
A User�s Guide to MPI

Peter S� Pacheco

Department of Mathematics

University of San Francisco

San Francisco� CA �����

peter�usfca�edu

March 	
� ����

Contents

� Introduction �

� Greetings� �

��� General MPI Programs � � � � � � � � � � � � � � � � � � � � � � �
��� Finding Out About the Rest of the World � � � � � � � � � � � �
��� Message� Data � Envelope � � � � � � � � � � � � � � � � � � � � �
��	 MPI Send and MPI Receive � � � � � � � � � � � � � � � � � � � 


� Collective Communication ��

��� Tree�Structured Communication � � � � � � � � � � � � � � � � � ��
��� Broadcast � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
��� Reduce � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �	
��	 Other Collective Communication Functions � � � � � � � � � � � ��

� Grouping Data for Communication ��

	�� The Count Parameter � � � � � � � � � � � � � � � � � � � � � � �

	�� Derived Types and MPI Type struct � � � � � � � � � � � � � � ��
	�� Other Derived Datatype Constructors � � � � � � � � � � � � � � ��
	�	 PackUnpack � � � � � � � � � � � � � � � � � � � � � � � � � � � �	
	�� Deciding Which Method to Use � � � � � � � � � � � � � � � � � ��

�



� Communicators and Topologies ��

��� Fox�s Algorithm � � � � � � � � � � � � � � � � � � � � � � � � � � ��
��� Communicators � � � � � � � � � � � � � � � � � � � � � � � � � � ��
��� Working with Groups� Contexts� and Communicators � � � � � ��
��	 MPI Comm split � � � � � � � � � � � � � � � � � � � � � � � � � ��
��� Topologies � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
��� MPI Cart sub � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
��� Implementation of Fox�s Algorithm � � � � � � � � � � � � � � � 	�

	 Where To Go From Here ��

��� What We Haven�t Discussed � � � � � � � � � � � � � � � � � � � 		
��� Implementations of MPI � � � � � � � � � � � � � � � � � � � � � 	�
��� More Information on MPI � � � � � � � � � � � � � � � � � � � � 	�
��	 The Future of MPI � � � � � � � � � � � � � � � � � � � � � � � � 	�

A Compiling and Running MPI Programs �


A�� MPICH � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	�
A�� CHIMP � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	�
A�� LAM � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	�

�



� Introduction

The Message�Passing Interface or MPI is a library of functions and macros
that can be used in C� FORTRAN� and C�� programs� As its name implies�
MPI is intended for use in programs that exploit the existence of multiple
processors by message�passing�

MPI was developed in ��������	 by a group of researchers from industry�
government� and academia� As such� it is one of the �rst standards for
programming parallel processors� and it is the �rst that is based on message�
passing�

This User�s Guide is a brief tutorial introduction to some of the more
important features of MPI for C programmers� It is intended for use by
programmers who have some experience using C but little experience with
message�passing� It is based on parts of the book ���� which is to be published
by Morgan Kaufmann� For comprehensive guides to MPI see �	�� ��� and ����
For an extended� elementary introduction� see ����

Acknowledgments� My thanks to nCUBE and the USF faculty devel�
opment fund for their support of the work that went into the preparation
of this Guide� Work on MPI was supported in part by the Advanced Re�
search Projects Agency under contract number NSF�ASC��������� adminis�
tered by the National Science Foundation�s Division of Advanced Scienti�c
Computing� The author gratefully acknowledges use of the Argonne High�
Performance Computing Research Facility� The HPCRF is funded principally
by the U�S� Department of Energy O�ce of Scienti�c Computing�

Copying� This Guide may be freely copied and redistributed provided
such copying and redistribution is not done for pro�t�

�



� Greetings�

The �rst C program that most of us saw was the �Hello� world�� program in
Kernighan and Ritchie�s classic text� The C Programming Language ���� It
simply prints the message �Hello� world�� A variant that makes some use of
multiple processes is to have each process send a greeting to another process�

In MPI� the processes involved in the execution of a parallel program are
identi�ed by a sequence of non�negative integers� If there are p processes
executing a program� they will have ranks �� �� � � � � p � �� The following
program has each process other than � send a message to process �� and
process � prints out the messages it received�

�include �stdio�h�

�include �mpi�h�

main�int argc� char�� argv	 


int my�rank� � Rank of process �

int p� � Number of processes �

int source� � Rank of sender �

int dest� � Rank of receiver �

int tag � ��� � Tag for messages �

char message������ � Storage for the message �

MPI�Status status� � Return status for receive �

MPI�Init��argc� �argv	�

MPI�Comm�rank�MPI�COMM�WORLD� �my�rank	�

MPI�Comm�size�MPI�COMM�WORLD� �p	�

if �my�rank �� �	 


sprintf�message� �Greetings from process �d���

my�rank	�

dest � ��

� Use strlen�message	�� to include ���� �

MPI�Send�message� strlen�message	��� MPI�CHAR� dest�

tag� MPI�COMM�WORLD	�

� else 
 � my�rank �� � �

for �source � �� source � p� source��	 


	



MPI�Recv�message� ���� MPI�CHAR� source� tag�

MPI�COMM�WORLD� �status	�

printf���s�n�� message	�

�

�

MPI�Finalize�	�

� � main �

The details of compiling and executing this program depend on the sys�
tem you�re using� So ask your local guide how to compile and run a parallel
program that uses MPI� We discuss the freely available systems in an ap�
pendix�

When the program is compiled and run with two processes� the output
should be

Greetings from process ��

If it�s run with four processes� the output should be

Greetings from process ��

Greetings from process ��

Greetings from process ��

Although the details of what happens when the program is executed vary
from machine to machine� the essentials are the same on all machines� pro�
vided we run one process on each processor�

�� The user issues a directive to the operating system which has the e�ect
of placing a copy of the executable program on each processor�

�� Each processor begins execution of its copy of the executable�

�� Di�erent processes can execute di�erent statements by branching within
the program� Typically the branching will be based on process ranks�

So the Greetings program uses the Single Program Multiple Data or SPMD
paradigm� That is� we obtain the e�ect of di�erent programs running on
di�erent processors by taking branches within a single program on the basis
of process rank� the statements executed by process � are di�erent from those

�



executed by the other processes� even though all processes are running the
same program� This is the most commonly used method for writing MIMD
programs� and we�ll use it exclusively in this Guide�

��� General MPI Programs

Every MPI program must contain the preprocessor directive

�include �mpi�h�

This �le� mpi�h� contains the de�nitions� macros and function prototypes
necessary for compiling an MPI program�

Before any other MPI functions can be called� the function MPI Init must
be called� and it should only be called once� Its arguments are pointers to
the main function�s parameters � argc and argv� It allows systems to do any
special set�up so that the MPI library can be used� After a program has
�nished using the MPI library� it must call MPI Finalize� This cleans up any
�un�nished business� left by MPI � e�g�� pending receives that were never
completed� So a typical MPI program has the following layout�

���

�include �mpi�h�
���

main�int argc� char�� argv	 

���

� No MPI functions called before this �

MPI�Init��argc� �argv	�
���

MPI�Finalize�	�

� No MPI functions called after this �
���

� � main �
���

�



��� Finding Out About the Rest of the World

MPI provides the function MPI Comm rank� which returns the rank of a
process in its second argument� Its syntax is

int MPI�Comm�rank�MPI�Comm comm� int rank	

The �rst argument is a communicator� Essentially a communicator is a collec�
tion of processes that can send messages to each other� For basic programs�
the only communicator needed is MPI COMM WORLD� It is prede�ned in
MPI and consists of all the processes running when program execution be�
gins�

Many of the constructs in our programs also depend on the number of pro�
cesses executing the program� So MPI provides the function MPI Comm size
for determining this� Its �rst argument is a communicator� It returns the
number of processes in a communicator in its second argument� Its syntax is

int MPI�Comm�size�MPI�Comm comm� int size	

��� Message� Data � Envelope

The actual message�passing in our program is carried out by the MPI func�
tions MPI Send and MPI Recv� The �rst command sends a message to a des�
ignated process� The second receives a message from a process� These are
the most basic message�passing commands in MPI� In order for the message
to be successfully communicated the system must append some information
to the data that the application program wishes to transmit� This addi�
tional information forms the envelope of the message� In MPI it contains the
following information�

�� The rank of the receiver�

�� The rank of the sender�

�� A tag�

	� A communicator�

These items can be used by the receiver to distinguish among incoming mes�
sages� The source argument can be used to distinguish messages received

�



from di�erent processes� The tag is a user�speci�ed int that can be used to
distinguish messages received from a single process� For example� suppose
process A is sending two messages to process B� both messages contain a
single �oat� One of the �oats is to be used in a calculation� while the other
is to be printed� In order to determine which is which� A can use di�erent
tags for the two messages� If B uses the same two tags in the correspond�
ing receives� when it receives the messages� it will �know� what to do with
them� MPI guarantees that the integers ������� can be used as tags� Most
implementations allow much larger values�

As we noted above� a communicator is basically a collection of processes
that can send messages to each other� When two processes are communi�
cating using MPI Send and MPI Receive� its importance arises when separate
modules of a program have been written independently of each other� For
example� suppose we wish to solve a system of di�erential equations� and� in
the course of solving the system� we need to solve a system of linear equa�
tions� Rather than writing the linear system solver from scratch� we might
want to use a library of functions for solving linear systems that was written
by someone else and that has been highly optimized for the system we�re
using� How do we avoid confusing the messages we send from process A to
process B with those sent by the library functions� Before the advent of
communicators� we would probably have to partition the set of valid tags�
setting aside some of them for exclusive use by the library functions� This is
tedious and it will cause problems if we try to run our program on another
system� the other system�s linear solver may not �probably won�t require
the same set of tags� With the advent of communicators� we simply create
a communicator that can be used exclusively by the linear solver� and pass
it as an argument in calls to the solver� We�ll discuss the details of this
later� For now� we can get away with using the prede�ned communicator
MPI COMM WORLD� It consists of all the processes running the program
when execution begins�

��� MPI Send and MPI Receive

To summarize� let�s detail the syntax of MPI Send and MPI Receive�

int MPI�Send�void� message� int count�

MPI�Datatype datatype� int dest� int tag�






MPI�Comm comm	

int MPI�Recv�void� message� int count�

MPI�Datatype datatype� int source� int tag�

MPI�Comm comm� MPI�Status� status	

Like most functions in the standard C library most MPI functions return an
integer error code� However� like most C programmers� we will ignore these
return values in most cases�

The contents of the message are stored in a block of memory referenced by
the argument message� The next two arguments� count and datatype� allow
the system to identify the end of the message� it contains a sequence of count
values� each having MPI type datatype� This type is not a C type� although
most of the prede�ned types correspond to C types� The prede�ned MPI
types and the corresponding C types �if they exist are listed in the following
table�

MPI datatype C datatype
MPI CHAR signed char
MPI SHORT signed short int
MPI INT signed int
MPI LONG signed long int
MPI UNSIGNED CHAR unsigned char
MPI UNSIGNED SHORT unsigned short int
MPI UNSIGNED unsigned int
MPI UNSIGNED LONG unsigned long int
MPI FLOAT �oat
MPI DOUBLE double
MPI LONG DOUBLE long double
MPI BYTE
MPI PACKED

The last two types� MPI BYTE and MPI PACKED� don�t correspond to stan�
dard C types� The MPI BYTE type can be used if you wish to force the
system to perform no conversion between di�erent data representations �e�g��
on a heterogeneous network of workstations using di�erent representations
of data � We�ll discuss the type MPI PACKED later�

Note that the amount of space allocated for the receiving bu�er does not
have to match the exact amount of space in the message being received� For

�



example� when our program is run� the size of the message that process �
sends� strlen�message���� is �
 chars� but process � receives the message in
a bu�er that has storage for ��� characters� This makes sense� In general�
the receiving process may not know the exact size of the message being sent�
So MPI allows a message to be received as long as there is su�cient storage
allocated� If there isn�t su�cient storage� an over�ow error occurs �	��

The arguments dest and source are� respectively� the ranks of the receiving
and the sending processes� MPI allows source to be a �wildcard�� There is
a prede�ned constant MPI ANY SOURCE that can be used if a process is
ready to receive a message from any sending process rather than a particular
sending process� There is not a wildcard for dest�

As we noted earlier� MPI has two mechanisms speci�cally designed for
�partitioning the message space�� tags and communicators� The arguments
tag and comm are� respectively� the tag and communicator� The tag is an
int� and� for now� our only communicator is MPI COMM WORLD� which�
as we noted earlier is prede�ned on all MPI systems and consists of all the
processes running when execution of the program begins� There is a wildcard�
MPI ANY TAG� that MPI Recv can use for the tag� There is no wildcard for
the communicator� In other words� in order for process A to send a message
to process B� the argument comm that A uses in MPI Send must be identical
to the argument that B uses in MPI Recv�

The last argument of MPI Recv� status� returns information on the data
that was actually received� It references a record with with two �elds � one
for the source and one for the tag� So if� for example� the source of the receive
was MPI ANY SOURCE� then status will contain the rank of the process that
sent the message�

��



� Collective Communication

There are probably a few things in the trapezoid rule program that we can
improve on� For example� there is the IO issue� There are also a couple
of problems we haven�t discussed yet� Let�s look at what happens when the
program is run with eight processes�

All the processes begin executing the program �more or less simultane�
ously� However� after carrying out the basic set�up tasks �calls to MPI Init�
MPI Comm size� and MPI Comm rank � processes ��� are idle while process
� collects the input data� We don�t want to have idle processes� but in view
of our restrictions on which processes can read input� there isn�t much we
can do about this� However� after process � has collected the input data� the
higher rank processes must continue to wait while � sends the input data to
the lower rank processes� This isn�t just an IO issue� Notice that there is
a similar ine�ciency at the end of the program� when process � does all the
work of collecting and adding the local integrals�

Of course� this is highly undesirable� the main point of parallel processing
is to get multiple processes to collaborate on solving a problem� If one of
the processes is doing most of the work� we might as well use a conventional�
single�processor machine�

��� Tree�Structured Communication

Let�s try to improve our code� We�ll begin by focussing on the distribution
of the input data� How can we divide the work more evenly among the
processes� A natural solution is to imagine that we have a tree of processes�
with � at the root�

During the �rst stage of the data distribution� � sends the data to �say 
	� During the next stage� � sends the data to �� while 	 sends it to �� During
the last stage� � sends to �� while � sends to �� 	 sends to �� and � sends to
�� �See �gure ���� So we have reduced our input distribution loop from
� stages to � stages� More generally� if we have p processes� this procedure
allows us to distribute the input data in dlog��p e

� stages� rather than p� �
stages� which� if p is large� is a huge savings�

In order to modify the Get data function to use a tree�structured distri�

�The notation dxe denotes the smallest whole number greater than or equal to x�

��



Figure �� Processors con�gured as a tree

bution scheme� we need to introduce a loop with dlog��p e stages� In order
to implement the loop� each process needs to calculate at each stage

� whether it receives� and� if so� the source� and

� whether it sends� and� if so� the destination�

As you can probably guess� these calculations can be a bit complicated�
especially since there is no canonical choice of ordering� In our example� we
chose�

�� � sends to 	�

�� � sends to �� 	 sends to ��

�� � sends to �� � sends to �� 	 sends to �� � sends to ��

We might also have chosen �for example �

�� � sends to ��

�� � sends to �� � sends to ��

�� � sends to 	� � sends to �� � sends to �� � sends to ��

��



Indeed� unless we know something about the underlying topology of our
machine� we can�t really decide which scheme is better�

So ideally we would prefer to use a function that has been speci�cally
tailored to the machine we�re using so that we won�t have to worry about all
these tedious details� and we won�t have to modify our code every time we
change machines� As you may have guessed� MPI provides such a function�

��� Broadcast

A communication pattern that involves all the processes in a communicator
is a collective communication� As a consequence� a collective communication
usually involves more than two processes� A broadcast is a collective commu�
nication in which a single process sends the same data to every process� In
MPI the function for broadcasting data is MPI Bcast	

int MPI�Bcast�void� message� int count�

MPI�Datatype datatype� int root� MPI�Comm comm	

It simply sends a copy of the data in message on process root to each process
in the communicator comm� It should be called by all the processes in the
communicator with the same arguments for root and comm� Hence a broad�
cast message cannot be received with MPI Recv� The parameters count and
datatype have the same function that they have in MPI Send and MPI Recv	
they specify the extent of the message� However� unlike the point�to�point
functions� MPI insists that in collective communication count and datatype
be the same on all the processes in the communicator �	�� The reason for this
is that in some collective operations �see below � a single process will receive
data from many other processes� and in order for a program to determine
how much data has been received� it would need an entire array of return
statuses�

We can rewrite the Get data function using MPI Bcast as follows�

void Get�data��int my�rank� float� a�ptr� float� b�ptr�

int� n�ptr	 


int root � �� � Arguments to MPI�Bcast �

int count � ��

if �my�rank �� �	

��






printf��Enter a� b� and n�n�	�

scanf���f �f �d�� a�ptr� b�ptr� n�ptr	�

�

MPI�Bcast�a�ptr� �� MPI�FLOAT� root�

MPI�COMM�WORLD	�

MPI�Bcast�b�ptr� �� MPI�FLOAT� root�

MPI�COMM�WORLD	�

MPI�Bcast�n�ptr� �� MPI�INT� root�

MPI�COMM�WORLD	�

� � Get�data� �

Certainly this version of Get data is much more compact and readily com�
prehensible than the original� and if MPI Bcast has been optimized for your
system� it will also be a good deal faster�

��� Reduce

In the trapezoid rule program after the input phase� every processor executes
essentially the same commands until the �nal summation phase� So unless
our function f�x is fairly complicated �i�e�� it requires considerably more
work to evaluate over certain parts of �a� b� � this part of the program dis�
tributes the work equally among the processors� As we have already noted�
this is not the case with the �nal summation phase� when� once again� process
� gets a disproportionate amount of the work� However� you have probably
already noticed that by reversing the arrows in �gure ���� we can use the
same idea we used in section ���� That is� we can distribute the work of
calculating the sum among the processors as follows�

�� �a � sends to �� � sends to �� � sends to 	� � sends to ��

�b � adds its integral to that of �� � adds its integral to that of �� etc�

�� �a � sends to �� � sends to 	�

�b � adds� 	 adds�

�� �a 	 sends to ��

�b � adds�

�	



Of course� we run into the same question that occurred when we were writing
our own broadcast� is this tree structure making optimal use of the topology
of our machine� Once again� we have to answer that this depends on the
machine� So� as before� we should let MPI do the work� by using an optimized
function�

The �global sum� that we wish to calculate is an example of a general
class of collective communication operations called reduction operations� In a
global reduction operation� all the processes �in a communicator contribute
data which is combined using a binary operation� Typical binary operations
are addition� max� min� logical and� etc� The MPI function for performing a
reduction operation is

int MPI�Reduce�void� operand� void� result�

int count� MPI�Datatype datatype� MPI�Op op�

int root� MPI�Comm comm	

MPI Reduce combines the operands stored in 
operand using operation op
and stores the result in 
result on process root� Both operand and result refer
to count memory locations with type datatype� MPI Reduce must be called by
all processes in the communicator comm� and count� datatype� and op must
be the same on each process�

The argument op can take on one of the following prede�ned values�

Operation Name Meaning
MPI MAX Maximum
MPI MIN Minimum
MPI SUM Sum
MPI PROD Product
MPI LAND Logical And
MPI BAND Bitwise And
MPI LOR Logical Or
MPI BOR Bitwise Or
MPI LXOR Logical Exclusive Or
MPI BXOR Bitwise Exclusive Or
MPI MAXLOC Maximum and Location of Maximum
MPI MINLOC Minimum and Location of Minimum

It is also possible to de�ne additional operations� For details see �	��

��



As an example� let�s rewrite the last few lines of the trapezoid rule pro�
gram�

���

� Add up the integrals calculated by each process �

MPI�Reduce��integral� �total� �� MPI�FLOAT�

MPI�SUM� �� MPI�COMM�WORLD	�

� Print the result �
���

Note that each processor calls MPI Reduce with the same arguments� In
particular� even though total only has signi�cance on process �� each process
must supply an argument�

��� Other Collective Communication Functions

MPI supplies many other collective communication functions� We brie�y
enumerate some of these here� For full details� see �	��

� int MPI�Barrier�MPI�Comm comm	

MPI Barrier provides a mechanism for synchronizing all the processes in
the communicator comm� Each process blocks �i�e�� pauses until every
process in comm has called MPI Barrier�

� int MPI�Gather�void� send�buf� int send�count�

MPI�Datatype send�type� void� recv�buf�

int recv�count� MPI�Datatype recv�type�

int root� MPI�comm comm	

Each process in comm sends the contents of send buf to the process with
rank root� The process root concatenates the received data in process
rank order in recv buf� That is� the data from process � is followed by
the data from process �� which is followed by the data from process ��
etc� The recv arguments are signi�cant only on the process with rank
root� The argument recv count indicates the number of items received
from each process � not the total number received�

��



� int MPI�Scatter�void� send�buf� int send�count�

MPI�Datatype send�type� void� recv�buf�

int recv�count� � MPI�Datatype recv�type�

int root� MPI�Comm comm	

The process with rank root distributes the contents of send buf among
the processes� The contents of send buf are split into p segments each
consisting of send count items� The �rst segment goes to process �� the
second to process �� etc� The send arguments are signi�cant only on
process root�

� int MPI�Allgather�void� send�buf� int send�count�

MPI�Datatype send�type� void� recv�buf�

int recv�count� MPI�Datatype recv�type�

MPI�comm comm	

MPI Allgather gathers the contents of each send buf on each process� Its
e�ect is the same as if there were a sequence of p calls to MPI Gather�
each of which has a di�erent process acting as root�

� int MPI�Allreduce�void� operand� void� result�

int count� MPI�Datatype datatype� MPI�Op op�

MPI�Comm comm	

MPI Allreduce stores the result of the reduce operation op in each pro�
cess� result bu�er�

��



� Grouping Data for Communication

With current generation machines sending a message is an expensive op�
eration� So as a rule of thumb� the fewer messages sent� the better the
overall performance of the program� However� in each of our trapezoid rule
programs� when we distributed the input data� we sent a� b� and n in sep�
arate messages � whether we used MPI Send and MPI Recv or MPI Bcast�
So we should be able to improve the performance of the program by send�
ing the three input values in a single message� MPI provides three mech�
anisms for grouping individual data items into a single message� the count
parameter to the various communication routines� derived datatypes� and
MPI Pack�MPI Unpack� We examine each of these options in turn�

��� The Count Parameter

Recall that MPI Send� MPI Receive� MPI Bcast� and MPI Reduce all have a
count and a datatype argument� These two parameters allow the user to
group data items having the same basic type into a single message� In order
to use this� the grouped data items must be stored in contiguous memory
locations� Since C guarantees that array elements are stored in contiguous
memory locations� if we wish to send the elements of an array� or a subset of
an array� we can do so in a single message� In fact� we�ve already done this
in section �� when we sent an array of char�

As another example� suppose we wish to send the second half of a vector
containing ��� �oats from process � to process ��

float vector������

int tag� count� dest� source�

MPI�Status status�

int p�

int my�rank�
���

if �my�rank �� �	 


� Initialize vector and send �
���

tag � ���

count � ���

�




dest � ��

MPI�Send�vector � ��� count� MPI�FLOAT� dest� tag�

MPI�COMM�WORLD	�

� else 
 � my�rank �� � �

tag � ���

count � ���

source � ��

MPI�Recv�vector���� count� MPI�FLOAT� source� tag�

MPI�COMM�WORLD� �status	�

�

Unfortunately� this doesn�t help us with the trapezoid rule program� The
data we wish to distribute to the other processes� a� b� and n� are not stored
in an array� So even if we declared them one after the other in our program�

float a�

float b�

int n�

C does not guarantee that they are stored in contiguous memory locations�
One might be tempted to store n as a �oat and put the three values in an
array� but this would be poor programming style and it wouldn�t address the
fundamental issue� In order to solve the problem we need to use one of MPI�s
other facilities for grouping data�

��� Derived Types and MPI Type struct

It might seem that another option would be to store a� b� and n in a struct
with three members � two �oats and an int � and try to use the datatype
argument to MPI Bcast� The di�culty here is that the type of datatype is
MPI Datatype� which is an actual type itself � not the same thing as a user�
de�ned type in C� For example� suppose we included the type de�nition

typedef struct 


float a�

float b�

int n�

� INDATA�TYPE

��



and the variable de�nition

INDATA�TYPE indata

Now if we call MPI Bcast

MPI�Bcast��indata� �� INDATA�TYPE� �� MPI�COMM�WORLD	

the program will fail� The details depend on the implementation of MPI that
you�re using� If you have an ANSI C compiler� it will �ag an error in the call
to MPI Bcast� since INDATA TYPE does not have type MPI Datatype� The
problem here is that MPI is a pre�existing library of functions� That is� the
MPI functions were written without knowledge of the datatypes that you
de�ne in your program� In particular� none of the MPI functions �knows�
about INDATA TYPE�

MPI provides a partial solution to this problem� by allowing the user to
build MPI datatypes at execution time� In order to build an MPI datatype�
one essentially speci�es the layout of the data in the type � the member
types and their relative locations in memory� Such a type is called a derived
datatype� In order to see how this works� let�s write a function that will build
a derived type that corresponds to INDATA TYPE�

void Build�derived�type�INDATA�TYPE� indata�

MPI�Datatype� message�type�ptr	


int block�lengths����

MPI�Aint displacements����

MPI�Aint addresses����

MPI�Datatype typelist����

� Build a derived datatype consisting of

� two floats and an int �

� First specify the types �

typelist��� � MPI�FLOAT�

typelist��� � MPI�FLOAT�

typelist��� � MPI�INT�

� Specify the number of elements of each type �

��



block�lengths��� � block�lengths��� �

block�lengths��� � ��

� Calculate the displacements of the members

� relative to indata �

MPI�Address�indata� �addresses���	�

MPI�Address���indata��a	� �addresses���	�

MPI�Address���indata��b	� �addresses���	�

MPI�Address���indata��n	� �addresses���	�

displacements��� � addresses��� � addresses����

displacements��� � addresses��� � addresses����

displacements��� � addresses��� � addresses����

� Create the derived type �

MPI�Type�struct��� block�lengths� displacements� typelist�

message�type�ptr	�

� Commit it so that it can be used �

MPI�Type�commit�message�type�ptr	�

� � Build�derived�type �

The �rst three statements specify the types of the members of the derived
type� and the next speci�es the number of elements of each type� The next
four calculate the addresses of the three members of indata� The next three
statements use the calculated addresses to determine the displacements of
the three members relative to the address of the �rst � which is given dis�
placement �� With this information� we know the types� sizes and relative
locations of the members of a variable having C type INDATA TYPE� and
hence we can de�ne a derived data type that corresponds to the C type�
This is done by calling the functions MPI Type struct and MPI Type commit�

The newly created MPI datatype can be used in any of the MPI com�
munication functions� In order to use it� we simply use the starting address
of a variable of type INDATA TYPE as the �rst argument� and the derived
type in the datatype argument� For example� we could rewrite the Get data
function as follows�

void Get�data��INDATA�TYPE� indata� int my�rank	


MPI�Datatype message�type� � Arguments to �

��



int root � �� � MPI�Bcast �

int count � ��

if �my�rank �� �	


printf��Enter a� b� and n�n�	�

scanf���f �f �d��

��indata��a	� ��indata��b	� ��indata��n		�

�

Build�derived�type�indata� �message�type	�

MPI�Bcast�indata� count� message�type� root�

MPI�COMM�WORLD	�

� � Get�data� �

A few observations are in order� Note that we calculated the addresses
of the members of indata with MPI Address rather than C�s � operator� The
reason for this is that ANSI C does not require that a pointer be an int
�although this is commonly the case � See �	�� for a more detailed discussion
of this point� Note also that the type of array of displacements is MPI Aint
� not int� This is a special type in MPI� It allows for the possibility that
addresses are too large to be stored in an int�

To summarize� then� we can build general derived datatypes by calling
MPI Type struct� The syntax is

int MPI�Type�Struct�int count�

int� array�of�block�lengths�

MPI�Aint� array�of�displacements�

MPI�Datatype� array�of�types�

MPI�Datatype� newtype	

The argument count is the number of elements in the derived type� It is
also the size of the three arrays� array of block lengths� array of displacements�
and array of types� The array array of block lengths contains the number of
entries in each element of the type� So if an element of the type is an array
of m values� then the corresponding entry in array of block lengths is m� The
array array of displacements contains the displacement of each element from
the beginning of the message� and the array array of types contains the MPI

��



datatype of each entry� The argument newtype returns a pointer to the MPI
datatype created by the call to MPI Type struct�

Note also that newtype and the entries in array of types all have type
MPI Datatype� So MPI Type struct can be called recursively to build more
complex derived datatypes�

��� Other Derived Datatype Constructors

MPI Type struct is the most general datatype constructor in MPI� and as a
consequence� the user must provide a complete description of each element
of the type� If the data to be transmitted consists of a subset of the en�
tries in an array� we shouldn�t need to provide such detailed information�
since all the elements have the same basic type� MPI provides three derived
datatype constructors for dealing with this situation� MPI Type Contiguous�
MPI Type vector and MPI Type indexed� The �rst constructor builds a de�
rived type whose elements are contiguous entries in an array� The second
builds a type whose elements are equally spaced entries of an array� and the
third builds a type whose elements are arbitrary entries of an array� Note that
before any derived type can be used in communication it must be committed
with a call to MPI Type commit�

Details of the syntax of the additional type constructors follow�

� int MPI�Type�contiguous�int count� MPI�Datatype oldtype�

MPI�Datatype� newtype	

MPI Type contiguous creates a derived datatype consisting of count el�
ements of type oldtype� The elements belong to contiguous memory
locations�

� int MPI�Type�vector�int count� int block�length�

int stride� MPI�Datatype element�type�

MPI�Datatype� newtype	

MPI Type vector creates a derived type consisting of count elements�
Each element contains block length entries of type element type� Stride
is the number of elements of type element type between successive ele�
ments of new type�

��



� int MPI�Type�indexed�int count�

int� array�of�block�lengths�

int� array�of�displacements�

MPI�Datatype element�type�

MPI�Datatype� newtype	

MPI Type indexed creates a derived type consisting of count elements�
The ith element �i ! �� �� � � � � count � � � consists of array of block 
lengths�i� entries of type element type� and it is displaced array of 
displacements�i� units of type element type from the beginning of new
type�

��� Pack	Unpack

An alternative approach to grouping data is provided by the MPI functions
MPI Pack and MPI Unpack� MPI Pack allows one to explicitly store noncon�
tiguous data in contiguous memory locations� and MPI Unpack can be used
to copy data from a contiguous bu�er into noncontiguous memory locations�
In order to see how they are used� let�s rewrite Get data one last time�

void Get�data��int my�rank� float� a�ptr� float� b�ptr�

int� n�ptr	 


int root � �� � Argument to MPI�Bcast �

char buffer������ � Arguments to MPI�PackUnpack �

int position� � and MPI�Bcast�

if �my�rank �� �	


printf��Enter a� b� and n�n�	�

scanf���f �f �d�� a�ptr� b�ptr� n�ptr	�

� Now pack the data into buffer �

position � �� � Start at beginning of buffer �

MPI�Pack�a�ptr� �� MPI�FLOAT� buffer� ����

�position� MPI�COMM�WORLD	�

� Position has been incremented by �

� sizeof�float	 bytes �

MPI�Pack�b�ptr� �� MPI�FLOAT� buffer� ����

�	



�position� MPI�COMM�WORLD	�

MPI�Pack�n�ptr� �� MPI�INT� buffer� ����

�position� MPI�COMM�WORLD	�

� Now broadcast contents of buffer �

MPI�Bcast�buffer� ���� MPI�PACKED� root�

MPI�COMM�WORLD	�

� else 


MPI�Bcast�buffer� ���� MPI�PACKED� root�

MPI�COMM�WORLD	�

� Now unpack the contents of buffer �

position � ��

MPI�Unpack�buffer� ���� �position� a�ptr� ��

MPI�FLOAT� MPI�COMM�WORLD	�

� Once again position has been incremented �

� by sizeof�float	 bytes �

MPI�Unpack�buffer� ���� �position� b�ptr� ��

MPI�FLOAT� MPI�COMM�WORLD	�

MPI�Unpack�buffer� ���� �position� n�ptr� ��

MPI�INT� MPI�COMM�WORLD	�

�

� � Get�data� �

In this version of Get data process � uses MPI Pack to copy a to bu�er and
then append b and n� After the broadcast of bu�er� the remaining processes
use MPI Unpack to successively extract a� b� and n from bu�er� Note that
the datatype for the calls to MPI Bcast is MPI PACKED�

The syntax of MPI Pack is

int MPI�Pack�void� pack�data� int in�count�

MPI�Datatype datatype� void� buffer�

int size� int� position�ptr� MPI�Comm comm	

The parameter pack data references the data to be bu�ered� It should consist
of in count elements� each having type datatype� The parameter position ptr
is an in�out parameter� On input� the data referenced by pack data is copied

��



into memory starting at address bu�er � 
position ptr� On return� 
posi
tion ptr references the �rst location in bu�er after the data that was copied�
The parameter size contains the size in bytes of the memory referenced by
bu�er� and comm is the communicator that will be using bu�er�

The syntax of MPI Unpack is

int MPI�Unpack�void� buffer� int size�

int� position�ptr� void� unpack�data� int count�

MPI�Datatype datatype� MPI�comm comm	

The parameter bu�er references the data to be unpacked� It consists of size
bytes� The parameter position ptr is once again an in�out parameter� When
MPI Unpack is called� the data starting at address bu�er � 
position ptr is
copied into the memory referenced by unpack data� On return� 
position ptr
references the �rst location in bu�er after the data that was just copied�
MPI Unpack will copy count elements having type datatype into unpack data�
The communicator associated with bu�er is comm�

��
 Deciding Which Method to Use

If the data to be sent is stored in consecutive entries of an array� then one
should simply use the count and datatype arguments to the communication
function�s � This approach involves no additional overhead in the form of
calls to derived datatype creation functions or calls toMPI Pack�MPI Unpack�

If there are a large number of elements that are not in contiguous memory
locations� then building a derived type will probably involve less overhead
than a large number of calls to MPI Pack�MPI Unpack�

If the data all have the same type and are stored at regular intervals
in memory �e�g�� a column of a matrix � then it will almost certainly be
much easier and faster to use a derived datatype than it will be to use
MPI Pack�MPI Unpack� Furthermore� if the data all have the same type� but
are stored in irregularly spaced locations in memory� it will still probably be
easier and more e�cient to create a derived type using MPI Type indexed�
Finally� if the data are heterogeneous and one is repeatedly sending the
same collection of data �e�g�� row number� column number� matrix entry �
then it will be better to use a derived type� since the overhead of creat�
ing the derived type is incurred only once� while the overhead of calling

��



MPI Pack�MPI Unpack must be incurred every time the data is communi�
cated�

This leaves the case where one is sending heterogeneous data only once� or
very few times� In this case� it may be a good idea to collect some information
on the cost of derived type creation and packingunpacking the data� For
example� on an nCUBE � running the MPICH implementation of MPI� it
takes about �� milliseconds to create the derived type used in Get data�� while
it only takes about � milliseconds to pack or unpack the data in Get data��
Of course� the saving isn�t as great as it seems because of the asymmetry
in the packunpack procedure� That is� while process � packs the data� the
other processes are idle� and the entire function won�t complete until both
the pack and unpack are executed� So the cost ratio is probably more like
��� than ����

There are also a couple of situations in which the use of MPI Pack and
MPI Unpack is preferred� Note �rst that it may be possible to avoid the
use of system bu�ering with pack� since the data is explicitly stored in a
user�de�ned bu�er� The system can exploit this by noting that the message
datatype is MPI PACKED� Also note that the user can send �variable�length�
messages by packing the number of elements at the beginning of the bu�er�
For example� suppose we want to send rows of a sparse matrix� If we have
stored a row as a pair of arrays � one containing the column subscripts� and
one containing the corresponding matrix entries � we could send a row from
process � to process � as follows�

float� entries�

int� column�subscripts�

int nonzeroes� � number of nonzeroes in row �

int position�

int row�number�

char� buffer�HUGE�� � HUGE is a predefined constant �

MPI�Status status�
���

if �my�rank �� �	 


� Get the number of nonzeros in the row� �

� Allocate storage for the row� �

� Initialize entries and column�subscripts �
���

��



� Now pack the data and send �

position � ��

MPI�Pack��nonzeroes� �� MPI�INT� buffer� HUGE�

�position� MPI�COMM�WORLD	�

MPI�Pack��row�number� �� MPI�INT� buffer� HUGE�

�position� MPI�COMM�WORLD	�

MPI�Pack�entries� nonzeroes� MPI�FLOAT� buffer�

HUGE� �position� MPI�COMM�WORLD	�

MPI�Pack�column�subscripts� nonzeroes� MPI�INT�

buffer� HUGE� �position� MPI�COMM�WORLD	�

MPI�Send�buffer� position� MPI�PACKED� �� � ��

MPI�COMM�WORLD	�

� else 
 � my�rank �� � �

MPI�Recv�buffer� HUGE� MPI�PACKED� �� � ��

MPI�COMM�WORLD� �status	�

position � ��

MPI�Unpack�buffer� HUGE� �position� �nonzeroes�

�� MPI�INT� MPI�COMM�WORLD	�

MPI�Unpack�buffer� HUGE� �position� �row�number�

�� MPI�INT� MPI�COMM�WORLD	�

� Allocate storage for entries and column�subscripts �

entries � �float �	 malloc�nonzeroes�sizeof�float		�

column�subscripts � �int �	 malloc�nonzeroes�sizeof�int		�

MPI�Unpack�buffer�HUGE� �position� entries�

nonzeroes� MPI�FLOAT� MPI�COMM�WORLD	�

MPI�Unpack�buffer� HUGE� �position� column�subscripts�

nonzeroes� MPI�INT� MPI�COMM�WORLD	�

�

�




� Communicators and Topologies

The use of communicators and topologies makes MPI di�erent from most
other message�passing systems� Recollect that� loosely speaking� a commu�
nicator is a collection of processes that can send messages to each other� A
topology is a structure imposed on the processes in a communicator that
allows the processes to be addressed in di�erent ways� In order to illus�
trate these ideas� we will develop code to implement Fox�s algorithm ��� for
multiplying two square matrices�


�� Fox�s Algorithm

We assume that the factor matrices A ! �aij and B ! �bij have order n�
We also assume that the number of processes� p� is a perfect square� whose
square root evenly divides n� Say p ! q�� and "n ! n�q� In Fox�s algorithm the
factor matrices are partitioned among the processes in a block checkerboard
fashion� So we view our processes as a virtual two�dimensional q�q grid� and
each process is assigned an "n � "n submatrix of each of the factor matrices�
More formally� we have a mapping

� � f�� �� � � � � p� �g �� f�s� t � � � s� t � q � �g

that is both one�to�one and onto� This de�nes our grid of processes� process
i belongs to the row and column given by ��i � Further� the process with
rank ����s� t is assigned the submatrices

Ast !

�
BB�

as��n�t��n � � � a�s�����n���t��n
���

���
as��n��t�����n�� � � � a�s�����n����t�����n��

�
CCA �

and

Bst !

�
BB�

bs��n�t��n � � � b�s�����n���t��n
���

���
bs��n��t�����n�� � � � b�s�����n����t�����n��

�
CCA �

��



For example� if p ! �� ��x ! �x��� x mod � � and n ! �� then A would be
partitioned as follows�

Process � Process � Process �

A�� !

�
a�� a��
a�� a��

�
A�� !

�
a�� a��
a�� a��

�
A�� !

�
a�	 a�

a�	 a�


�

Process � Process 	 Process �

A�� !

�
a�� a��
a�� a��

�
A�� !

�
a�� a��
a�� a��

�
A�� !

�
a�	 a�

a�	 a�


�

Process � Process � Process 


A�� !

�
a	� a	�
a
� a
�

�
A�� !

�
a	� a	�
a
� a
�

�
A�� !

�
a		 a	

a
	 a



�
�

In Fox�s algorithm� the block submatrices� Ars and Bst� s ! �� �� � � � � q���
are multiplied and accumulated on process ����r� t � The basic algorithm is�

for�step � �� step � q� step��	 


�� Choose a submatrix of A from each row of processes�

�� In each row of processes broadcast the submatrix

chosen in that row to the other processes in

that row�

�� On each process� multiply the newly received

submatrix of A by the submatrix of B currently

residing on the process�

�� On each process� send the submatrix of B to the

process directly above� �On processes in the

first row� send the submatrix to the last row�	

�

The submatrix chosen in the rth row is Ar�u� where

u ! �r � step mod q�


�� Communicators

If we try to implement Fox�s algorithm� it becomes apparent that our work
will be greatly facilitated if we can treat certain subsets of processes as a
communication universe � at least on a temporary basis� For example� in
the pseudo�code

��



�� In each row of processes broadcast the submatrix

chosen in that row to the other processes in

that row�

it would be useful to treat each row of processes as a communication universe�
while in the statement

�� On each process� send the submatrix of B to the

process directly above� �On processes in the

first row� send the submatrix to the last row�	

it would be useful to treat each column of processes as a communication
universe�

The mechanism that MPI provides for treating a subset of processes as
a �communication� universe is the communicator� Up to now� we�ve been
loosely de�ning a communicator as a collection of processes that can send
messages to each other� However� now that we want to construct our own
communicators� we will need a more careful discussion�

In MPI� there are two types of communicators� intra�communicators
and inter�communicators� Intra�communicators are essentially a collection
of processes that can send messages to each other and engage in collective
communication operations� For example� MPI COMM WORLD is an intra�
communicator� and we would like for each row and each column of processes
in Fox�s algorithm to form an intra�communicator� Inter�communicators� as
the name implies� are used for sending messages between processes belonging
to disjoint intra�communicators� For example� an inter�communicator would
be useful in an environment that allowed one to dynamically create processes�
a newly created set of processes that formed an intra�communicator could
be linked to the original set of processes �e�g�� MPI COMM WORLD by an
inter�communicator� We will only discuss intra�communicators� The inter�
ested reader is referred to �	� for details on the use of inter�communicators�

A minimal �intra� communicator is composed of

� a Group� and

� a Context�

A group is an ordered collection of processes� If a group consists of p pro�
cesses� each process in the group is assigned a unique rank� which is just a

��



nonnegative integer in the range �� �� � � � � p� �� A context can be thought of
as a system�de�ned tag that is attached to a group� So two processes that
belong to the same group and that use the same context can communicate�
This pairing of a group with a context is the most basic form of a commu�
nicator� Other data can be associated to a communicator� In particular�
a structure or topology can be imposed on the processes in a communica�
tor� allowing a more natural addressing scheme� We�ll discuss topologies in
section ����


�� Working with Groups� Contexts� and Communica�
tors

To illustrate the basics of working with communicators� let�s create a com�
municator whose underlying group consists of the processes in the �rst row of
our virtual grid� Suppose that MPI COMM WORLD consists of p processes�
where q� ! p� Let�s also suppose that ��x ! �x�q� x mod q � So the �rst row
of processes consists of the processes with ranks �� �� � � � � q � �� �Here� the
ranks are in MPI COMM WORLD� In order to create the group of our new
communicator� we can execute the following code�

MPI�Group MPI�GROUP�WORLD�

MPI�Group first�row�group�

MPI�Comm first�row�comm�

int row�size�

int� process�ranks�

� Make a list of the processes in the new

� communicator �

process�ranks � �int�	 malloc�q�sizeof�int		�

for �proc � �� proc � q� proc��	

process�ranks�proc� � proc�

� Get the group underlying MPI�COMM�WORLD �

MPI�Comm�group�MPI�COMM�WORLD� �MPI�GROUP�WORLD	�

� Create the new group �

MPI�Group�incl�MPI�GROUP�WORLD� q� process�ranks�

��



�first�row�group	�

� Create the new communicator �

MPI�Comm�create�MPI�COMM�WORLD� first�row�group�

�first�row�comm	�

This code proceeds in a fairly straightforward fashion to build the new
communicator� First it creates a list of the processes to be assigned to
the new communicator� Then it creates a group consisting of these pro�
cesses� This required two commands� �rst get the group associated with
MPI COMM WORLD� since this is the group from which the processes in the
new group will be taken� then create the group with MPI Group incl� Fi�
nally� the actual communicator is created with a call to MPI Comm create�
The call to MPI Comm create implicitly associates a context with the new
group� The result is the communicator �rst row comm� Now the processes in
�rst row comm can perform collective communication operations� For exam�
ple� process � �in �rst row group can broadcast A�� to the other processes in
�rst row group�

int my�rank�in�first�row�

float� A����

� my�rank is process rank in MPI�GROUP�WORLD �

if �my�rank � q	 


MPI�Comm�rank�first�row�comm�

�my�rank�in�first�row	�

� Allocate space for A���� order � n�bar �

A��� � �float�	 malloc �n�bar�n�bar�sizeof�float		�

if �my�rank�in�first�row �� �	 


� Initialize A��� �
���

�

MPI�Bcast�A���� n�bar�n�bar� MPI�FLOAT� ��

first�row�comm	�

�

Groups and communicators are opaque objects� From a practical stand�
point� this means that the details of their internal representation depend on

��



the particular implementation of MPI� and� as a consequence� they cannot
be directly accessed by the user� Rather the user accesses a handle that
references the opaque object� and the opaque objects are manipulated by
special MPI functions� for example� MPI Comm create� MPI Group incl� and
MPI Comm group�

Contexts are not explicitly used in any MPI functions� Rather they are
implicitly associated with groups when communicators are created�

The syntax of the commands we used to create �rst row comm is fairly
self�explanatory� The �rst command

int MPI�Comm�group�MPI�Comm comm� MPI�Group� group	

simply returns the group underlying the communicator comm�
The second command

int MPI�Group�incl�MPI�Group old�group� int new�group�size�

int� ranks�in�old�group� MPI�Group� new�group	

creates a new group from a list of processes in the existing group old group�
The number of processes in the new group is new group size� and the pro�
cesses to be included are listed in ranks in old group� Process � in new group
has rank ranks in old group��� in old group� process � in new group has rank
ranks in old group��� in old group� etc�

The �nal command

int MPI�Comm�create�MPI�Comm old�comm� MPI�Group new�group�

MPI�Comm� new�comm	

associates a context with the group new group and creates the communicator
new comm� All of the processes in new group belong to the group underlying
old comm�

There is an extremely important distinction between the �rst two func�
tions and the third� MPI Comm group and MPI Group incl� are both local
operations� That is� there is no communication among processes involved in
their execution� However� MPI Comm create is a collective operation� All the
processes in old comm must call MPI Comm create with the same arguments�
The Standard �	� gives three reasons for this�

�� It allows the implementation to layer MPI Comm create on top of reg�
ular collective communications�

�	



�� It provides additional safety�

�� It permits implementations to avoid communication related to context
creation�

Note that since MPI Comm create is collective� it will behave� in terms of the
data transmitted� as if it synchronizes� In particular� if several communica�
tors are being created� they must be created in the same order on all the
processes�


�� MPI Comm split

In our matrix multiplication program we need to create multiple communi�
cators � one for each row of processes and one for each column� This would
be an extremely tedious process if p were large and we had to create each
communicator using the three functions discussed in the previous section�
Fortunately� MPI provides a function� MPI Comm split that can create sev�
eral communicators simultaneously� As an example of its use� we�ll create
one communicator for each row of processes�

MPI�Comm my�row�comm�

int my�row�

� my�rank is rank in MPI�COMM�WORLD�

� q�q � p �

my�row � my�rankq�

MPI�Comm�split�MPI�COMM�WORLD� my�row� my�rank�

�my�row�comm	�

The single call to MPI Comm split creates q new communicators� all of them
having the same name� my row comm� For example� if p ! �� the group
underlying my row comm will consist of the processes �� �� and � on processes
�� �� and �� On processes �� 	� and �� the group underlying my row comm
will consist of the processes �� 	� and �� and on processes �� �� and 
 it will
consist of processes �� �� and 
�

The syntax of MPI Comm split is

int MPI�Comm�split�MPI�Comm old�comm� int split�key�

int rank�key� MPI�Comm� new�comm	

��



It creates a new communicator for each value of split key� Processes with
the same value of split key form a new group� The rank in the new group
is determined by the value of rank key� If process A and process B call
MPI Comm split with the same value of split key� and the rank key argument
passed by process A is less than that passed by process B� then the rank of
A in the group underlying new comm will be less than the rank of process
B� If they call the function with the same value of rank key� the system will
arbitrarily assign one of the processes a lower rank�

MPI Comm split is a collective call� and it must be called by all the pro�
cesses in old comm� The function can be used even if the user doesn�t wish
to assign every process to a new communicator� This can be accomplished
by passing the prede�ned constant MPI UNDEFINED as the split key argu�
ment� Processes doing this will have the prede�ned value MPI COMM NULL
returned in new comm�


�
 Topologies

Recollect that it is possible to associate additional information � information
beyond the group and context � with a communicator� This additional
information is said to be cached with the communicator� and one of the most
important pieces of information that can be cached with a communicator is
a topology� In MPI� a topology is just a mechanism for associating di�erent
addressing schemes with the processes belonging to a group� Note that MPI
topologies are virtual topologies � there may be no simple relation between
the process structure de�ned by a virtual topology� and the actual underlying
physical structure of the parallel machine�

There are essentially two types of virtual topologies that can be created
in MPI � a cartesian or grid topology and a graph topology� Conceptually�
the former is subsumed by the latter� However� because of the importance of
grids in applications� there is a separate collection of functions in MPI whose
purpose is the manipulation of virtual grids�

In Fox�s algorithmwe wish to identify the processes inMPI COMM WORLD
with the coordinates of a square grid� and each row and each column of the
grid needs to form its own communicator� Let�s look at one method for
building this structure�

We begin by associating a square grid structure withMPI COMM WORLD�
In order to do this we need to specify the following information�

��



�� The number of dimensions in the grid� We have ��

�� The size of each dimension� In our case� this is just the number of rows
and the number of columns� We have q rows and q columns�

�� The periodicity of each dimension� In our case� this information spec�
i�es whether the �rst entry in each row or column is �adjacent� to
the last entry in that row or column� respectively� Since we want a
�circular� shift of the submatrices in each column� we want the second
dimension to be periodic� It�s unimportant whether the �rst dimension
is periodic�

	� Finally� MPI gives the user the option of allowing the system to opti�
mize the mapping of the grid of processes to the underlying physical
processors by possibly reordering the processes in the group underlying
the communicator� Since we don�t need to preserve the ordering of
the processes in MPI COMM WORLD� we should allow the system to
reorder�

Having made all these decisions� we simply execute the following code�

MPI�Comm grid�comm�

int dimensions����

int wrap�around����

int reorder � ��

dimensions��� � dimensions��� � q�

wrap�around��� � wrap�around��� � ��

MPI�Cart�create�MPI�COMM�WORLD� �� dimensions�

wrap�around� reorder� �grid�comm	�

After executing this code� the communicator grid comm will contain all the
processes inMPI COMM WORLD �possibly reordered � and it will have a two�
dimensional cartesian coordinate system associated� In order for a process
to determine its coordinates� it simply calls the function MPI Cart coords�

int coordinates����

int my�grid�rank�

��



MPI�Comm�rank�grid�comm� �my�grid�rank	�

MPI�Cart�coords�grid�comm� my�grid�rank� ��

coordinates	�

Notice that we needed to callMPI Comm rank in order to get the process rank
in grid comm� This was necessary because in our call to MPI Cart create we
set the reorder �ag to �� and hence the original process ranking in MPI 
COMM WORLD may have been changed in grid comm�

The �inverse� to MPI Cart coords is MPI Cart rank�

int MPI�Cart�rank�grid�comm� coordinates�

�grid�rank	

Given the coordinates of a process� MPI Cart rank returns the rank of the
process in its third parameter process rank�

The syntax of MPI Cart create is

int MPI�Cart�create�MPI�Comm old�comm�

int number�of�dims� int� dim�sizes� int� periods�

int reorder� MPI�Comm� cart�comm	

MPI Cart create creates a new communicator� cart comm by caching a carte�
sian topology with old comm� Information on the structure of the cartesian
topology is contained in the parameters number of dims� dim sizes� and peri
ods� The �rst of these� number of dims� contains the number of dimensions
in the cartesian coordinate system� The next two� dim sizes and periods�
are arrays with order equal to number of dims� The array dim sizes speci�es
the order of each dimension� and periods speci�es whether each dimension is
circular or linear�

The processes in cart comm are ranked in row�major order� That is� the
�rst row consists of processes �� �� � � � � dim sizes������ the second row consists
of processes dim sizes���� dim sizes��� � �� � � � � �#dim sizes��� � �� etc� Thus
it may be advantageous to change the relative ranking of the processes in
old comm� For example� suppose the physical topology is a � � � grid� and
the processes �numbers in old comm are assigned to the processors �grid
squares as follows�

� 	 �
� � �
� � 


�




Clearly� the performance of Fox�s algorithm would be improved if we re�
numbered the processes� However� since the user doesn�t know what the
exact mapping of processes to processors is� we must let the system do it by
setting the reorder parameter to ��

Since MPI Cart create constructs a new communicator� it is a collective
operation�

The syntax of the address information functions is

int MPI�Cart�rank�MPI�Comm comm� int� coordinates�

int� rank	�

int MPI�Cart�coords�MPI�Comm comm� int rank�

int number�of�dims� int� coordinates	

MPI Cart rank returns the rank in the cartesian communicator comm of the
process with cartesian coordinates coordinates� So coordinates is an array with
order equal to the number of dimensions in the cartesian topology associated
with comm� MPI Cart coords is the inverse to MPI Cart rank	 it returns the
coordinates of the process with rank rank in the cartesian communicator
comm� Note that both of these functions are local�


� MPI Cart sub

We can also partition a grid into grids of lower dimension� For example� we
can create a communicator for each row of the grid as follows�

int varying�coords����

MPI�Comm row�comm�

varying�coords��� � �� varying�coords��� � ��

MPI�Cart�sub�grid�comm� varying�coords� �row�comm	�

The call to MPI Cart sub creates q new communicators� The varying coords
argument is an array of boolean� It speci�es whether each dimension �be�
longs� to the new communicator� Since we�re creating communicators for the
rows of the grid� each new communicator consists of the processes obtained
by �xing the row coordinate and letting the column coordinate vary� Hence
we assigned varying coords��� the value � � the �rst coordinate doesn�t vary
� and we assigned varying coords��� the value � � the second coordinate

��



varies� On each process� the new communicator is returned in row comm� In
order to create the communicators for the columns� we simply reverse the
assignments to the entries in varying coords�

MPI�Comm col�comm�

varying�coords��� � �� varying�coords��� � ��

MPI�Cart�sub�grid�comm� varying�coord� col�comm	�

Note the similarity of MPI Cart sub to MPI Comm split� They perform
similar functions � they both partition a communicator into a collection of
new communicators� However� MPI Cart sub can only be used with a com�
municator that has an associated cartesian topology� and the new communi�
cators can only be created by �xing �or varying one or more dimensions of
the old communicators� Also note that MPI Cart sub is� like MPI Comm split�
a collective operation�


�� Implementation of Fox�s Algorithm

To complete our discussion� let�s write the code to implement Fox�s algorithm�
First� we�ll write a function that creates the various communicators and
associated information� Since this requires a large number of variables� and
we�ll be using this information in other functions� we�ll put it into a struct
to facilitate passing it among the various functions�

typedef struct 


int p� � Total number of processes �

MPI�Comm comm� � Communicator for entire grid �

MPI�Comm row�comm� � Communicator for my row �

MPI�Comm col�comm� � Communicator for my col �

int q� � Order of grid �

int my�row� � My row number �

int my�col� � My column number �

int my�rank� � My rank in the grid communicator �

� GRID�INFO�TYPE�

� We assume space for grid has been allocated in the

� calling routine�

	�



�

void Setup�grid�GRID�INFO�TYPE� grid	 


int old�rank�

int dimensions����

int periods����

int coordinates����

int varying�coords����

� Set up Global Grid Information �

MPI�Comm�size�MPI�COMM�WORLD� ��grid��p		�

MPI�Comm�rank�MPI�COMM�WORLD� �old�rank	�

grid��q � �int	 sqrt��double	 grid��p	�

dimensions��� � dimensions��� � grid��q�

periods��� � periods��� � ��

MPI�Cart�create�MPI�COMM�WORLD� �� dimensions� periods�

�� ��grid��comm		�

MPI�Comm�rank�grid��comm� ��grid��my�rank		�

MPI�Cart�coords�grid��comm� grid��my�rank� ��

coordinates	�

grid��my�row � coordinates����

grid��my�col � coordinates����

� Set up row and column communicators �

varying�coords��� � �� varying�coords��� � ��

MPI�Cart�sub�grid��comm� varying�coords�

��grid��row�comm		�

varying�coords��� � �� varying�coords��� � ��

MPI�Cart�sub�grid��comm� varying�coords�

��grid��col�comm		�

� � Setup�grid �

Notice that since each of our communicators has an associated topology�
we constructed them using the topology construction functions � MPI 
Cart create and MPI Cart sub � rather than the more general communicator
construction functions MPI Comm create and MPI Comm split�

Now let�s write the function that does the actual multiplication� We�ll
assume that the user has supplied the type de�nitions and functions for the lo�

	�



cal matrices� Speci�cally� we�ll assume she has supplied a type de�nition for
LOCAL MATRIX TYPE� a corresponding derived type� DERIVED LOCAL 
MATRIX� and three functions� Local matrix multiply� Local matrix allocate�
and Set to zero� We also assume that storage for the parameters has been
allocated in the calling function� and all the parameters� except the product
matrix local C� have been initialized�

void Fox�int n� GRID�INFO�TYPE� grid�

LOCAL�MATRIX�TYPE� local�A�

LOCAL�MATRIX�TYPE� local�B�

LOCAL�MATRIX�TYPE� local�C	 


LOCAL�MATRIX�TYPE� temp�A�

int step�

int bcast�root�

int n�bar� � order of block submatrix � nq �

int source�

int dest�

int tag � ���

MPI�Status status�

n�bar � ngrid��q�

Set�to�zero�local�C	�

� Calculate addresses for circular shift of B �

source � �grid��my�row � �	 � grid��q�

dest � �grid��my�row � grid��q � �	 � grid��q�

� Set aside storage for the broadcast block of A �

temp�A � Local�matrix�allocate�n�bar	�

for �step � �� step � grid��q� step��	 


bcast�root � �grid��my�row � step	 � grid��q�

if �bcast�root �� grid��my�col	 


MPI�Bcast�local�A� �� DERIVED�LOCAL�MATRIX�

bcast�root� grid��row�comm	�

Local�matrix�multiply�local�A� local�B�

local�C	�

	�



� else 


MPI�Bcast�temp�A� �� DERIVED�LOCAL�MATRIX�

bcast�root� grid��row�comm	�

Local�matrix�multiply�temp�A� local�B�

local�C	�

�

MPI�Send�local�B� �� DERIVED�LOCAL�MATRIX� dest� tag�

grid��col�comm	�

MPI�Recv�local�B� �� DERIVED�LOCAL�MATRIX� source� tag�

grid��col�comm� �status	�

� � for �

� � Fox �

	�



� Where To Go From Here

�� What We Haven�t Discussed

MPI is a large library� The Standard �	� is over ��� pages long and it de�nes
more than ��� functions� As a consequence� this Guide has covered only
a small fraction of MPI� and many readers will fail to �nd a discussion of
functions that they would �nd very useful in their applications� So we brie�y
list some of the more important ideas in MPI that we have not discussed
here�

�� Communication Modes� We have used only the standard communi�
cation mode for send� This means that it is up to the system to decide
whether the message is bu�ered� MPI provides three other commu�
nication modes� bu�ered� synchronous� and ready� In bu�ered mode�
the user explicitly controls the bu�ering of outgoing messages� In syn�
chronous mode� a send will not complete until a matching receive is
posted� In ready mode� a send may be started only if a matching
receive has already been posted� MPI provides three additional send
functions for these modes�

�� Nonblocking Communication� We have used only blocking sends
and receives �MPI Send and MPI Recv� For the send� this means that
the call won�t return until the message data and envelope have been
bu�ered or sent � i�e�� until the memory referenced in the call to
MPI Send is available for re�use� For the receive� this means that the
call won�t return until the data has been received into the memory
referenced in the call toMPI Recv� Many applications can improve their
performance by using nonblocking communication� This means that
the calls to sendreceive may return before the operation completes�
For example� if the machine has a separate communication processor�
a non�blocking send could simply notify the communication processor
that it should begin composing and sending the message� MPI provides
nonblocking sends in each of the four modes and a nonblocking receive�
It also provides various utility functions for determining the completion
status of a non�blocking operation�

�� Inter�communicators� Recollect that MPI provides two types of
communicators� intra�communicators and inter�communicators� Inter�

		



communicators can be used for point�to�point communications between
processes belonging to distinct intra�communicators�

There are many other functions available to users of MPI� If we haven�t
discussed a facility you need� please consult the Standard �	� to determine
whether it is part of MPI�

�� Implementations of MPI

If you don�t have an implementation of MPI� there are three versions that
are freely available by anonymous ftp from the following sites�

� Argonne National LabMississippi State University� The address is
info�mcs�anl�gov� and the directory is pub�mpi�

� Edinburgh University� The address is ftp�epcc�ed�ac�uk� and the direc�
tory is pub�chimp�release�

� Ohio Supercomputer Center� The address is tbag�osc�edu� and the di�
rectory is pub�lam�

All of these run on networks of UNIX workstations� The ArgonneMississippi
State and Edinburgh versions also run on various parallel processors� Check
the �README� �les to see if your machine�s are supported�

�� More Information on MPI

There is an MPI FAQ available by anonymous ftp at

� Mississippi State University� The address is ftp�erc�msstate�edu� and the
�le is pubmpifaq�

There are also numerous web pages devoted to MPI� A few of these are

� http	��www�epm�ornl�gov�!walker�mpi� The Oak Ridge National Lab
MPI web page�

� http	��www�erc�msstate�edu�mpi� The Mississippi State MPI web page�

� http	��www�mcs�anl�gov�mpi� The Argonne MPI web page�

	�



Each of these sites contains a wealth of information about MPI� Of particular
note� the Mississippi State page contains a bibliography of papers on MPI�
and the Argonne page contains a collection of test MPI programs�

The MPI Standard �	� is currently available from each of the sites above�
This is� of course� the de�nitive statement of what MPI is� So if you�re not
clear on something� this is the �nal arbiter� It also contains a large number
of nice examples of uses of the various MPI functions� So it is considerably
more than just a reference� Currently� several members of the MPI Forum
are working on an annotated version of the MPI standard ����

The book ��� is a tutorial introduction to MPI� It provides numerous
complete examples of MPI programs�

The book ��� contains a tutorial introduction to MPI �on which this guide
is based � It also contains a more general introduction to parallel processing
and the programming of message�passing machines�

The Usenet newsgroup� comp�parallel�mpi� provides information on up�
dates to all of these documents and software�

�� The Future of MPI

As it is currently de�ned� MPI fails to specify two critical concepts� IO and
the creationdestruction of processes� Work has already been started on the
development of both IO facilities and dynamic process creation� Information
on the former can be obtained from http	��lovelace�nas�nasa�gov�MPIIO�mpi
io�html� and information on the latter can be found on the Argonne MPI web
page� Signi�cant developments are invariably posted to comp�parallel�mpi�

	�



A Compiling and Running MPI Programs

This section is intended to give the barest outline of how to compile and run
a program using each of the freely available versions of MPI� Please consult
the documentation that comes with these packages for further details�

In each case� we assume that you wish to run your program on a homo�
geneous network of UNIX workstations� and that the executables� libraries�
and header �les have been installed in a public directory on the machines on
which you are compiling and executing your program�

A�� MPICH

Here� we assume that the MPICH �les are stored in the following �les�

� Executables� usrlocalmpibin

� Libraries� usrlocalmpilib

� Header �les� usrlocalmpiinclude

To compile the C source program prog�c� you should type

� cc �o prog prog�c �Iusrlocalmpiinclude�

�Lusrlocalmpilib �lmpi

In order to run the program with� say� 	 processes� you should �rst copy the
executable to your home directory on each machine �unless the directory is
NFS mounted � and then type

� mpirun �np � prog

This assumes that your system has a generic con�guration �le that lists
machines on which MPI programs can be run�

A�� CHIMP

Before using CHIMP� you need to be sure the CHIMP home directory is in
your path on all the machines on which you intend to run MPI programs�
For example� if the CHIMP home directory is �home�chimp on each machine�
and you use csh� you should add the following lines to your �cshrc on each
machine�

	�



setenv CHIMPHOME homechimp

set PATH "CHIMPHOMEbin#"PATH

After modifying your �cshrc �le� you should change to your home directory
on each machine and execute the following commands�

� cd

� source �cshrc

� ln �s "CHIMPHOMEchimprc �chimpv�rc

Note that these commands only need to be carried out once � when you use
CHIMP again� you can skip these steps�

If your MPI source program is called prog�c� you can compile it with

� mpicc �o prog prog�c

Before executing your program� you need to create a CHIMP con�guration
�le� This contains a list of the executables� hosts on which to run the pro�
gram� and directories containing the executables� Its basic format is a list of
lines having the form�

��executable�	# host��hostname�� dir��directory�

For example� to run prog on four machines� we might create a �le called
prog�con�g that contains the following lines�

�prog	# host�mobydick� dir�homepeter

�prog	# host�kingkong� dir�homepeter

�prog	# host�euclid� dir�homepeter

�prog	# host�lynx� dir�homepeter

In order to run the program� �rst copy the executable to the appropriate
directory on each machine �unless the directory is NFS mounted � and then
type

� mpirun prog�config

	




A�� LAM

Before starting� make sure that the directory containing the LAM executables
is in your path on each machine on which you intend to run your program�
For example� if the LAM executables are in �usr�local�lam�bin and you use
csh� you can simply add the following commands to your �cshrc �le�

setenv LAMHOME usrlocallam

set PATH "LAMHOMEbin#"PATH

After modifying your �cshrc �le� you should change to your home directory
on each machine and execute the following commands�

� cd

� source �cshrc

Note that these commands only need to be carried out once � when you use
LAM again� you can skip these steps�

Next create a �le listing the names of the hosts on which you intend to
run MPI� For example� a 	 host �le might contain the following lines�

mobydick�usfca�edu

kingkong�math�usfca�edu

euclid�math�usfca�edu

lynx�cs�usfca�edu

If this �le is called lamhosts� the command recon veri�es that LAM can be
started on each machine�

� recon �v lamhosts

recon# testing n� �mobydick�usfca�edu	

recon# testing n� �kingkong�math�usfca�edu	

recon# testing n� �euclid�math�usfca�edu	

recon# testing n� �lynx�cs�usfca�edu	

To actually start up LAM on each machine� type

� lamboot �v lamhosts

LAM � Ohio Supercomputer Center

hboot n� �mobydick�usfca�edu	���

hboot n� �kingkong�math�usfca�edu	���

hboot n� �euclid�math�usfca�edu	���

hboot n� �lynx�cs�usfca�edu	���

	�



In order to compile your program� type

� hcc �o prog prog�c �lmpi

In order to run the program� �rst copy the executable to your home directory
on each machine �unless the directory is NFS mounted � and then type

� mpirun �v n��� prog

��$� prog running on n� �o	

����� prog running on n�

��$%� prog running on n�

���� prog running on n�

To shut down LAM� type

� wipe �v lamhosts

tkill n� �mobydick�usfca�edu	���

tkill n� �kingkong�math�usfca�edu	���

tkill n� �euclid�math�usfca�edu	���

tkill n� �lynx�cs�usfca�edu	���

��



References

��� Geo�rey Fox� et al�� Solving Problems on Concurrent Processors� Engle�
wood Cli�s� NJ� Prentice�Hall� ��

�

��� William Gropp� Ewing Lusk� and Anthony Skjellum� Using MPI�
Portable Parallel Programming with the Message�Passing Interface�
Cambridge� MA� MIT Press� ���	�

��� Brian W� Kernighan and Dennis M� Ritchie� The C Programming Lan�
guage� �nd ed�� Englewood Cli�s� NJ� Prentice�Hall� ��

�

�	� Message Passing Interface Forum� MPI� A Message�Passing Interface
Standard � International Journal of Supercomputer Applications� vol 
�
nos �	� ���	� Also available as Technical Report CS��	����� Computer
Science Dept�� University of Tennessee� Knoxville� TN� ���	�

��� Steve Otto� et al�� MPI Annotated Reference Manual� Cambridge� MA�
MIT Press� to appear�

��� Peter S� Pacheco� Parallel Programming with MPI� San Francisco� CA�
Morgan Kaufmann� �����

��


