4 BCs 4
o 0o 000 0 0O 0 O0OO0OO0OO0OO0ODO0O O0 1 Ug 4 BCy 4

A u r\f:s

Remarks:

1. For each node, one row of the linear system is filled. More precisely, for node p, the p* row of

the linear system is filled.

2. Given (4,), the node number (hence the row of the linear system filled) is p = (j — 1)m + i.

3. In general, when filling the p*" row, the column associated with the coefficient T is p + m while

the column associated with the coefficient B is p — m.

MODULE FOR SCIENTIFIC COMPUTING FREDERIC G. GIBOU

A MATLAB code to solve the Poisson equation in two spatial dimensions is given next. In par-
ticular, note how we code the general linear system associated with the discretization of the Poisson
equation in two spatial dimensions:

function outvar=Poisson_2D(D,S,BC,a,b,c,d,m,n)
tic; % To compute the execution time.

% Discretize the domain:
x=linspace(a,b,m);
y=linspace(c,d,n);
dx=(b-a)/(m-1);
dy=(d-¢c)/(n-1);

mn=mx*n ;

% Initialize the variables:
A=sparse(mn,mn) ; % This is more computationally efficient than A=zeros(mn,mn) .

ToololoToToToToToToToTo o To oo oo o o o fo o fo o oo o o o o
% Assemble the linear system: %

T loloTo 1o 1o 1o ToToToTo o oo o o o o o o o oo JoFo oo oo

% Treat the interior points:
for i=2:m-1
for j=2:n-1
r=(j-1)*m+i;
A(r,r)= 2xD/dx/dx + 2xD/dy/dy;
A(r,r-1)= -D/dx/dx;
A(r,r+1)= -D/dx/dx;

A(r,r-m)= -D/dy/dy;
A(r,r+m)= -D/dy/dy;
rhs(r) = S(x(),y());
end
end

% Treat the boundary conditions:

MODULE FOR SCIENTIFIC COMPUTING

FREDERIC G. GIBOU

for j=1:n
i=1; % Left boundary condition
r=(j-1)*m+i;
A(r,r)=1; rhs(r)=BC(a,y(j));

i=m; % Right boundary condition
r=(j-1)*m+i;
A(r,r)=1; rhs(xr)=BC(b,y(j));

end

for i=1:m
j=1; % Bottom boundary condition
r=(j-1)*m+i;
A(r,r)=1; rhs(r)=BC(x(i),c);
j=n; % Top boundary condition
r=(j-1)*m+i;
A(r,r)=1; rhs(r)=BC(x(i),d);

end

% Solve the linear system:
U=A\rhs’;

toc; % To compute the execution time.

% Plot the solution:
for i=1:m
for j=1:n
exact(i,j)=BC(x(i),y(j));
end
end
subplot(2,1,1);

surfl(x,y,exact); shading interp; colormap (summer);
axis([a b, ¢ d, min(min(exact)) max(max(exact))]);
xlabel(’x’);ylabel(’y’); zlabel(’Temperature’);
title(’Exact Solution of the Temperature distribution’);

10

MODULE FOR SCIENTIFIC COMPUTING FREDERIC G. GIBOU

subplot(2,1,2);
% Need to put Un, which is now a vector, into a grid form.
for i=1:m
for j=1:n
r=(j-1)*m+i;
U_grid(i,j)=U(r);
end
end
surfl(x,y,U_grid); shading interp; colormap(summer);
axis([a b, ¢ d, min(min(exact)) max(max(exact))]);
xlabel(’x’);ylabel(’y’); zlabel(’Temperature’);
title(’Numerical Solution of the Temperature distribution’);

outvar=U;
end

An example of how this function is called is:

>> BC = @(x,y) cos(2*pi*x)+sin(2*pix*y);

>> S Q(x,y) 4*pi*pi*cos(2*pixx)+4*pi*pixsin(2*pi*y);
>> result=Poisson_2D(1,S,BC,0,1,0,1,80,80);

Elapsed time is 0.750840 seconds.

The function will returns the solution of the Poisson equation and store it in the vector result and
will plot the figure 4.

