
The middleware of scientific computing 

Computers 

Continuous 
physical modeling 

Linear algebra Ax = b 
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•  Symmetric positive definite matrices occur a lot 
 in scientific computing & data analysis! 
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Conjugate gradient iteration to solve A*x=b 

•  One matrix-vector multiplication per iteration 
•  Two vector dot products per iteration 
•  Four n-vectors of working storage 

x0 =  0,    r0 =  b,    d0 =  r0     (these are all vectors)	



for  k  =  1, 2, 3, . . .	


	

αk =  (rT

k-1rk-1) / (dT
k-1Adk-1)    step length 

	

xk  =  xk-1 + αk dk-1                             approximate solution 

	

 rk =  rk-1 – αk Adk-1                           residual  =  b - Axk	


	

βk =  (rT

k rk) / (rT
k-1rk-1)            improvement	



	

dk  =  rk + βk dk-1                                  search direction	


	





Vector and matrix primitives for CG 
 
•  DAXPY:   v = α*v + β*w         (vectors v, w; scalars α, β) 

•  Time = O(n) 

•  DDOT:   α = vT*w  = Σj v[j] * w[j]   (vectors v, w; scalar α) 
•  Time = O(n) 

•  Matvec:     v = A*w                      (matrix A, vectors v, w) 
•  This is the hard part! 
•  Time = O(n2)   if A is a full matrix stored as a 2-D array 

•  But all you need is a subroutine to compute v from w 
•  If A is sparse,  time = O(#nonzeros in A) 



The Landscape of Ax=b Solvers 
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BiCGSTAB, 
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Direct 
A = LU 

Iterative 
y’ = Ay 

Non- 
symmetric 
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positive 
definite 

More Robust Less Storage (if sparse) 

More Robust 

More General 



Optional:   
 

Analysis of the Conjugate Gradient 
Algorithm 

 
 

See Shewchuk’s paper (linked to course web site) for details. 



Conjugate gradient:  Krylov subspaces 

•  Eigenvalues:       Av = λv         { λ1, λ2 , . . ., λn} 

•  Cayley-Hamilton theorem: 
 (A – λ1I)·(A – λ2I) · · · (A – λnI) = 0  

Therefore   Σ ciAi  =  0   for some ci 
 

so                A-1  =  Σ (–ci/c0) Ai–1  

•  Krylov subspace:	


Therefore if  Ax = b, then x = A-1 b  and 

x ∈ span (b, Ab, A2b, . . ., An-1b) = Kn (A, b)  

0 ≤ i ≤ n	



1 ≤ i ≤ n	





Conjugate gradient:  Orthogonal sequences 

•  Krylov subspace:  Ki (A, b) = span (b, Ab, A2b, . . ., Ai-1b)  
•  Conjugate gradient algorithm: 

 for  i = 1, 2, 3, . . . 
  find xi ∈ Ki (A, b)  
  such that   ri   =  (b – Axi)  ⊥  Ki (A, b) 

	



•  Notice  ri ∈ Ki+1 (A, b),  so   ri ⊥ rj   for all  j < i 

•  Similarly, the “directions” are A-orthogonal: 
  (xi – xi-1 )T·A· (xj – xj-1 ) = 0 

	



•  The magic: Short recurrences. . . 
 A is symmetric => can get next residual and direction 
      from the previous one, without saving them all. 



Conjugate gradient:  Convergence 

•  In exact arithmetic, CG converges in n steps  
                        (completely unrealistic!!) 

•  Accuracy after k steps of CG is related to: 
•  consider polynomials of degree k that are equal to 1 at 0. 
•  how small can such a polynomial be at all the eigenvalues of A? 

•  Thus, eigenvalues close together are good. 

•  Condition number:   κ(A)   =   ||A||2 ||A-1||2  =  λmax(A) / λmin(A) 

•  Residual is reduced by a constant factor by  
           O(κ1/2(A))  iterations of CG. 



Other Krylov subspace methods 

•  Nonsymmetric linear systems: 
•  GMRES:   

for  i = 1, 2, 3, . . . 
    find xi ∈ Ki (A, b) such that  ri   =  (Axi – b)  ⊥  Ki (A, b) ���
But, no short recurrence => save old vectors => lots more space 
 (Usually “restarted” every k iterations to use less space.) 

•  BiCGStab, QMR, etc.: 
Two spaces Ki (A, b) and Ki (AT, b) w/ mutually orthogonal bases 
Short recurrences => O(n) space, but less robust 

•  Convergence and preconditioning more delicate than CG 
•  Active area of current research 

•  Eigenvalues:  Lanczos (symmetric), Arnoldi (nonsymmetric) 


