
Module for Scientific Computing Frederic G. Gibou

Solving Di⌦usion Problems

Di◆usion phenomena are ubiquitous in science and engineering. For example, di◆usion describes
the spread of particles through random motion from regions of higher concentration to regions of lower
concentration. Consider for instance Oxygen molecules di◆using across cell membranes into cells, and
carbon dioxide molecules di◆using out, the di◆usion of sugar in a cup or the spread of perfume in a
room. The basic equation for the di◆usion of a species u is given by:

⇥u

⇥t
= D�u+ S, (1)

where D is the di◆usion constant, u is the temperature and S is the source term. The same equation
is also valid to describe heat conduction through metals as well as other phenomena such as the e◆ect
of viscosity in a fluid.

It is possible to solve the heat equation analytically for very special cases, but more often than not,
it is necessary to use computer simulations to solve a typical problem in science and engineering. This
module describes the numerical approximations of di◆usion problems in one and two spatial dimensions
and their implementation in MATLAB:

1 The Steady-State Di⌦usion Equation in 1D

node 4node 3node 2node 1

�x

node 5 node 6

Figure 1: Discretization of a one dimensional domain with m = 6 nodes. The solution u at the red
nodes will be given the value of the boundary conditions through the function BC, while at the blue
nodes the solution will be approximated using (3).

Consider the heat equation in one spatial dimensions:

⇥u

⇥t
= D

⇥2u

⇥x2
+ S,

1



Module for Scientific Computing Frederic G. Gibou

where D is the di✏usion constant, u is the temperature and S is the source term. At steady-state, we
have:

�D
⇤2u

⇤x2
= S, (2)

which is called the Poisson equation. This equation simply gives the temperature distribution when
the system is untouched for a very long time, i.e. t ⇥ ⇤. We assume that the value of the temperature
is given on the walls of the domain by a function called BC. The source term is also given by a function
S. In order to find a numerical solution, we discretize the computational domain into m nodes, at
which we can write an approximation to equation (2), as illustrated in figure 1. Such a numerical
approximation can be written as:

�D
ui+1 � 2ui + ui�1

�x2
= Sn

i , (3)

where ui = u(xi) and �x is the distance between two adjacent grid nodes. This approximation allows
to write an equation for each node of the grid i. More precisely, the approximation (3) will give an
equation for all interior nodes, whereas for the nodes on the domain’s walls, the values of u are simply
given by the boundary conditions. Writing these equations gives a linear system:

Au = rhs.

In the example of the grid in figure 1, if we define the coe⇣cients:

C = D
2

�x2
, R = �D

1

�x2
, L = �D

1

�x2
,

then the linear system is written as:
�

⇧⇧⇧⇧⇧⇧⇤

1 0 0 0 0 0
L C R 0 0 0
0 L C R 0 0
0 0 L C R 0
0 0 0 L C R
0 0 0 0 0 1

⇥

⌃⌃⌃⌃⌃⌃⌅

 �⌥ ⌦
A

�

⇧⇧⇧⇧⇧⇧⇤

u1
u2
u3
u4
u5
u6

⇥

⌃⌃⌃⌃⌃⌃⌅

 �⌥ ⌦
u

=

�

⇧⇧⇧⇧⇧⇧⇤

BC1

S2

S3

S4

S5

BC6

⇥

⌃⌃⌃⌃⌃⌃⌅

 �⌥ ⌦
rhs

2



Module for Scientific Computing Frederic G. Gibou

A MATLAB code to solve the Poisson equation in one spatial dimension is given next:

function outvar=Steady_State_Heat(a,b,BC_a,BC_b,n)
x=linspace(a,b,n);
dx=(b-a)/(n-1);

A=zeros(n,n);
A(1,1)=1; A(n,n)=1;
rhs(1)=BC_a; rhs(n)=BC_b;
for i=2:n-1

A(i,i)=2/dx/dx; A(i,i-1)=-1/dx/dx; A(i,i+1)=-1/dx/dx;
rhs(i)=-(x(i)+3)*exp(x(i));

end

outvar=A\rhs’;

exact=(x+1).*exp(x);
plot(x,exact,’r’,x,outvar,’bo’);
legend(’Exact’,’Numerical’);
xlabel(’x’);ylabel(’Temperature’);
title(’Numerical Solution of the Temperature distribution’);

end

2 The Di⌃usion Equation in 1D

node 4node 3node 2node 1

�x

node 5 node 6

Figure 2: Discretization of a one dimensional domain with m = 6 nodes. The solution u at the red
nodes will be given the value of the boundary conditions through the function BC, while at the blue
nodes the solution will be approximated using (5).

3



Module for Scientific Computing Frederic G. Gibou

Consider the heat equation in one spatial dimensions:

⇤u

⇤t
= D

⇤2u

⇤x2
+ S, (4)

where D is the di✏usion constant, u is the temperature and S is the source term. We assume that the
value of the temperature is given on the walls of the domain by a function called BC. The source term
is also given by a function S. In order to find a numerical solution, we discretize the computational
domain into m nodes, at which we can write an approximation to equation (4), as illustrated in figure
2. Such a numerical approximation can be written as:

un+1
i � uni

�t
= D

un+1
i+1 � 2un+1

i + un+1
i�1

�x2
+ Sn

i ,

where uni = u(xi, tn), �x is the given space step and �t is the given time step. We can rewrite this
approximation as:

un+1
i +D

�t

�x2
�
�un+1

i+1 + 2un+1
i � un+1

i�1

⇥
= uni +�tSn

i . (5)

This approximation allows to write an equation for each grid node i. More precisely, the approximation
(5) will give an equation for all interior nodes, whereas for the nodes on the domain’s walls, the values
of u are simply given by the boundary conditions. Writing these equations gives a linear system:

Aun+1 = rhs.

In the example of the grid in figure 2, if we define the coe⇣cients:

C = 1 + 2D
�t

�x2
, R = �D

�t

�x2
, L = �D

�t

�x2
,

then the linear system is written as:
⇤

⌥⌥⌥⌥⌥⌥⌥⌥⌥⇧

1 0 0 0 0 0

L C R 0 0 0

0 L C R 0 0

0 0 L C R 0

0 0 0 L C R
0 0 0 0 0 1

⌅

���������⌃

↵ ⌦ �
A

⇤

⌥⌥⌥⌥⌥⌥⌥⌥⌥⇧

un1

un2

un3

un4

un5

un6

⌅

���������⌃

↵ ⌦ �
un+1

=

⇤

⌥⌥⌥⌥⌥⌥⌥⌥⌥⇧

BCn+1
1

un+1
2 +�tSn+1

2

un+1
3 +�tSn+1

3

un+1
4 +�tSn+1

4

un+1
5 +�tSn+1

5

BCn+1
6

⌅

���������⌃

↵ ⌦ �
rhs

4



Module for Scientific Computing Frederic G. Gibou

A MATLAB code to solve the heat equation in one spatial dimension is given next:

function outvar=Heat(a,b,n,dt,t_final)

aviobj = avifile(’My_Movie.avi’);
aviobj.Quality = 100;

x=linspace(a,b,n);
dx=(b-a)/(n-1);

A=zeros(n,n);
t=0; Un=cos(x); % Initial Guess.
while t<t_final % & count<...

if t+dt>t_final
dt=t_final-t;

end
t=t+dt;
A(1,1)=1; rhs(1)=cos(a)*exp(-t);
A(n,n)=1; rhs(n)=cos(b)*exp(-t);
for i=2:n-1

A(i,i)=1+2*dt/dx/dx; A(i,i-1)=-dt/dx/dx; A(i,i+1)=-dt/dx/dx;
rhs(i)=Un(i);

end

Unp1=A\rhs’;
Un=Unp1;
exact=cos(x).*exp(-t);
plot(x,exact,’r’,x,Unp1,’bo’); axis([a b, 0 1]);
legend(’Exact’,’Numerical’);
xlabel(’x’);ylabel(’Temperature’);
s=sprintf(’Numerical Solution of the Temperature distribution at t =%4.2f’,t);
title(s);

% title(’Numerical Solution of the Temperature distribution’);
F=getframe(gca);
aviobj=addframe(aviobj,F);
pause(dt);

5



Module for Scientific Computing Frederic G. Gibou

end
aviobj=close(aviobj);
outvar=Unp1;

end

3 The Steady-State Di�usion Equation in 2D

(1, 1)

node 16node 15node 14node 13

node 12node 11node 10node 9

node 8node 7node 6node 5

node 4node 3node 2node 1

(1, 2)

(1, 3)

(1, 4)

(2, 1)

(2, 2)

(2, 3)

(2, 4)

(3, 1)

(3, 2)

(3, 3)

(3, 4) (4, 4)

(4, 3)

(4, 2)

(4, 1)

�x

�y

Figure 3: Discretization of a two dimensional domain with m = 4 points in the x direction and n = 4
points in the y direction. A grid node is referenced by its i and j indices. The i index references the
ith location in the x direction, while the j index references the jth location in the y direction. The
solution u at red nodes will be given the value of the boundary conditions given by the function BC,
while at the blue nodes the solution will be approximated using (7).

6



Module for Scientific Computing Frederic G. Gibou

Consider the heat equation in two spatial dimensions:

⇤u

⇤t
= D

�
⇤2u

⇤x2
+

⇤2u

⇤y2

⇥
+ S,

where D is the di✏usion constant, u is the temperature and S is the source term. At steady-state, we
have:

�D

�
⇤2u

⇤x2
+

⇤2u

⇤y2

⇥
= S, (6)

which is called the Poisson equation. We assume that the value of the temperature is given on the
walls of the domain by a function called BC. The source term is also given by a function S. In order
to find a numerical solution, we discretize the computational domain into m points in the x-direction
and n points in the y-direction, as illustrated in figure 3. This gives a grid with m⇥ n grid nodes, at
which we can write an approximation to equation (6). Such a numerical approximation can be written
as:

�D

�
ui+1,j � 2ui,j + ui�1,j

�x2
+

ui,j+1 � 2ui,j + ui,j�1

�y2

⇥
= Sn

i,j , (7)

where ui,j = u(xi, yj) and �x and �y are the given space steps in the x- and y- directions, respectively.
This approximation allows to write an equation for each grid node (i, j). We will write these equations,
node after node, with the convention that the first equation is written for (1, 1) (we will call this node
1), then for (1, 2) (we will call this node 2), and so on from left to right and bottom to top (see figure
3). The approximation (7) is valid for all interior nodes, whereas for the nodes on the domain’s walls
the values of u are simply given by the boundary conditions. Writing these equations gives a linear
system:

Au = rhs.

In the example of the grid in figure 3, if we define the coe⇣cients:

C = D

�
2

�x2
+

2

�y2

⇥
, R = �D

1

�x2
, L = �D

1

�x2
, T = �D

1

�y2
, B = �D

1

�y2
,

then the linear system is written as:

7



Module for Scientific Computing Frederic G. Gibou

�

⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇤

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 B 0 0 L C R 0 0 T 0 0 0 0 0 0
0 0 B 0 0 L C R 0 0 T 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 B 0 0 L C R 0 0 T 0 0
0 0 0 0 0 0 B 0 0 L C R 0 0 T 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

⇥

⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌅

 �⌥ ⌦
A

�

⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇤

u1,1
u2,1
u3,1
u4,1
u1,2
u2,2
u3,2
u4,2
u1,3
u2,3
u3,3
u4,3
u1,4
u2,4
u3,4
u4,4

⇥

⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌅

 �⌥ ⌦
u

=

�

⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇤

BC1,1

BC2,1

BC3,1

BC4,1

BC1,2

S2,2

S3,2

BC4,2

BC1,3

S2,3

S3,3

BC4,3

BC1,4

BC2,4

BC3,4

BC4,4

⇥

⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌅

 �⌥ ⌦
rhs

Remarks:

1. For each node, one row of the linear system is filled. More precisely, for node p, the pth row of
the linear system is filled.

2. Given (i, j), the node number (hence the row of the linear system filled) is p = (j � 1)m+ i.

3. In general, when filling the pth row, the column associated with the coe�cient T is p+m while
the column associated with the coe�cient B is p�m.

