
CS 140 Assignment 1:

Performance Analysis of a Sequential Program

Assigned Monday, January 9, 2017

Due 11:55 pm Tuesday, January 17, 2017

The reason anyone uses a parallel computer, or writes a parallel program, is always performance:
You want your computation to run faster, or cheaper, or on a bigger problem. Every program you
write in this class will have performance as one of its goals.

This assignment will give you some practice measuring and maybe improving the performance
of a program. The program isn’t parallel; we’ll get to that next week, but for now the program just
runs on one processor. If you’re trying to get good performance on a parallel code, the first step is
always to make sure you’re getting the best performance you can on the single-processor sequential
code. The moral of this assignment is that performance is affected by lots of subtle things, some
of which you can explain and some not.

We have supplied a program to multiply two matrices together. We’ll look at some applications
of this important computation later in the course, but for now it’s just a particular task that we
want to get to run fast. You will benchmark this code and some modifications of it, and you will
present your analysis of its performance and scaling in graphs, in tables, and in writing.

The Gauchospace site has a link to a video lecture by Saman Amarasinghe at MIT about
optimizing matrix multiply. He starts with a somewhat different code than ours, but it’s interesting
to watch.

You can do this assignment on any computer you like, including your laptop or CSIL or a single
processor of Triton.

1 Mathematical background

A square matrix is an n-by-n array A of n2 numbers. The entry in row i, column j of A is written
either aij or A(i, j). The rows and columns are numbered from 1 to n in traditional linear algebra
notation, or sometimes from 0 to n − 1 in programs like our C code. Two same-sized matrices A
and B can be multiplied together to give a third matrix C. Recall the definition: If the matrix
C = AB, the elements of C are

C(i, j) =

n∑
k=1

A(i, k) ×B(k, j).

In words, each element of C is obtained from one row of A and one column of B by computing an
inner product (that is, by adding up the elementwise products). The element in row i and column
j of C is the inner product of all of row i of A with all of column j of B.

Every element of A contributes to n different elements of C (the ones in the same row), and
every element of B contributes to n different elements of C (the ones in the same column). The
total amount of work to compute all n2 elements of C is n3 multiplications of numbers, and n3
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additions of numbers. We call an addition or multiplication of two numbers a flop (for “floating
point operation”); thus, computing the product of two n-by-n matrices uses 2n3 flops.

You would expect, therefore, if you measure the running time of a matrix multiplication program
for matrices of different sizes n, the measured time will scale as O(n3). This assignment is to evaluate
that expectation.

2 The code

We’ve written the first version of the matrix multiplication code and linked it to the course home
page. You can build it on any Linux/Unix/OS-X machine by saying make in the code directory.
(You may modify the Makefile for your system if you need to.) You then run it by saying
./matrix multiply. You can use command-line switches to run on matrices of different sizes. You
can also use command-line switches to choose different versions of the algorithm; except there’s
only one version in the code we supply.

Read the code. The header file matrix multiply.h defines a matrix t type as a struct whose
most important field is a vector of double (64-bit floating point) matrix elements. All the elements
of the matrix are stored contiguously in memory, in what’s called column major order: the elements
in the first column come first, then the elements in the second column, and so on. The header file
also defines a macro element(X,i,j) that expands to a pointer to the element in the (i, j) position
of matrix X.

The file matrix multiply.c defines some routines to allocate, free, and print matrices, and
also contains the matrix multiplication routine matrix multiply run 1. That simple routine just
implements the equation above to compute the elements of C from the elements of A and B.

3 Computation cost and communication cost

Notice that the definition leaves a lot of freedom to do things in different orders. The computations
of the different elements of C are independent of each other; all the element multiplications are
independent; and all the additions could be done in a different order because addition is commu-
tative and associative. At least in principle, you could do the 2n3 flops in many, many different
orders, and still get the right answer. For example, you could nest the three loops “for i”, “for
j”, “for k” in any order—six different orders in all—and still compute the same result.

Why should the order matter? You’re still doing the same amount of arithmetic, that is, the
same amount of computation. However, you might be able to change the number of times you move
the matrix elements around. Under the covers, this program moves data (that is, matrix elements)
between main memory, cache, and processor registers. A parallel program would also have to move
data between the memories of different processors.

Here is the most important fact in this course, and I’m already giving it away to you on the
first day of class:

Almost all modern computer programs spend more time and energy moving data around
than actually computing on it.

In other words, the cost of communication is usually larger—often very much larger—than the cost
of computation. As we’ll see this is true for parallel computers that move data around between
processors. But it’s also true for most single-processor sequential codes. The question you’ll ask
over and over again in this course, and indeed the key question in most of performance analysis,
is: Where’s the data?
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4 What experiments to do

Okay, so what do you need to do for this homework?

1. First, measure the scaling of the code we gave you, on whatever computer you’re using. Run
the code for a dozen or so values of n up to the largest matrices you can multiply in a few
minutes. A good choice would be to use powers of two, say 16, 32, 64, up to 1024 or 2048
or whatever. (On my 5-year-old Macbook Air, the original code takes about 10 seconds for
n = 1000.) Make a table of running time as a function of n. Plot a graph of the same data
(using Matlab or any other plotting software).

Also, plot a graph of the flops/second rate as a function of n. It’s often a good idea to study
performance scaling by looking at how a suitable computation rate scales with problem size.
In this case, if time is really proportional to 2n3, the flops/second plot will be a horizontal
line.

Is it? If not, can you explain why not? Write a paragraph of analysis.

2. Second, try out all six possible nesting orders of the ijk loops in matrix multiply. For each
one, try a few different matrix sizes, including the biggest you can. Make another plot of
flops/second as a function of n, with both the best and the worst loop orders, for a range of
powers of two similar to that in the first experiment.

Write a paragraph of analysis. What do you see? Can you explain it? (It’s okay if you can’t
explain what’s going on—we will study some of these questions later in class!)

3. Third, for extra credit, try modifying the program in any way you want. The only restriction
is that you can’t call any library routines for matrix or vector computation. Can you do
better than any of the six variations above? As a challenge, see how big you can get n and
keep your running time under two minutes.

On my Macbook, I wrote a pure C version that improves the 1000-by-1000 running time from
10 seconds to 1 second. It’s possible to do a lot better than that, actually.

5 What to turn in

Turn in all of the following, through the course Gauchospace page:

• All your source code, including all the files in the code directory whether you’ve modified
them or not.

• A report in PDF form named report.pdf, containing any necessary description of your code,
tables of your run time results, your plots and graphics, plus a description and interpretation
of your results and the conclusions you draw from them.

• If you worked in a team, your report should include the names and CSIL accounts (or perm
number if you don’t have an account) of both members.

• Don’t turn in any executable or .o files.

You may do this assignment alone or in a group of two people. (Later assignments must be
done in groups of two.) Only one person needs to turn it in, but make sure both names are on the
report.
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