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Large, complex graphs arise in many settings including the Internet, social networks, and 
communication networks. To study such data sets, the authors explored the use of high-
performance computing (HPC) for graph algorithms. They found that the challenges in 
these applications are quite different from those arising in traditional HPC applications and 
that massively multithreaded machines are well suited for graph problems.

G raphs are among the most widely 
used combinatorial tools in com-
puting. In science and engineering, 
they describe the structure of sparse 

matrices, facilitate load balancing in parallel 
computations, help researchers study molecular 
structures, and help us mesh complex geometries. 
We can also use graphs to model distribution net-
works, economies, and epidemics, study social 
systems, and describe sets of protein interactions.

Graphs are applicable in such diverse settings 
because they’re an abstract way of describing 
interactions between entities. A graph consists 
of a set of entities known as vertices and a set of 
pairwise relationships between entities known 
as edges. Many refinements and augmentations of 
this basic model produce vertices and edges with 
additional properties. 

A typical step in a graph algorithm involves 
visiting a vertex v and then visiting v’s neighbors 
(the set of vertices connected to v by an edge). For 
some graphs—such as those that describe a finite 
difference matrix’s nonzero structure—this set 
of neighbors can have a regular and predictable 
structure. We can exploit this structure and design 

data structures that improve cache performance 
when accessing v’s neighbors. However, in many 
emerging applications such as social and econom-
ic modeling, the graph has very little exploitable 
structure. In fact, in such settings, v’s neighbors 
can be widely dispersed in global memory. This 
leads to data access patterns that make very poor 
use of memory hierarchies, which in turn can 
result in idle processors. Because access patterns 
are data dependent (that is, they’re a function of 
the graph’s edge structure), standard prefetch-
ing techniques are often ineffective. In addition, 
graph algorithms typically have very little work 
to do when visiting a vertex, so there’s little com-
putation for each memory access. For all these 
reasons, graph computations often achieve a low 
percentage of theoretical peak performance on 
traditional processors. Similar challenges plague 
many other combinatorial applications as well.

However, as graph applications grow in breadth 
and size, we’ve witnessed a real need for effective 
graph algorithm parallelization, even though par-
allelism presents yet another set of challenges for 
graph algorithms. An expansive literature on algo-
rithms is designed for theoretical parallel random 
access machines (PRAMs), but these models aren’t 
realistic, and there are comparatively few success 
stories for practical parallel graph implementa-
tions. In this article, we argue that this gap reflects 
a mismatch between the demands of graph algo-
rithms and the capabilities of mainstream parallel 
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computer architectures. Graphs in scientific com-
puting often reflect a physical object’s geometry, so 
we can partition them among a parallel machine’s 
processors in such a way that few edges cross be-
tween processors. However, this isn’t true of the 
more abstract graphs that arise in some emerging 
applications. In addition, parallelism in graph al-
gorithms tends to be fine-grained, with the degree 
of parallelism varying over the course of the algo-
rithm. This type of parallelism isn’t supported in 
traditional parallel architectures and programming 
models. To overcome these challenges, we recently 
started developing graph algorithms on a nontradi-
tional, massively multithreaded supercomputer.

The High-Performance  
Computing Landscape
By far, the most popular class of parallel ma-
chines is distributed-memory computers, which 
consist of a set of commodity processors con-
nected by a network. These machines are rela-
tively inexpensive, but they’re very effective on 
many scientific problems.

Distributed-memory machines are generally 
programmed with explicit message passing via 
the message-passing interface (MPI). With MPI, 
the user divides the data among the processors 
and determines which processor performs which 
tasks; the processors exchange data via user-con-
trolled messages. Although high performance 
is achievable for many applications, the detailed 
control of data partitioning and communication 
can be tedious and error-prone.

MPI programs are typically written in a bulk-
synchronous style, in which processors alternate 
between working independently on local data and 
participating in collective communication opera-
tions. By grouping data exchanges into large, col-
lective operations, the overall latency cost shrinks 
substantially at the expense of algorithmic flexibil-
ity. Data can be transmitted only at pauses between 
computational steps, and the lack of transmission 
on demand makes it difficult to exploit fine-grained 
parallelism in an application. This problem is par-
ticularly acute in many basic graph algorithms.