8



Module for Scientific Computing Frederic G. Gibou

A MATLAB code to solve the Poisson equation in two spatial dimensions is given next. In par-
ticular, note how we code the general linear system associated with the discretization of the Poisson
equation in two spatial dimensions:

function outvar=Poisson_2D(D,S,BC,a,b,c,d,m,n)

tic; % To compute the execution time.

% Discretize the domain:
x=linspace(a,b,m);
y=linspace(c,d,n);
dx=(b-a)/(m-1);
dy=(d-c)/(n-1);
mn=m*n;

% Initialize the variables:
A=sparse(mn,mn); % This is more computationally efficient than A=zeros(mn,mn).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Assemble the linear system: %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Treat the interior points:
for i=2:m-1

for j=2:n-1
r=(j-1)*m+i;
A(r,r )= 2*D/dx/dx + 2*D/dy/dy;
A(r,r-1)= -D/dx/dx;
A(r,r+1)= -D/dx/dx;
A(r,r-m)= -D/dy/dy;
A(r,r+m)= -D/dy/dy;
rhs(r) = S(x(i),y(j));

end
end

% Treat the boundary conditions:

9



Module for Scientific Computing Frederic G. Gibou

for j=1:n
i=1; % Left boundary condition
r=(j-1)*m+i;
A(r,r)=1; rhs(r)=BC(a,y(j));
i=m; % Right boundary condition
r=(j-1)*m+i;
A(r,r)=1; rhs(r)=BC(b,y(j));

end

for i=1:m
j=1; % Bottom boundary condition
r=(j-1)*m+i;
A(r,r)=1; rhs(r)=BC(x(i),c);
j=n; % Top boundary condition
r=(j-1)*m+i;
A(r,r)=1; rhs(r)=BC(x(i),d);

end

% Solve the linear system:
U=A\rhs’;

toc; % To compute the execution time.

% Plot the solution:
for i=1:m

for j=1:n
exact(i,j)=BC(x(i),y(j));

end
end
subplot(2,1,1);
surfl(x,y,exact); shading interp; colormap(summer);
axis([a b, c d, min(min(exact)) max(max(exact))]);
xlabel(’x’);ylabel(’y’); zlabel(’Temperature’);
title(’Exact Solution of the Temperature distribution’);

10



Module for Scientific Computing Frederic G. Gibou

subplot(2,1,2);
% Need to put Un, which is now a vector, into a grid form.
for i=1:m

for j=1:n
r=(j-1)*m+i;
U_grid(i,j)=U(r);

end
end
surfl(x,y,U_grid); shading interp; colormap(summer);
axis([a b, c d, min(min(exact)) max(max(exact))]);
xlabel(’x’);ylabel(’y’); zlabel(’Temperature’);
title(’Numerical Solution of the Temperature distribution’);

outvar=U;
end

An example of how this function is called is:

>> BC = @(x,y) cos(2*pi*x)+sin(2*pi*y);
>> S = @(x,y) 4*pi*pi*cos(2*pi*x)+4*pi*pi*sin(2*pi*y);
>> result=Poisson_2D(1,S,BC,0,1,0,1,80,80);
Elapsed time is 0.750840 seconds.

The function will returns the solution of the Poisson equation and store it in the vector result and
will plot the figure 4.

4 The Di⌃usion Equation in 2D

Consider the heat equation in two spatial dimensions:

⇥u

⇥t
= D

�
⇥2u

⇥x2
+

⇥2u

⇥y2

⇥
+ S,

where D is the di✏usion constant, u is the temperature and S is the source term. We assume that the
value of the temperature is given on the walls of the domain by a function called BC. In order to find
a numerical solution, we discretize the computational domain into m points in the x direction and n

11



Module for Scientific Computing Frederic G. Gibou

Figure 4: Graphical representation of the solution of the Poisson equation in two spatial dimensions.

