
CS 140 Assignment 2:

Matrix-Vector Multiplication and the Power Method

Assigned Wednesday, January 18, 2017

Due by 11:55 pm Monday, January 30, 2017

This assignment is to write a parallel program to multiply a matrix by a vector, and to use this
routine in an implementation of the power method to find the absolute value of the largest eigenvalue
of the matrix. You will write separate functions to generate the matrix and to perform the power
method, and you will do some timing experiments with the power method routine.

1 Mathematical background

A square matrix is an n-by-n array A of numbers. The entry in row i, column j of A is written
either aij or A(i, j). The rows and columns are numbered from 1 to n. A vector is a one-dimensional
array x whose i’th entry is xi or x(i). Recall the definition of matrix-vector multiplication: The
product y = Ax is a vector y whose elements are

yi =
n∑

j=1

aijxj .

In words, each element of y is obtained from one row of A and all of x, by computing an inner
product (that is, by adding up the pointwise products). Every element of x contributes to every
element of y; each element of A is used exactly once.

The power method uses matrix-vector multiplication to estimate the size of the largest eigenvalue
of a matrix A, which is also called the spectral radius of A. It works as follows. Start with an
arbitrary vector x. Then repeat the following two steps: divide each element of x by the length (or
norm) of x; second, replace x by the matrix-vector product Ax. The norm of the vector eventually
converges to the spectral radius of A. In your code, you will repeat the matrix-vector product 1000
times.

There is a sequential Matlab code for the power method on the course web page (under Home-
work 2). You will write a parallel C/MPI code that does the same computation.

2 What to implement

You will write the following C routines:

• generateMatrix: Generates a matrix of specified size, with the data distributed across the
processors as specified in the next section. The section on experiments below defines the
matrices you’ll use for experiments.

• powerMethod: Implements the power method on a given matrix (which is already distributed
across the processors). This routine calls norm2 and matVec.
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• norm2: Computes the norm (the length) of a given vector.

• matVec: Multiplies a given matrix (which is already distributed across the processors) by a
given vector.

The assignment directory on the course web site also includes a harness consisting of a main program
that calls these four routines, using MPI Wtime to time them, and a Makefile that builds the whole
code. You can modify the main program to help you debug your code, but make sure that the code
you submit works with the original main program and the original Makefile. We will grade your
code by compiling your routines along with the original main program and Makefile; we may also
substitute a different generateMatix to make sure your code works on different matrices.

3 Where’s the data?

You may assume that n, the number of rows and columns of the matrix, is divisible by p, the number
of processors. Distribute the matrix across the processors by rows, with the same number of rows
on each processor; thus, processor 0 gets rows 1 through n/p of A, processor 1 gets rows n/p + 1
through 2n/p, and so forth. Your generateMatrix routine should not do any communication
except for the value of n; each processor should generate its own rows of the matrix, independently
of the others, in parallel.

Put the vector on processor 0. For our purposes, the “arbitrary vector” you start with should
be the vector whose elements are all equal to 1.

When you write your matVec routine, you should do the communication with MPI Bcast,
MPI Gather, or other collective operations; you will find the code to be much simpler this way
than if you do it all with MPI Send and MPI Recv.

4 What experiments to do

When you debug parallel code, you have to go very slowly and take one step at a time; otherwise,
when something breaks it is very hard to figure out where the problem is. Use lots of printf()
statements!

First, debug your matVec routine by itself (called from main), first on one processor, then two
processors, then several processors. Using very small matrices, check to make sure your routine is
getting the same answers as the Matlab code. (Hint: In Matlab, if you omit the semicolon at the
end of a statement, it prints the value computed by the statement; try running powermethod.m

with and without semicolons inside the main loop.)
Second, debug the whole code, always starting with tiny matrices on one, then two, then four

processors. For debugging you will only have to do two or three iterations of the power method to
see if you’re getting the same results as Matlab.