Partitioned Global Address-Space Computing
MPI isn’t the only way to program distributed-
memory parallel computers. An important alterna-
tive that’s better suited for fine-grained parallelism 
is to use a partitioned global address-space lan-
guage, epitomized by Unified Parallel C (UPC).1 
In a UPC program, the programmer is still re-
sponsible for distinguishing between local and 
global data, but the language supports operations 

on remote memory locations with simple syntax. 
This support for a global address space also facili-
tates writing programs with complex data access 
patterns. UPC sits on top of a communication layer 
that allows for more fine-grained communication 
than MPI and so can sometimes achieve higher 
performance. However, as with MPI, the number 
of control threads is constant in a UPC program—
that is, it’s generally equal to the number of proces-
sors or cores. As we argue later, the lack of dynamic 
threads is a significant impediment to the develop-
ment of high-performing graph software.

Shared-Memory Computers
UPC provides a software illusion of globally ad-
dressable memory on distributed-memory hard-
ware, but the hardware can also provide support 
for a global address space. We can categorize 
shared-memory computers in various ways—
specifically, let’s look at cache-coherent and mas-
sively multithreaded machines.

Cache-coherent parallel computers. In symmetric 
multiprocessors (SMPs), global memory is uni-
versally accessible to each processor. The most 
common ways to program these machines are via 
OpenMP2 or with a threading approach.3 An SMP 
provides hardware support for access to addresses 
in global memory so that threads can quickly re-
trieve any address in the machine. This allows 
for higher performance on highly unstructured 
problems than is possible on distributed-memory 
machines. The latency challenge is addressed by 
using faster hardware to access memory, but SMPs 
have some inherent performance limitations: in a 
multiprocessor machine with multiple caches, for 
example, the cache-coherence problem is a signif-
icant challenge. It adds overhead, which degrades 
performance, even for problems in which reads 
are much more common than writes.

A second performance challenge in SMPs is the 
protocol for thread synchronization and sched-
uling. If several threads try to access the same 
memory region, the system must apply some pro-
tocol to ensure correct program execution. Some 
threads might be blocked for a period of time—
current versions of OpenMP require the number 
of threads to equal the number of processors, so 
a blocked thread corresponds to an idle proces-
sor. Although a more dynamic threading model 
might appear in future versions of OpenMP, this 
problem currently causes significant performance 
challenges for graph algorithms.

Massively multithreaded architectures. Massively 
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multithreaded machines, such as the Cray 
MTA-24 and its successor the XMT, address the 
latency challenge in a very different manner than 
other architectures. Instead of trying to reduce 
latency for single-memory access, the MTA-2 
tries to tolerate it by ensuring that the processor 
has other work to do while waiting for a memory 
request to be satisfied. Each processor can have a 
large number of outstanding memory requests—
it has hardware support for many concurrent 
threads and switches between them in a single 
clock cycle. Thus, when a memory request is is-
sued, the processor immediately switches its at-
tention to another thread that’s ready to execute. 
In this way, the processor tolerates latency and 
isn’t stalled waiting for memory. 

However, this execution model depends on the 
availability of numerous fine-grained, hardware-
supported threads to keep the processor occupied. 
We can write many graph algorithms in a thread-
rich style, but the likelihood of access contention 
increases with the number of threads. The MTA-2 
addresses this problem by supporting word-level 
synchronization primitives—each word of memory 
can be locked independently, thus the locks have a 
minimal impact on the execution of other threads.

Another unusual feature of the MTA-2 is its 
support for fast and dynamic thread creation and 
destruction. The programmer needn’t limit the pro-
gram to a fixed degree of parallelism but can instead 
let the data determine the number of threads. The 
MTA-2 supports a virtualization of threads, which 
it then maps onto physical processors to facilitate 
adaptive parallelism and dynamic load balancing.

However, massively multithreaded machines 
also have significant drawbacks. Because the pro-
cessors are custom and not commodity, they’re 
more expensive and have a much slower clock rate 
than mainstream microprocessors—for instance, 
MTA-2 processors have a clock rate of only 220 
MHz, more than an order of magnitude slower 
than state-of-the-art commodity microproces-
sors. Furthermore, the MTA-2’s programming 
model, although simple and elegant, isn’t portable 
to other parallel architectures.