points in the y direction, as illustrated in figure 5. This gives a grid with m⇥ n grid nodes, at which
we can write an approximation to equation (8). Such a numerical approximation can be written as:

un+1
i,j � uni,j

�t
= D

⇤
un+1
i+1,j � 2un+1

i,j + un+1
i�1,j

�x2
+

un+1
i,j+1 � 2un+1

i,j + un+1
i,j�1

�y2

⌅
= Sn

i,j ,

where uni,j = u(xi, yj , tn), �x and �y are the given space steps in the x- and y- directions, respectively
and �t is the given time step. We can rewrite this approximation as:

un+1
i,j +D

�t

�x2

�
�un+1

i+1,j + 2un+1
i,j � un+1

i�1,j

⇥
+D

�t

�y2

�
�un+1

i,j+1 + 2un+1
i,j � un+1

i,j�1

⇥
= uni,j +�tSn

i,j . (8)

This approximation allows to write an equation for each grid node (i, j). We will write these

12



Module for Scientific Computing Frederic G. Gibou

(1, 1)

node 16node 15node 14node 13

node 12node 11node 10node 9

node 8node 7node 6node 5

node 4node 3node 2node 1

(1, 2)

(1, 3)

(1, 4)

(2, 1)

(2, 2)

(2, 3)

(2, 4)

(3, 1)

(3, 2)

(3, 3)

(3, 4) (4, 4)

(4, 3)

(4, 2)

(4, 1)

�x

�y

Figure 5: Discretization of a two dimensional domain with m = 4 points in the x direction and n = 4
points in the y direction. A grid node is referenced by its i and j indices. The i index references the
ith location in the x direction, while the j index references the jth location in the y direction. The
solution u at red nodes will be given the value of the boundary conditions given by the function BC,
while at the blue nodes the solution will be approximated using (8).

equations, node after node, with the convention that the first equation is written for (1, 1) (we will
call this node 1), then for (1, 2) (we will call this node 2), and so on from left to right and bottom to
top (see figure 3). The approximation (8) is valid for all interior nodes, whereas for the nodes on the
domain’s walls the values of u are simply given by the boundary conditions. Writing these equations
gives a linear system:

Aun+1 = rhs.

13



Module for Scientific Computing Frederic G. Gibou

In the example of the grid in figure 3, if we define the coe�cients:

C = 1 +D

�
2�t

�x2
+

2�t

�y2

⇥
, R = �D

�t

�x2
, L = �D

�t

�x2
, T = �D

�t

�y2
, B = �D

�t

�y2
,

then the linear system is written as:

⇤

⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⇧

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 B 0 0 L C R 0 0 T 0 0 0 0 0 0

0 0 B 0 0 L C R 0 0 T 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 B 0 0 L C R 0 0 T 0 0

0 0 0 0 0 0 B 0 0 L C R 0 0 T 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

⌅

������������������������������������⌃

↵ ⌦ �
A

⇤

⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⇧

un+1
1,1

un+1
2,1

un+1
3,1

un+1
4,1

un+1
1,2

un+1
2,2

un+1
3,2

un+1
4,2

un+1
1,3

un+1
2,3

un+1
3,3

un+1
4,3

un+1
1,4

un+1
2,4

un+1
3,4

un+1
4,4

⌅

�������������������������������������⌃

↵ ⌦ �
un+1

=

⇤

⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⇧

BCn
1,1

BCn
2,1

BCn
3,1

BCn
4,1

BCn
1,2

un2,2 +�tSn
2,2

un3,2 +�tSn
3,2

BCn
4,2

BCn
1,3

un2,3 +�tSn
2,3

un3,3 +�tSn
3,3

BCn
4,3

BCn
1,4

BCn
2,4

BCn
3,4

BCn
4,4

⌅

������������������������������������⌃

↵ ⌦ �
rhs

Remarks:

1. For each node, one row of the linear system is filled. More precisely, for node p, the pth row of
the linear system is filled.

2. Given (i, j), the node number (hence the row of the linear system filled) is p = (j � 1)m+ i.

14



Module for Scientific Computing Frederic G. Gibou

3. In general, when filling the pth row, the column associated with the coe⌥cient T is p+m while
the column associated with the coe⌥cient B is p�m.

