
The middleware of scientific computing

Computers

Continuous
physical modeling

Linear algebra Ax = b

Conjugate gradient iteration

•  CG can be used to solve any system Ax = b, if …

Conjugate gradient iteration

•  CG can be used to solve any system Ax = b, if …
•  The matrix A is symmetric (aij = aji) …
•  … and positive definite (all eigenvalues > 0).

Conjugate gradient iteration

•  CG can be used to solve any system Ax = b, if …
•  The matrix A is symmetric (aij = aji) …
•  … and positive definite (all eigenvalues > 0).

•  Symmetric positive definite matrices occur a lot
 in scientific computing & data analysis!

Conjugate gradient iteration for Ax = b

x0 = 0 approx solution	

r0 = b residual = b - Ax	

d0 = r0 search direction	

for k = 1, 2, 3, . . .	

	

xk = xk-1 + … new approx solution

	

 rk = … new residual	

 	

	

dk = … new search direction	

	

Conjugate gradient iteration for Ax = b

x0 = 0 approx solution	

r0 = b residual = b - Ax	

d0 = r0 search direction	

for k = 1, 2, 3, . . .	

	

αk = … step length

	

xk = xk-1 + αk dk-1 new approx solution

	

 rk = … new residual	

	

 	

	

dk = … new search direction	

	

Conjugate gradient iteration for Ax = b

x0 = 0 approx solution	

r0 = b residual = b - Ax	

d0 = r0 search direction	

for k = 1, 2, 3, . . .	

	

αk = (rT

k-1rk-1) / (dT
k-1Adk-1) step length

	

xk = xk-1 + αk dk-1 new approx solution

	

 rk = … new residual	

	

 	

	

dk = … new search direction	

	

Conjugate gradient iteration for Ax = b

x0 = 0 approx solution	

r0 = b residual = b - Ax	

d0 = r0 search direction	

for k = 1, 2, 3, . . .	

	

αk = (rT

k-1rk-1) / (dT
k-1Adk-1) step length

	

xk = xk-1 + αk dk-1 new approx solution

	

 rk = … new residual	

	

βk = (rT

k rk) / (rT
k-1rk-1)	

	

dk = rk + βk dk-1 new search direction	

	

Conjugate gradient iteration for Ax = b

x0 = 0 approx solution	

r0 = b residual = b - Ax	

d0 = r0 search direction	

for k = 1, 2, 3, . . .	

	

αk = (rT

k-1rk-1) / (dT
k-1Adk-1) step length

	

xk = xk-1 + αk dk-1 new approx solution

	

 rk = rk-1 – αk Adk-1 new residual	

	

βk = (rT

k rk) / (rT
k-1rk-1)	

	

dk = rk + βk dk-1 new search direction	

	

Conjugate gradient iteration to solve A*x=b

•  One matrix-vector multiplication per iteration
•  Two vector dot products per iteration
•  Four n-vectors of working storage

x0 = 0, r0 = b, d0 = r0 (these are all vectors)	

for k = 1, 2, 3, . . .	

	

αk = (rT

k-1rk-1) / (dT
k-1Adk-1) step length

	

xk = xk-1 + αk dk-1 approximate solution

	

 rk = rk-1 – αk Adk-1 residual = b - Axk	

	

βk = (rT

k rk) / (rT
k-1rk-1) improvement	

	

dk = rk + βk dk-1 search direction	

	

Vector and matrix primitives for CG

•  DAXPY: v = α*v + β*w (vectors v, w; scalars α, β)

•  Time = O(n)

•  DDOT: α = vT*w = Σj v[j] * w[j] (vectors v, w; scalar α)
•  Time = O(n)

•  Matvec: v = A*w (matrix A, vectors v, w)
•  This is the hard part!
•  Time = O(n2) if A is a full matrix stored as a 2-D array

•  But all you need is a subroutine to compute v from w
•  If A is sparse, time = O(#nonzeros in A)

The Landscape of Ax=b Solvers

Pivoting

LU

GMRES,

BiCGSTAB,
…

Cholesky

Conjugate
gradient

Direct
A = LU

Iterative
y’ = Ay

Non-
symmetric

Symmetric
positive
definite

More Robust Less Storage (if sparse)

More Robust

More General

Optional:

Analysis of the Conjugate Gradient
Algorithm

See Shewchuk’s paper (linked to course web site) for details.

Conjugate gradient: Krylov subspaces

•  Eigenvalues: Av = λv { λ1, λ2 , . . ., λn}

•  Cayley-Hamilton theorem:
 (A – λ1I)·(A – λ2I) · · · (A – λnI) = 0

Therefore Σ ciAi = 0 for some ci

so A-1 = Σ (–ci/c0) Ai–1

•  Krylov subspace:	

Therefore if Ax = b, then x = A-1 b and

x ∈ span (b, Ab, A2b, . . ., An-1b) = Kn (A, b)

0 ≤ i ≤ n	

1 ≤ i ≤ n	

Conjugate gradient: Orthogonal sequences

•  Krylov subspace: Ki (A, b) = span (b, Ab, A2b, . . ., Ai-1b)
•  Conjugate gradient algorithm:

 for i = 1, 2, 3, . . .
 find xi ∈ Ki (A, b)
 such that ri = (b – Axi) ⊥ Ki (A, b)

	

•  Notice ri ∈ Ki+1 (A, b), so ri ⊥ rj for all j < i

•  Similarly, the “directions” are A-orthogonal:
 (xi – xi-1)T·A· (xj – xj-1) = 0

	

•  The magic: Short recurrences. . .
 A is symmetric => can get next residual and direction
 from the previous one, without saving them all.

Conjugate gradient: Convergence

•  In exact arithmetic, CG converges in n steps
 (completely unrealistic!!)

•  Accuracy after k steps of CG is related to:
•  consider polynomials of degree k that are equal to 1 at 0.
•  how small can such a polynomial be at all the eigenvalues of A?

•  Thus, eigenvalues close together are good.

•  Condition number: κ(A) = ||A||2 ||A-1||2 = λmax(A) / λmin(A)

•  Residual is reduced by a constant factor by
 O(κ1/2(A)) iterations of CG.

Other Krylov subspace methods

•  Nonsymmetric linear systems:
•  GMRES:

for i = 1, 2, 3, . . .
 find xi ∈ Ki (A, b) such that ri = (Axi – b) ⊥ Ki (A, b) ���
But, no short recurrence => save old vectors => lots more space
 (Usually “restarted” every k iterations to use less space.)

•  BiCGStab, QMR, etc.:
Two spaces Ki (A, b) and Ki (AT, b) w/ mutually orthogonal bases
Short recurrences => O(n) space, but less robust

•  Convergence and preconditioning more delicate than CG
•  Active area of current research

•  Eigenvalues: Lanczos (symmetric), Arnoldi (nonsymmetric)

