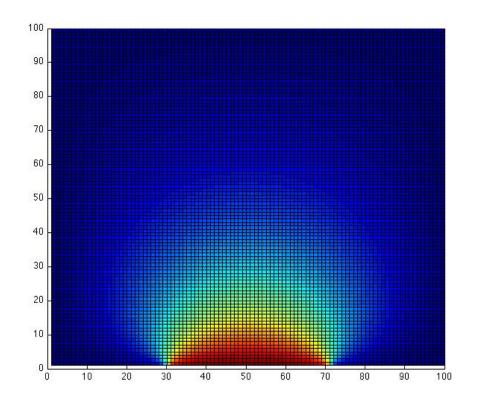
Example: The Temperature Problem

- A cabin in the snow
- Wall temperature is 0°, except for a radiator at 100°
- What is the temperature in the interior?

Example: The Temperature Problem

- A cabin in the snow (the unit square ☺)
- Wall temperature is 0°, except for a radiator at 100°
- What is the temperature in the interior?



The physics: Poisson's equation

$$\nabla^2 u(x, y) \equiv \frac{\partial^2 u}{\partial x^2}(x, y) + \frac{\partial^2 u}{\partial y^2}(x, y) = f(x, y)$$

for $(x, y) \in \mathbb{R} = \{ (x, y) \mid a < x < b, c < y < d \}$, and
 $u(x, y) = g(x, y)$

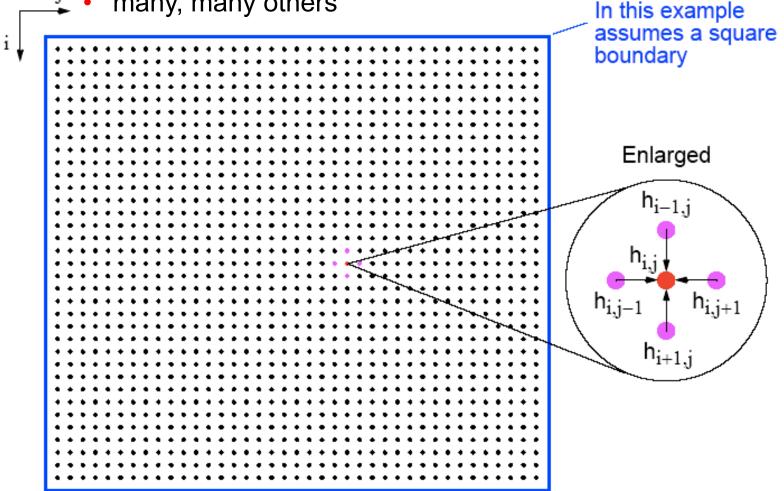
for (x, y) on the boundary of *R*.

Many Physical Models Use Stencil Computations

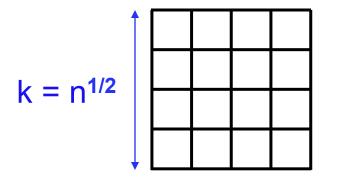
- PDE models of heat, fluids, structures, ... •
- Weather, airplanes, bridges, bones, ... •
- Game of Life •

J

many, many others



Model Problem: Solving Poisson's equation for temperature



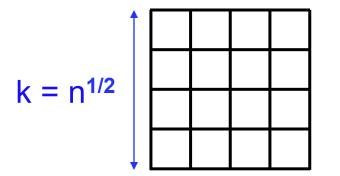
• Discrete approximation to Poisson's equation:

 $t(i) = \frac{1}{4} (t(i-k) + t(i-1) + t(i+1) + t(i+k))$

• Intuitively:

Temperature at a point is the average of the temperatures at surrounding points

Model Problem: Solving Poisson's equation for temperature



• For each i from 1 to n, except on the boundaries:

 $-t(i-k) - t(i-1) + 4^{*}t(i) - t(i+1) - t(i+k) = 0$

- n equations in n unknowns: A*t = b
- Each row of A has at most 5 nonzeros
- In three dimensions, $k = n^{1/3}$ and each row has at most 7 nzs

A Stencil Computation Solves a System of Linear Equations

- Solve Ax = b for x
- Matrix A, right-hand side vector b, unknown vector x
- A is *sparse*: most of the entries are 0