The Matlab code generateMatrix.m generates a specific matrix (for which you supply the
size n) that you can use for both debugging and timing experiments. Here is the matrix for n = 6:

1 0 0 0 0 0
2 2 0 0 0 0
3 3 3 0 0 0
4 4 4 4 0 0
5 5 5 5 5 0
6 6 6 6 6 6


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Because this matrix is triangular (has only zeros above the main diagonal), its eigenvalues are
equal to its diagonal elements, and the spectral radius is therefore equal to n, the largest diagonal
element. However, the power method is pretty slow to converge—for very large n you won’t get
an accurate estimate of the spectral radius in 1000 iterations. That’s okay; you can check your
accuracy on small matrices and use big ones just for timing experiments.

Your code should use MPI Wtime, and for your timing experiments it should only time the call
to powerMethod, not the matrix generation.

Here are the experiments you should do:

1. Choose a value of n for which your code runs on one processor in a reasonable amount of time,
say 30 seconds to a minute, with 1000 iterations of the main loop. (On my one-processor
laptop, n = 3000 takes about 40 seconds.) Run your code on this matrix for p = 1, 4, 8, and
16. For each run, report the running time tp and the parallel efficiency t1/(ptp). Make plots
of the running time versus p, and the parallel efficiency versus p. (You can use Matlab to
plot the data, or any other plot package you want.) You will want to wait to run on 8 and
16 processors until you are absolutely sure your code is giving the right answers on 2 and 4
processors.

2. Change your program to do only 10 iterations of the main loop, and recompile it with the Tau
profiling tool. Run your code with Tau, for p = 4 and p = 16, on fairly large problems. Use
pprof to generate the text profile report, and include it in the items you turn in. Can you
interpret and explain the results? Also, run paraprof (you’ll have to get X window forwarding
going with ssh -X first, as Burak described in class) and explore the possible graphic displays
of profile information for your program. Include one graphic in your report that you think
best captures what is going on (and where the time is going) when your program runs, and
say in your report how you interpret that graphic.

3. (Optional, extra credit, not too hard): Modify your program to divide the matrix data
among the processors by blocks of columns instead of blocks of rows. You will probably
use different MPI collective routines than you did in the row-blocked code. Debug and test
your program, and then compare its running time on a fairly large matrix with that of your
row-blocked code. Discuss the results in your report. Can you explain any differences?

4. (Optional, extra credit, harder): Modify your program again to divide the matrix data
among the processors using a 2-dimensional blocked distribution, with square blocks of size
n/
√
p-by-n/

√
p. For this part you can assume that the number of processors p is a perfect

square, and that the matrix dimension n is divisible by
√
p. Debug and test your program,

and include results in your report that show that it works. Time your 2-D code against
your original row-blocked code, for various values of p, choosing a matrix size for each p that
requires a minute or so of running time. The theory (as we did in class) suggests that the
2-D code should be a little worse for p = 4, but should start to win for larger values of p.
What do you see in practice? You might want to keep going up to p = 64 or p = 256 for
this experiment, but be sure your code is correct before you burn your allocation on large
numbers of processors!

Write a report that describes your experiments and your results. What trends do you see?
Do the running time and efficiency behave as you would expect? Can you explain your results?
(Warning: Experimental timing results on parallel codes are often not nearly as clean as you might
expect from the theory!)

3



You can debug your code on any machine you like (for example, you can use CSIL for debugging
with p = 1 and p = 2, and you can run MPI on any multicore laptop or server you might have),
but the results you turn in must come from runs on Triton.

5 What to turn in

Turn in the following, through the course Gauchospace page:

• Your source code, including routines generateMatrix, powerMethod, norm2, and matVec.

• A report in PDF form named report.pdf, containing any necessary description of your code,
tables of your run time results, your plots and graphics, plus a description and interpretation
of your results and any conclusions you draw from them.

• You should do this assignment in groups of two people. Only one person needs to do the
turnin, but make sure both names and perm numbers are on the report.

• Don’t turn in any executable or .o files. You don’t need to turn in the main program or
Makefile, because we will compile and run your code with the originals that we supplied
with the assignment.
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