4 The Diffusion Equation in 2D

Consider the heat equation in two spatial dimensions:
ou ’u 0%u
—=D|—=+ = S
ot (8x2 * 8y2> L

where D is the diffusion constant, u is the temperature and S is the source term. We assume that the
value of the temperature is given on the walls of the domain by a function called BC'. In order to find
a numerical solution, we discretize the computational domain into m points in the z direction and n

11

MODULE FOR SCIENTIFIC COMPUTING FREDERIC G. GIBOU

Exact Solution of the Temperature distribution

Temperature

y X

Numetical Solution of the Temperature distribution

Temperature

Figure 4: Graphical representation of the solution of the Poisson equation in two spatial dimensions.

points in the y direction, as illustrated in figure 5. This gives a grid with m x n grid nodes, at which
we can write an approximation to equation (8). Such a numerical approximation can be written as:
+1 +1 +1 +1 +1 +1 +1
Uig Uy g (g T Py U Ui T 20 _gn
At Ax2 Ay2 by’

where u!; = u(z4,y4,t"), Az and Ay are the given space steps in the 2- and y- directions, respectively
and At is the given time step. We can rewrite this approximation as:
At At
+1 +1 +1 _ ntl +1 +1 +1) _
W+ D (il o —) + DA— (s + 20t =ttt) =y + ALST,. (8)

This approximation allows to write an equation for each grid node (7,7). We will write these

12

MODULE FOR SCIENTIFIC COMPUTING FREDERIC G. GIBOU

.(1,4) .(2,4) .(3,4) .(4,4)

node 13 node 14 node 15 node 16

.(173) .(273) .(3,3) .

(4,3)
node 9 node 10 node 11 node 12

' . .(372) '(47 2)

(1,2) (2,2)
A node 5 node 6 node 7 node 8
'(17 1) ‘(2, 1) '(3» 1) '(47 1)
node 1 node 2 node 3 node 4

Az

Figure 5: Discretization of a two dimensional domain with m = 4 points in the x direction and n = 4
points in the y direction. A grid node is referenced by its ¢ and j indices. The ¢ index references the
ith location in the x direction, while the j index references the j* location in the y direction. The
solution u at red nodes will be given the value of the boundary conditions given by the function BC,
while at the blue nodes the solution will be approximated using (8).

equations, node after node, with the convention that the first equation is written for (1,1) (we will
call this node 1), then for (1,2) (we will call this node 2), and so on from left to right and bottom to
top (see figure 3). The approximation (8) is valid for all interior nodes, whereas for the nodes on the
domain’s walls the values of u are simply given by the boundary conditions. Writing these equations
gives a linear system:

Ayt = rhs.

13

MODULE FOR SCIENTIFIC COMPUTING FREDERIC G. GIBOU

In the example of the grid in figure 3, if we define the coefficients:

C = HD(@*Z@D’ R:—D%, L:fDA%, T:DAA;Z, B:DAA;Q,
then the linear system is written as:
10 0000 O0O0OUOUOUO0OO0O0O0O00 upt! BCY,
0100000 0O0O0OUOUOO0OO0O0 0 upt! BC3,
00 10000 O0O0O0UO0O0O0O0 00 upt! BC3,
00 0100 O0O0O0O0TO0O0O0O0 00 uj! BCY,
00 0010 0000000000 upy! BCT,
0B OOLCROGOTOO0O0UO0 00 uyh! ulo + ALSY,
00 BOOLG CROGOTTOGOTO OO0 0 uyh?! iy + AtSE,
00 000DO0OO0 1000000 0 0 uiy! BCY,
00 000 OO OT1TO0 0 000 00 uigt | BCY;3
00 000BO OLCRTUOUOTOO ujt! ug 5+ AtSH,
00 000O0BOOLTCROGOTO ujt! ufg + Aty
00 0O0O0ODO0UO0OOO0O0O0OT1TO00 00 ujt! BCY
00 000DO0OOO0OO0OUO0O0T11TO0 00 ui'y BCY,
00 000 OO OOO0O 0 00100 uyy! BCY,
00 0O00O0ODTO0OOOOO0OO0O0O0 10 ui! BC3,
00 0O0O0ODO0O0OOO0O0TO0OTO0O00 01 uj BCY,
A T rhs
Remarks:

1. For each node, one row of the linear system is filled. More precisely, for node p, the p* row of
the linear system is filled.

2. Given (4, j), the node number (hence the row of the linear system filled) is p = (j — 1)m + i.

14

MODULE FOR SCIENTIFIC COMPUTING FREDERIC G. GIBOU

3. In general, when filling the p*" row, the column associated with the coefficient T is p + m while
the column associated with the coefficient B is p — m.