Software
The different architectures we’ve discussed so far 
all have their own programming models: explicit 
message passing with MPI is the most portable 
and widely used paradigm, OpenMP is restricted 
to shared-memory machines but has some por-
tability, and the MTA-2 programming model is 
unique to Cray’s line of massively multithreaded 
machines. Naturally, these differences raise sig-

nificant impediments to cross-architectural com-
parisons. One way to alleviate such problems is 
to use generic programming libraries that hide 
machine-specific details.

Generic programming, for example, underlies 
the C++ Standard Template Library,5 the Boost 
C++ Libraries, and, in particular, the Boost Graph 
Library (BGL).6 This programming paradigm in-
volves implementing concepts such as iterators, 
which use language features such as templates. 
Generic programming libraries are efficient as 
well: BGL algorithms, for example, implement 
the visitor pattern, a software methodology that 
lets programmers provide custom routines to be 
executed when predefined events occur. With the 
visitor pattern, we can implement BGL algorithms 
without worrying about low-level details—we can 
represent graphs with adjacency matrices, adja-
cency lists, or some other data structure, yet the 
same algorithm code will run on any of these.

The BGL’s generic nature also makes it exten-
sible in a high-performance computing context. 
BGL algorithms can run on any graph represen-
tation that exports a certain interface, thus they 
can run on distributed data structures that exploit 
cluster architectures and export this interface. The 
Parallel BGL (PBGL) provides a suite of such data 
structures.7 In its purest sense, the PBGL provides 
a way to run serial graph algorithms on very large 
problem instances that require large clusters’ dis-
tributed memory for storage. Although researchers 
have implemented inherently parallel algorithms 
in the PBGL, barriers still exist to consistently 
achieving strong scaling of running time (run-
ning faster on the same problem instance when 
more processors are used) for graph algorithms on 
distributed-memory architectures.

To leverage the massively multithreaded archi-
tectures we described earlier, we extended a small 
subset of the BGL into the Multi-Threaded Graph 
Library (MTGL).8 This library retains the BGL’s 
look and feel, yet encapsulates the use of nonstan-
dard features such as compiler directives for paral-
lelization and word-level synchronization operators. 
We still use the visitor pattern to give algorithm 
programmers entry points for custom computation. 
Although much of the architecture-specific detail is 
encapsulated in software abstractions, the custom 
routines provided must still be thread safe, which 
requires a higher level of programmer expertise.

Algorithmic Results
To compare graph algorithm implementations on 
different platforms, let’s review some recent work 
(more details appear elsewhere9). We consider two 
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fundamental graph algorithms: s − t connectivity 
and single-source shortest paths (SSSPs). In s − t 
connectivity, the goal is to find a path from vertex s 
to vertex t that traverses the fewest possible edges. 
In SSSPs, each edge has a length, so the goal is to 
find the shortest-length path from a specific vertex 
to all other vertices in the graph.

Data
Graphs associated with physical simulations of-
ten have a structure induced from physical ge-
ometry—edges tend to connect vertices that are 
geometrically nearby. However, the growing field 
of informatics is characterized by data sets of rela-
tionships deduced by analyzing information rather 
than by modeling physical objects. A canonical 
example is the network of relationships between 
people in a population (social network). Stanley 
Milgram’s small-world experiment,10 which led to 
the “six degrees of separation” principle, found that 
by following just a few edges in a social network, 
we might end up anywhere. However, informatics 
data sets with this small-world property lack spatial 
locality and are therefore more challenging to map 
to distributed-memory parallel computers. An-
other common characteristic of informatics graphs 
is an inverse power law degree distribution—the 
vast majority of entities in these networks tend to 
be connected to just a few other entities, whereas 
a few “high degree” entities are connected to an 
enormous number of other entities.

Let’s focus here on two different, purely syn-
thetic classes of graphs: Erdös-Rényi3 random 
graphs and a class of inverse power law graphs 
constructed by recursively adding adjacencies 
to a matrix in an intentionally uneven way  
(RMAT).11 We can construct an Erdös-Rényi 
graph by assigning a uniform edge probability 
to each possible edge and then using a random-
number generator to determine which edges exist. 
RMAT graph construction involves recursively 
partitioning an adjacency matrix and then un-
evenly assigning neighbor relationships. Unlike 
Erdös-Rényi graphs, RMAT graphs have an in-
verse power law degree distribution.

However, among the machines we’ll discuss 
shortly, only the MTA-2 has a programming model 
and architecture sufficiently robust to easily test in-
stances of inverse power law graphs with close to a 
billion edges. Andy Yoo and his colleagues’ work12 
was limited to Erdös-Rényi graphs, and the PBGL’s 
current RMAT generator doesn’t scale to large in-
stances. We know of no distributed-memory results 
for gigascale inverse power law graphs. Given this 
limitation, we only describe results for Erdös-Rényi 

graphs and note that the MTA-2 performance on 
like-sized RMAT graphs is almost identical.

High-degree nodes are a challenge for distrib-
uted-memory machines for several reasons. A 
standard scientific computing practice for distrib-
uted-memory platforms is to store “ghost nodes” 
on each processor to represent the neighbors of all 
the processor’s graph vertices. With ghost nodes, 
vertices can traverse their neighbors, know which 
of them are stored remotely, and avoid some re-
mote communication. However, this simple strat-
egy doesn’t scale to large instances of graphs with 
inverse power law distributions because a single 
processor can’t be expected to store ghost nodes 
for high-degree nodes’ neighbors. As an alterna-
tive, Yoo and his colleagues avoided using ghost 
nodes, but in their approach, high-degree vertices 
require very large message buffers. Ghost nodes 
limit memory scalability and help runtime scal-
ability, which creates a fundamental tension.

s – t Connectivity
For s – t connectivity, we can consider the follow-
ing simple algorithm: given two vertices s and t, 
find s’s neighbors and see if any of them is t. If not, 
then find t’s neighbors and see if any of them is one 
of the vertices in s’s expanding frontier. Repeat this 
process by expanding the smaller of the frontiers of 
s and t until the two frontiers intersect (see Figure 
1). Yoo and his colleagues used an algorithm like 
this on Erdös-Rényi graphs of 3.2 billion nodes 
and reported their results from the 32,768 proces-
sors of the world’s largest distributed-memory ma-
chine, BlueGene/L. Notably, this implementation 
was memory efficient because it didn’t use ghost 
nodes. However, as we’ll discuss, this came at the 
cost of significantly reduced performance. 

For a fixed-size problem, Yoo and his colleagues 
reported a speedup of roughly 65 on 450 proces-
sors. They also reported runtimes for a series of 
scaled problems in which the graph size grew with 
the number of processors. However, because the 
amount of work in s – t connectivity grows less 
quickly than the graph’s size, the scalability assess-
ment requires some care.

On an Erdös-Rényi graph, it’s straightforward 
enough to analyze the expected number of vertices 
to be visited to find the shortest path between s and 
t, but if we apply the algorithm in Figure 1 to the 
instances Yoo and his colleagues studied, the num-
ber of vertices visited should be roughly 177 times 
larger for the graph on 32,768 nodes than for the 
graph on one node. With the runtime growing by 
a factor of three, this suggests an overall speedup 
factor of approximately 60 times. Unfortunately, 
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Yoo and his colleagues didn’t test their code on 
RMAT instances, in part because of concerns 
about message-buffer sizes.

However, David Bader and Kamesh Madduri13 
implemented the same s – t connectivity algorithm 
on the MTA-2 and achieved a speedup factor of 
roughly 28 on 40 processors for both Erdös-Rényi 
and RMAT instances. A simple counting argu-
ment based on the number of vertices touched 
during the s – t connectivity algorithm suggests 
that the computation done by 32,768 processors 
on BlueGene/L could be done by five to 10 pro-
cessors of an MTA-2 with sufficient memory.

 Andrew Lumsdaine and his colleagues9 imple-
mented the same algorithm in the PBGL and 
achieved excellent single-processor performance. 
They used compact data structures to improve 
cache utilization, resulting in single-processor per-
formance comparable to that obtained by Yoo and 
his colleagues with BlueGene/L. However, Lums-
daine and his group weren’t able to reduce run-
time as processors were added, even with the use 
of ghost nodes. Fundamentally, there isn’t much 
work to do in an s – t connectivity algorithm: even 
if the graph is large, only a small subset of vertices 
must be visited for Erdös-Rényi graphs. Thus, it’s 
difficult to outperform a fast serial algorithm.

Single-Source Shortest Paths
A fundamental problem in graph theory is that 
of finding SSSPs. Given a single starting vertex, 
SSSP algorithms compute a shortest path to each 
vertex in the graph, as Figure 2 shows. A classical 
algorithm by Edsger Dijkstra solves this problem 
by sequentially finding and “settling” the closest 
unsettled vertex to the source.14 This elegant al-
gorithm is inherently serial, but several variations 

of it attempt to find and exploit parallelism by 
identifying vertices that might be settled simul-
taneously. Such algorithms are highly sensitive 
to the type of graph processed, and some graph 
types, such as road networks, don’t offer enough 
parallelism for these schemes to work well. How-
ever, in the case of Erdös-Rényi random graphs 
and RMAT graphs, researchers have obtained 
some positive results. Perhaps the most notable 
of these came from Madduri and his colleagues,15 
who used an implementation of Ulrich Meyer and 
Peter Sanders’ delta-stepping algorithm16 to find 
the SSSP on an RMAT graph of roughly 1 billion 
edges in approximately 10 seconds on a 40 pro-
cessor MTA-2. The single MTA-2 processor time 
for the same instance was 371 seconds, yielding a 
parallel speedup factor of roughly 30 times.

Lumsdaine and his colleagues developed a 
PBGL version of the same algorithm on an Op-
teron cluster, for which they reported perfor-
mance at roughly an order of magnitude slower 
than the MTA-2 performance. The Opterons in 
their experiment had 2.0-GHz clocks, and the 
MTA-2 processors clocked at 220 MHz, suggest-
ing that the MTA-2 was roughly two orders more 
efficient than the Opterons for this problem. It’s 
also worth noting that the researchers’ PBGL 
code used ghost nodes, making it less memory 
efficient than the MTA-2 software.

However, unlike in the s – t connectivity study, 
the PBGL implementation of delta stepping dis-
played excellent scalability, which speaks well 
for the PBGL’s generic programming software 
model. The PBGL delta-stepping implementation 
required roughly one day of programming effort 
and one day of benchmarking effort; pre-PBGL 
distributed graph algorithm implementations of 
similar complexity often required orders of mag-
nitude more development effort.

A s combinatorial algorithms become 
increasingly important in science, en-
gineering, and other applications, their 
distinctive computational requirements 

will grow in significance. We focused here on the 
challenges of graph algorithms, but we believe 
that many combinatorial (and other) algorithms 
will face similar challenges. Unlike most scientific 
computing kernels, graph algorithms exhibit com-
plex memory access patterns and limited amounts 
of actual processing. Consequently, their perfor-
mance is determined by the computer’s ability 
to access memory, not by actual processor speed. 
Complex data dependencies and dynamic fine-

s t

1 2

3

Figure 1. Simple connectivity algorithm. For two 
vertices s and t, (1) find s’s neighbors and see if t is 
one of them, (2) find t’s neighbors and see if s or 
one of its neighbors is one of them, or (3) alternate 
back to s and expand its frontier one more level.
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grained parallelism often result in poor parallel 
performance on traditional machines.

Although graphs might be an extreme case, we 
believe a broad trend exists in the scientific com-
puting community toward increasingly complex 
and memory-limited simulations: unstructured 
grids involve much more complex memory access 
patterns than structured ones, adaptive grids are 
even more challenging and lead to dynamic par-
allelism, and multiphase and multiphysics simu-
lations add an additional degree of dynamism. 
These complex calculations generally achieve a 
very low percentage of peak performance on a sin-
gle processor and exhibit poor parallel scalability.

We believe our work with massively multi-
threaded machines suggests an alternative, with 
the potential to significantly improve the per-
formance of challenging computations. Thanks 
to the continued forward march of Moore’s law, 
current microprocessors have silicon to spare. We 
believe this space could be used to support massive 
multithreading, resulting in processors and paral-
lel machines that are applicable to a much broader 
range of applications than current offerings.�
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Figure 2. Calling an algorithm for a single-source 
shortest path (SSSP). The vertices are labeled with 
their distance from the single source, and the edges 
are labeled with their lengths. The red edges form 
an SSSP tree.


