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Combinatorial Scientific Computing 

 “I observed that most of the 
coefficients in our matrices were 
zero; i.e., the nonzeros were 
‘sparse’ in the matrix, and that 
typically the triangular matrices 
associated with the forward and back 
solution provided by Gaussian 
elimination would remain sparse if 
pivot elements were chosen with 
care” 

- Harry Markowitz, describing the 1950s 
work on portfolio theory that won  
the 1990 Nobel Prize for Economics 



1.  Preorder:  replace A by PAPT and b by Pb 
•  Independent of numerics 

2.  Symbolic Factorization:  build static data structure 
•  Elimination tree 
•  Nonzero counts 
•  Supernodes 
•  Nonzero structure of L 

3.  Numeric Factorization:  A = LLT 
•  Static data structure 
•  Supernodes use BLAS3 to reduce memory traffic 

4.  Triangular Solves:   solve Ly = b, then LTx = y 

Sparse Cholesky factorization to solve  Ax = b 
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(PAPT) (Px) = (Pb)	

Ax = b	

PAPT = L2L2
T	

A = L1L1
T	
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Sparse Gaussian elimination and chordal completion 
[Parter, Rose] 
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Graphs and sparse matrices:  Cholesky factorization 

                       A  =  LLT  
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G(A) G(L) 
[chordal] 

Symmetric Gaussian elimination: 

for j = 1 to n 
    add edges between j’s 
    higher-numbered neighbors 

Fill: new nonzeros in factor 
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Sparse Gaussian elimination and chordal completion 
[Parter, Rose] 

Repeat: 
 Choose a vertex v and mark it; 
 Add edges between unmarked neighbors of v; 

Until:  Every vertex is marked 
 
Goal:  End up with as few edges as possible. 
 

Or, add fewest possible edges to make the graph chordal. 

Space = edges + vertices  =  Σvertices (1 + # higher neighbors) 

Time = flops  =  Σvertices  (1+ # higher neighbors)2 



Complexity measures for sparse Cholesky 
•  Space: 

•  Measured by fill, which is nnz(G+(A)) 
•  Number of off-diagonal nonzeros in Cholesky factor  

    (need to store about n + nnz(G+(A)) real numbers). 
•  Sum over vertices of G+(A) of (# of higher neighbors). 

•  Time: 
•  Measured by number of flops (multiplications, say) 

•  Sum over vertices of G+(A) of (# of higher neighbors)2 

•  Front size: 
•  Related to the amount of “fast memory” required 
•  Max over vertices of G+(A) of (# of higher neighbors). 



The (2-dimensional) model problem 

•  Graph is a regular square grid with n = k2 vertices. 

•  Corresponds to matrix for regular 2D finite difference mesh. 

•  Gives good intuition for behavior of sparse matrix 
algorithms on many 2-dimensional physical problems. 

•  There’s also a 3-dimensional model problem. 

• n1/2 



Permutations of the 2-D model problem 

•  Theorem 1:  With the natural permutation, the n-vertex 
model problem has exactly O(n3/2) fill. 

 
•  Theorem 2:  With a nested dissection permutation, the  

n-vertex model problem has exactly O(n log n) fill. 

•  Theorem 3:  With any permutation, the n-vertex model 
problem has at least O(n log n) fill.  

See course notes for proofs. 

 



Complexity of direct methods 

• n1/2 • n1/3 

2D 3D 

Space (fill): O(n log n) O(n 4/3 ) 

Time (flops): O(n 3/2 ) O(n 2 ) 

• Time and 
space to solve 
any problem 
on any well-
shaped finite 
element mesh 



The Landscape of Sparse Ax=b Solvers 

 

 
Pivoting 

LU 

 
GMRES, 
QMR, … 

 
Cholesky 

 
Conjugate 
gradient 

 

 

Direct 
A = LU 

Iterative 
y’ = Ay 

Non- 
symmetric 

Symmetric 
positive 
definite 

More Robust Less Storage 

More Robust 

More General 
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Complexity of linear solvers 

2D 3D 
Dense Cholesky: O(n3 ) O(n3 ) 
Sparse Cholesky: O(n1.5 ) O(n2 ) 

CG, exact arithmetic: O(n2 ) O(n2 ) 

CG, no precond: O(n1.5 ) O(n1.33 ) 
CG, modified IC: O(n1.25 ) O(n1.17 ) 
CG, support trees: O(n1+ )  O(n1+ )  

Multigrid: O(n) O(n) 

n1/2 
n1/3 

Time to solve 
model problem 
(Poisson’s 
equation) on 
regular mesh 


