
CS 140 Assignment 4:
Cilkified Inner Products

Assigned February 13, 2017

Due by 11:55 pm Friday, February 17

The purpose of this assignment is to gain familiarity with Cilk constructs and tools, as
well as to think about different ways of parallelizing an algorithm using Cilk. You will
write a parallel routine that computes the inner product (sometimes called dot product or
DDOT) of two arrays in three different ways.

1. Background

The inner product of two vectors is the sum of their elementwise products. In pure C, the
inner product of two double arrays, each of size n, can be implemented as follows:

double	innerprod	=	0;	
for(int	i=0;	i<	n;	++i)	
{	
	 innerprod	+=	a[i]	*	b[i];	
}	

In C++, the standard library has a dedicated function for computing the inner product. It
is made available by including the <numeric> header. For the purposes of this assignment
(and this class), you don’t have to know and use C++, but you’re allowed to do so
because Cilk is an extension of C++ and will accept C++ constructs.

2. What to implement

You will write three different functions to evaluate the inner product in parallel.

1. rec_cilkified(double	*	a,	double	*	b,	int	n)	
	

This will evaluate the inner product recursively, by splitting each array into two at
each stage of the recursion and adding the partial sums at the end. You should
switch to a sequential execution when the subarray sizes become smaller than a
threshold called coarseness. Here is a picture of the calculation:

a
b

innprod(a,b,n/2) innprod(a+n/2,b+n/2,n-n/2)

innprod(a,b,n)

+

......

2. loop_cilkified(double	*	a,	double	*	b,	int	n)	
	

This function contains two nested loops: the outer loop executes n / coarseness
times, and the inner loop executes coarseness times. You should parallelize the
outer loop with cilk_for, and let each inner loop execution proceed sequentially.
Finally, you’ll combine the results of the inner loop executions by adding them all
together sequentially.
	

3. reducer_cilkified(double	*	a,	double	*	b,	int	n)	
	

For this function, you’ll use use a reducer similar to the ones shown in the Cilk
programmer’s guide, and let it take care of data races and combining the results.

The driver/harness code is in a file on the course GauchoSpace site. You can use this file
as a template and implement the required functions, which are left blank for you to fill in.
The site also includes a timing function and a Makefile.

Your program will be executed for grading as:

>> ./innerproduct [sizeofarray]

where the parameter is optional and default is 1 million. (However, larger sizes might be
necessary to measure differences in performance.)

If the harness reports “incorrect” on your results, use cilkscreen to identify any data races
that might exist in your code. (Don’t forget that you must build the debug version of your
code for cilkscreen to report line numbers where data races occur)

3. What to report/answer

1. Run your code with different input sizes (sizeofarray = 104, 105, 106, 107, 108,
109) on a fixed number of cores (namely 4). Plot a graph that has input size on its
x-axis (in log scale) and speedup on the y-axis. Plot all three lines (one for each
parallel routine you wrote) on the same graph.

2. Run your code on different numbers of cores (1, 2, 3, 4, 6, 8, 12, 16) with a fixed

input size (sizeofarray = 108). Plot a graph that has the number of cores on its x-
axis (in normal scale) and parallel efficiency on the y-axis. Plot all three lines
(one for each parallel routine) on the same graph.

3. (Extra Credit) Experiment with different coarseness values and report on the

sensitivity of the performance to different values.

4. (Extra Credit) The harness reports the speedup of your implementations compared

to the sequential inner product. It is highly likely that your routines won’t enjoy
linear speedup. What might be the reason? Do you think that the algorithm does
not have sufficient parallelism, or do you think there is another bottleneck other
than parallelism?

Hint for (4): Using cilkview, you can empirically find out the parallelism of your code.
However, you should turn the tool on only for the test of the innerproduct routine, not for
the initialization and output.

You should do this assignment in a group of two. Be sure your report contains the names
and perm numbers of both group members!