15



Module for Scientific Computing Frederic G. Gibou

A MATLAB code to solve the Poisson equation in two spatial dimensions is given next. In par-
ticular, note how we code the general linear system associated with the discretization of the Poisson
equation in two spatial dimensions:

function outvar=Heat_2D(D,S,BC,Initial_Data,a,b,c,d,m,n,dt,t_final)

aviobj = avifile(’My_Movie.avi’);
aviobj.Quality = 100;

% Discretize the domain:
x=linspace(a,b,m);
y=linspace(c,d,n);
dx=(b-a)/(m-1);
dy=(d-c)/(n-1);
mn=m*n;

% Initialize the variables:
A=sparse(mn,mn);
t=0;
% Initial condition:
for i=1:m

for j=1:n
r=(j-1)*m+i;
Un(r)=Initial_Data(x(i),y(j),t);

end
end

% Time stepping:
while t<t_final % & count<...

if t+dt>t_final
dt=t_final-t;

end
t=t+dt;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Assemble the linear system: %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

16



Module for Scientific Computing Frederic G. Gibou

% Treat the interior points:
for i=2:m-1

for j=2:n-1
r=(j-1)*m+i;
A(r,r )=1 + 2*dt*D/dx/dx + 2*dt*D/dy/dy;
A(r,r-1)= -dt*D/dx/dx;
A(r,r+1)= -dt*D/dx/dx;
A(r,r-m)= -dt*D/dy/dy;
A(r,r+m)= -dt*D/dy/dy;
rhs(r)=Un(r)+dt*S(x(i),y(j),t);

end
end

% Treat the boundary conditions:
for j=1:n

i=1; % Left boundary condition
r=(j-1)*m+i;
A(r,r)=1; rhs(r)=BC(a,y(j),t);
i=m; % Right boundary condition
r=(j-1)*m+i;
A(r,r)=1; rhs(r)=BC(b,y(j),t);

end

for i=1:m
j=1; % Bottom boundary condition
r=(j-1)*m+i;
A(r,r)=1; rhs(r)=BC(x(i),c,t);
j=n; % Top boundary condition
r=(j-1)*m+i;
A(r,r)=1; rhs(r)=BC(x(i),d,t);

end

% Solve the linear system:
Unp1=A\rhs’;

17



Module for Scientific Computing Frederic G. Gibou

Un=Unp1;

% Need to put Un, which is now a vector, into a grid form.
for i=1:m

for j=1:n
r=(j-1)*m+i;
U_grid(i,j)=Un(r);

end
end
mesh(x,y,U_grid); axis([a b, c d, 0 2]);
xlabel(’x’);ylabel(’y’); zlabel(’Temperature’);
s=sprintf(’Numerical Solution of the Temperature distribution at t =%4.2f’,t);
title(s);

% title(’Numerical Solution of the Temperature distribution’);

F=getframe(gca);
aviobj=addframe(aviobj,F);
pause(dt/10);

end
aviobj=close(aviobj);

outvar=Un;
end

An example of how this function is called is:

>> BC=@(x,y,t) 0;
>> Initial_Data=@(x,y,t) 0;
>> result=Heat_2D(.1,@Source_Term,BC,-1,1,-1,1,50,50,.1,4);

The function will returns the solution of the heat equation at time t = 4 and store it in the vector result
and will plot the figure 6. Here the function Source_Term is given by:

function outvar = Source_Term(x,y,t)
if t<1

if sqrt((x-.5)*(x-.5)+(y-.75)*(y-.75)) <.1
outvar = 5;

18



Module for Scientific Computing Frederic G. Gibou

else
if sqrt((x+.5)*(x+.5)+(y+.75)*(y+.75)) <.2

outvar=-2;
else

outvar = 0;
end

end
else

if sqrt((x-.5)*(x-.5)+(y-.75)*(y-.75)) <.1
outvar = -3;

else
if sqrt((x+.5)*(x+.5)+(y+.75)*(y+.75)) <.2

outvar=1;
else

outvar = 0;
end

end
end

19



Module for Scientific Computing Frederic G. Gibou

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
0

0.5

1

1.5

2

x

Numerical Solution of the Temperature distribution at t =4.00

y

Te
m

pe
ra

tu
re

Figure 6: Graphical representation of the solution of the Heat equation in two spatial dimensions at
t = 4.

20


	Modules_CS111

