The middleware of scientific computing

Continuous
physical modeling

|

Linear algebra AX — b

|

Conjugate gradient iteration

* CG can be used to solve any system Ax = Db, if ...

Conjugate gradient iteration

* CG can be used to solve any system Ax = Db, if ...
* The matrix A is symmetric (a; = a;) ...
* ... and positive definite (all eigenvalues > 0).

Conjugate gradient iteration

CG can be used to solve any system Ax = Db, if ...
The matrix A is symmetric (a; = a;) ...
... and positive definite (all eigenvalues > 0).

Symmetric positive definite matrices occur a lot
in scientific computing & data analysis!

Conjugate gradient iteration for Ax = b

Xo= 0 approx solution

r,= Db residual = b - Ax

d, = 1, search direction

for kK = 1,2,3,...
X, = X1t ... new approx solution
.= ... new residual
d = ... new search direction

Conjugate gradient iteration for Ax = b

Xo= 0 approx solution
r,= Db residual = b - Ax
d, = 1, search direction
for kK = 1,2,3,...
oy = ... step length
Xp = X+ 0y dy new approx solution
.= ... new residual
d = ... new search direction

Conjugate gradient iteration for Ax = b

Xo= 0 approx solution
r,= Db residual = b - Ax
d, = 1, search direction
for kK =1,2,3,...

o, = (' r.) /(' Ad_,) steplength

X = X+ 0y di new approx solution

.= ... new residual

d = ... new search direction

Conjugate gradient iteration for Ax = b

Xo= 0 approx solution
r,= Db residual = b - Ax
d, = 1, search direction
for kK = 1,2,3,...
o, = (' r.) /(' Ad_,) steplength
Xp = X+ 0y dy new approx solution
.= ... new residual
=) / ()
d. = 1.+ P, d, new search direction

Conjugate gradient iteration for Ax = b

Xo= 0 approx solution
r,= Db residual = b - Ax
d, = 1, search direction
for kK = 1,2,3,...
o, = (' r.) /(' Ad_,) steplength
Xp = X+ 0y dy new approx solution
r, = r,_,— o, Ad,_, new residual
B = () / ()
d. = 1.+ P, d, new search direction

Conjugate gradient iteration to solve A*x=b

Xo= 0, 1r,=">b, dy= 1, (these are all vectors)
for k = 1,2,3,...
o, = (! 1)/ (dY Ad, ;) steplength

Xp = X+ 0y dp 4 approximate solution
r, = r._,— o Ad, residual = b - Ax
B.= hr)/ (@l 1) improvement

d. = 1.+ P, d, search direction

« One matrix-vector multiplication per iteration
* Two vector dot products per iteration
* Four n-vectors of working storage

Vector and matrix primitives for CG

« DAXPY: v=a* + [*w (vectors v, w; scalars a, B)
 Time = 0O(n)

- DDOT: a=v™w =2 v[j]*w[] (vectorsv, w; scalar a)
* Time = O(n)

 Matvec: v =A*w (matrix A, vectors v, w)
* This is the hard part!
« Time = O(n?) if Ais a full matrix stored as a 2-D array

- But all you need is a subroutine to compute v from w
« If Ais sparse, time = O(#nonzeros in A)

The Landscape of Ax=b Solvers

Direct Iterative
A=LU y =Ay

More General

Non- Pivoting | GMRES,
Symmetric LU BiCGSTAB,

Symmetric Cholesky | Conjugate

32;1:11;: gradient

More Robust

More Robust <P | ess Storage (if sparse)

Optional:

Analysis of the Conjugate Gradient
Algorithm

See Shewchuk’s paper (linked to course web site) for details.

Conjugate gradient: Krylov subspaces
 Eigenvalues: Av = Av V. P

e Cayley-Hamilton theorem:

(A=ADA=AD - (A=AI)=0

Therefore 2 cAl = 0 for some ¢,

O<i=<n

SO Al =) (—ci/cy) A

I<i=<n

* Krylov subspace:
Therefore if AX =D, thenx =A1b and
X € span (b, Ab, A%b, ..., A™b)=K_ (A, b)

Conjugate gradient: Orthogonal sequences

Krylov subspace: K, (A, b)=span (b, Ab, A%b, . . ., Alb)
Conjugate gradient algorithm:
fori=1,2,3,...
find x, € K, (A, b)
suchthat r = (b—-Ax;) 1L K (A, b)

Notice ;€ Ki44 (A, b), so r; Ly forall j<I

Similarly, the “directions” are A-orthogonal:

(X; = Xiq)TA- (% —X4) =0

The magic: Short recurrences. . .
A Is symmetric => can get next residual and direction

from the previous one, without saving them all.

Conjugate gradient: Convergence

 In exact arithmetic, CG converges in n steps
(completely unrealistic!!)

Accuracy after k steps of CG is related to:
« consider polynomials of degree k that are equal to 1 at 0.
* how small can such a polynomial be at all the eigenvalues of A?

Thus, eigenvalues close together are good.

Condition number: K(A) = [|Alls lIA], = Apax(A) 7 Apin(A)

Residual is reduced by a constant factor by
O(kV2(A)) iterations of CG.

Other Krylov subspace methods

* Nonsymmetric linear systems:

« GMRES:
fori=1,2,3,...
find x; € K, (A, b) such that r;, = (Ax,—b) L Ki(A, b)
But, no short recurrence => save old vectors => lots more space

(Usually “restarted” every k iterations to use less space.)

 BiCGStab, QMR, etc.:
Two spaces K. (A, b) and K, (AT, b) w/ mutually orthogonal bases
Short recurrences => O(n) space, but less robust

« Convergence and preconditioning more delicate than CG
 Active area of current research

* Eigenvalues: Lanczos (symmetric), Arnoldi (nonsymmetric)