15

MODULE FOR SCIENTIFIC COMPUTING FREDERIC G. GIBOU

A MATLAB code to solve the Poisson equation in two spatial dimensions is given next. In par-
ticular, note how we code the general linear system associated with the discretization of the Poisson
equation in two spatial dimensions:

function outvar=Heat_2D(D,S,BC,Initial_Data,a,b,c,d,m,n,dt,t_final)

avifile(’My_Movie.avi’);
100;

aviobj
aviobj.Quality

% Discretize the domain:
x=linspace(a,b,m);
y=linspace(c,d,n);
dx=(b-a)/(m-1);
dy=(d-¢c)/(n-1);

mn=mxn ;

% Initialize the variables:
A=sparse(mn,mn) ;
t=0;
% Initial condition:
for i=1:m
for j=1:n
r=(j-1)*m+i;
Un(r)=Initial_Data(x(i),y(j),t);
end
end

% Time stepping:
while t<t_final % & count<...
if t+dt>t_final
dt=t_final-t;
end
t=t+dt;
oo lo oo o 1o o ToToTo o o oo oo o o o o o o o o To oo Too
% Assemble the linear system: %

Tl ToTo 1o 16 1o oo o ToToTo o o o o o Jo ToTo o o o o o o T To T o

16

MODULE FOR SCIENTIFIC COMPUTING

FREDERIC G. GIBOU

% Treat the interior points:

for

end

i=2:m-1
for j=2:n-1
r=(j-1)*m+i;
A(r,r)=1 + 2xdt*D/dx/dx + 2*dt*D/dy/dy;

Al(r,r-1)= -dt*D/dx/dx;
A(r,r+1)= -dt*D/dx/dx;
A(r,r-m)= -dt*D/dy/dy;
A(r,r+m)= -dt*D/dy/dy;
ths (r)=Un(r)+dt*S(x(i),y(j),t);

end

% Treat the boundary conditions:

for j=1:n

end

i=1; % Left boundary condition
r=(j-1)*m+i;

A(r,r)=1; rhs(r)=BC(a,y(j),t);

i=m; % Right boundary condition
r=(j-1)*m+i;

A(r,r)=1; rhs(r)=BC(b,y(j),t);

for i=1:m

end

j=1; % Bottom boundary condition
r=(j-1)*m+i;

A(r,r)=1; rhs(r)=BC(x(i),c,t);

j=n; % Top boundary condition
r=(j-1)*m+i;

A(r,r)=1; rhs(r)=BC(x(i),d,t);

% Solve the linear system:
Unpl=A\rhs’;

17

MODULE FOR SCIENTIFIC COMPUTING FREDERIC G. GIBOU

Un=Unp1l;

% Need to put Un, which is now a vector, into a grid form.
for i=1:m
for j=1:n
r=(j-1)*m+i;
U_grid(i,j)=Un(r);
end
end
mesh(x,y,U_grid); axis([a b, ¢ d, 0 2]);
xlabel (’x’) ;ylabel(’y’); zlabel(’Temperature’);
s=sprintf (’Numerical Solution of the Temperature distribution at t =%4.2f°,t);
title(s);
% title(’Numerical Solution of the Temperature distribution’);

F=getframe(gca) ;
aviobj=addframe(aviobj,F);
pause (dt/10);

end

aviobj=close(aviobj);

outvar=Un;
end

An example of how this function is called is:

>> BC=0@(x,y,t) 0;
>> Initial_Data=@(x,y,t) O;
>> result=Heat_2D(.1,@Source_Term,BC,-1,1,-1,1,50,50,.1,4);

The function will returns the solution of the heat equation at time ¢ = 4 and store it in the vector result
and will plot the figure 6. Here the function Source_Term is given by:

function outvar = Source_Term(x,y,t)
if t<1
if sqrt((x-.5)*(x-.5)+(y-.75)*(y-.75)) <.1
outvar = 5;

18

MODULE FOR SCIENTIFIC COMPUTING FREDERIC G. GIBOU

else
if sqrt ((x+.5)*(x+.5)+(y+.75) *x(y+.75)) <.2
outvar=-2;
else
outvar = 0;
end
end
else
if sqrt((x-.5)*(x-.5)+(y-.75)*(y-.75)) <.1
outvar = -3;
else
if sqrt((x+.5)*(x+.5)+(y+.75)*(y+.75)) <.2
outvar=1;
else
outvar = 0;
end
end
end

19

MODULE FOR SCIENTIFIC COMPUTING FREDERIC G. GIBOU

Numerical Solution of the Temperature distribution at t =4.00

Temperature
-

0.5

0.5 =
0.5

Figure 6: Graphical representation of the solution of the Heat equation in two spatial dimensions at
t=4.

20

	Modules_CS111

