
14	 This article has been peer-reviewed.� Computing in Science & Engineering

C o m b i n a t o r i c s
i n C o m p u t i n g

Graph Analysis with High-
Performance Computing

Bruce Hendrickson and Jonathan W. Berry

Sandia National Laboratories

Large, complex graphs arise in many settings including the Internet, social networks, and
communication networks. To study such data sets, the authors explored the use of high-
performance computing (HPC) for graph algorithms. They found that the challenges in
these applications are quite different from those arising in traditional HPC applications and
that massively multithreaded machines are well suited for graph problems.

G raphs are among the most widely
used combinatorial tools in com-
puting. In science and engineering,
they describe the structure of sparse

matrices, facilitate load balancing in parallel
computations, help researchers study molecular
structures, and help us mesh complex geometries.
We can also use graphs to model distribution net-
works, economies, and epidemics, study social
systems, and describe sets of protein interactions.

Graphs are applicable in such diverse settings
because they’re an abstract way of describing
interactions between entities. A graph consists
of a set of entities known as vertices and a set of
pairwise relationships between entities known
as edges. Many refinements and augmentations of
this basic model produce vertices and edges with
additional properties.

A typical step in a graph algorithm involves
visiting a vertex v and then visiting v’s neighbors
(the set of vertices connected to v by an edge). For
some graphs—such as those that describe a finite
difference matrix’s nonzero structure—this set
of neighbors can have a regular and predictable
structure. We can exploit this structure and design

data structures that improve cache performance
when accessing v’s neighbors. However, in many
emerging applications such as social and econom-
ic modeling, the graph has very little exploitable
structure. In fact, in such settings, v’s neighbors
can be widely dispersed in global memory. This
leads to data access patterns that make very poor
use of memory hierarchies, which in turn can
result in idle processors. Because access patterns
are data dependent (that is, they’re a function of
the graph’s edge structure), standard prefetch-
ing techniques are often ineffective. In addition,
graph algorithms typically have very little work
to do when visiting a vertex, so there’s little com-
putation for each memory access. For all these
reasons, graph computations often achieve a low
percentage of theoretical peak performance on
traditional processors. Similar challenges plague
many other combinatorial applications as well.

However, as graph applications grow in breadth
and size, we’ve witnessed a real need for effective
graph algorithm parallelization, even though par-
allelism presents yet another set of challenges for
graph algorithms. An expansive literature on algo-
rithms is designed for theoretical parallel random
access machines (PRAMs), but these models aren’t
realistic, and there are comparatively few success
stories for practical parallel graph implementa-
tions. In this article, we argue that this gap reflects
a mismatch between the demands of graph algo-
rithms and the capabilities of mainstream parallel

1521-9615/08/$25.00 © 2008 IEEE
Copublished by the IEEE CS and the AIP

March/April 2008 � 15

computer architectures. Graphs in scientific com-
puting often reflect a physical object’s geometry, so
we can partition them among a parallel machine’s
processors in such a way that few edges cross be-
tween processors. However, this isn’t true of the
more abstract graphs that arise in some emerging
applications. In addition, parallelism in graph al-
gorithms tends to be fine-grained, with the degree
of parallelism varying over the course of the algo-
rithm. This type of parallelism isn’t supported in
traditional parallel architectures and programming
models. To overcome these challenges, we recently
started developing graph algorithms on a nontradi-
tional, massively multithreaded supercomputer.

The High-Performance
Computing Landscape
By far, the most popular class of parallel ma-
chines is distributed-memory computers, which
consist of a set of commodity processors con-
nected by a network. These machines are rela-
tively inexpensive, but they’re very effective on
many scientific problems.

Distributed-memory machines are generally
programmed with explicit message passing via
the message-passing interface (MPI). With MPI,
the user divides the data among the processors
and determines which processor performs which
tasks; the processors exchange data via user-con-
trolled messages. Although high performance
is achievable for many applications, the detailed
control of data partitioning and communication
can be tedious and error-prone.

MPI programs are typically written in a bulk-
synchronous style, in which processors alternate
between working independently on local data and
participating in collective communication opera-
tions. By grouping data exchanges into large, col-
lective operations, the overall latency cost shrinks
substantially at the expense of algorithmic flexibil-
ity. Data can be transmitted only at pauses between
computational steps, and the lack of transmission
on demand makes it difficult to exploit fine-grained
parallelism in an application. This problem is par-
ticularly acute in many basic graph algorithms.

Partitioned Global Address-Space Computing
MPI isn’t the only way to program distributed-
memory parallel computers. An important alterna-
tive that’s better suited for fine-grained parallelism
is to use a partitioned global address-space lan-
guage, epitomized by Unified Parallel C (UPC).1
In a UPC program, the programmer is still re-
sponsible for distinguishing between local and
global data, but the language supports operations

on remote memory locations with simple syntax.
This support for a global address space also facili-
tates writing programs with complex data access
patterns. UPC sits on top of a communication layer
that allows for more fine-grained communication
than MPI and so can sometimes achieve higher
performance. However, as with MPI, the number
of control threads is constant in a UPC program—
that is, it’s generally equal to the number of proces-
sors or cores. As we argue later, the lack of dynamic
threads is a significant impediment to the develop-
ment of high-performing graph software.

Shared-Memory Computers
UPC provides a software illusion of globally ad-
dressable memory on distributed-memory hard-
ware, but the hardware can also provide support
for a global address space. We can categorize
shared-memory computers in various ways—
specifically, let’s look at cache-coherent and mas-
sively multithreaded machines.

Cache-coherent parallel computers. In symmetric
multiprocessors (SMPs), global memory is uni-
versally accessible to each processor. The most
common ways to program these machines are via
OpenMP2 or with a threading approach.3 An SMP
provides hardware support for access to addresses
in global memory so that threads can quickly re-
trieve any address in the machine. This allows
for higher performance on highly unstructured
problems than is possible on distributed-memory
machines. The latency challenge is addressed by
using faster hardware to access memory, but SMPs
have some inherent performance limitations: in a
multiprocessor machine with multiple caches, for
example, the cache-coherence problem is a signif-
icant challenge. It adds overhead, which degrades
performance, even for problems in which reads
are much more common than writes.

A second performance challenge in SMPs is the
protocol for thread synchronization and sched-
uling. If several threads try to access the same
memory region, the system must apply some pro-
tocol to ensure correct program execution. Some
threads might be blocked for a period of time—
current versions of OpenMP require the number
of threads to equal the number of processors, so
a blocked thread corresponds to an idle proces-
sor. Although a more dynamic threading model
might appear in future versions of OpenMP, this
problem currently causes significant performance
challenges for graph algorithms.

Massively multithreaded architectures. Massively

16� Computing in Science & Engineering

multithreaded machines, such as the Cray
MTA-24 and its successor the XMT, address the
latency challenge in a very different manner than
other architectures. Instead of trying to reduce
latency for single-memory access, the MTA-2
tries to tolerate it by ensuring that the processor
has other work to do while waiting for a memory
request to be satisfied. Each processor can have a
large number of outstanding memory requests—
it has hardware support for many concurrent
threads and switches between them in a single
clock cycle. Thus, when a memory request is is-
sued, the processor immediately switches its at-
tention to another thread that’s ready to execute.
In this way, the processor tolerates latency and
isn’t stalled waiting for memory.

However, this execution model depends on the
availability of numerous fine-grained, hardware-
supported threads to keep the processor occupied.
We can write many graph algorithms in a thread-
rich style, but the likelihood of access contention
increases with the number of threads. The MTA-2
addresses this problem by supporting word-level
synchronization primitives—each word of memory
can be locked independently, thus the locks have a
minimal impact on the execution of other threads.

Another unusual feature of the MTA-2 is its
support for fast and dynamic thread creation and
destruction. The programmer needn’t limit the pro-
gram to a fixed degree of parallelism but can instead
let the data determine the number of threads. The
MTA-2 supports a virtualization of threads, which
it then maps onto physical processors to facilitate
adaptive parallelism and dynamic load balancing.

However, massively multithreaded machines
also have significant drawbacks. Because the pro-
cessors are custom and not commodity, they’re
more expensive and have a much slower clock rate
than mainstream microprocessors—for instance,
MTA-2 processors have a clock rate of only 220
MHz, more than an order of magnitude slower
than state-of-the-art commodity microproces-
sors. Furthermore, the MTA-2’s programming
model, although simple and elegant, isn’t portable
to other parallel architectures.

Software
The different architectures we’ve discussed so far
all have their own programming models: explicit
message passing with MPI is the most portable
and widely used paradigm, OpenMP is restricted
to shared-memory machines but has some por-
tability, and the MTA-2 programming model is
unique to Cray’s line of massively multithreaded
machines. Naturally, these differences raise sig-

nificant impediments to cross-architectural com-
parisons. One way to alleviate such problems is
to use generic programming libraries that hide
machine-specific details.

Generic programming, for example, underlies
the C++ Standard Template Library,5 the Boost
C++ Libraries, and, in particular, the Boost Graph
Library (BGL).6 This programming paradigm in-
volves implementing concepts such as iterators,
which use language features such as templates.
Generic programming libraries are efficient as
well: BGL algorithms, for example, implement
the visitor pattern, a software methodology that
lets programmers provide custom routines to be
executed when predefined events occur. With the
visitor pattern, we can implement BGL algorithms
without worrying about low-level details—we can
represent graphs with adjacency matrices, adja-
cency lists, or some other data structure, yet the
same algorithm code will run on any of these.

The BGL’s generic nature also makes it exten-
sible in a high-performance computing context.
BGL algorithms can run on any graph represen-
tation that exports a certain interface, thus they
can run on distributed data structures that exploit
cluster architectures and export this interface. The
Parallel BGL (PBGL) provides a suite of such data
structures.7 In its purest sense, the PBGL provides
a way to run serial graph algorithms on very large
problem instances that require large clusters’ dis-
tributed memory for storage. Although researchers
have implemented inherently parallel algorithms
in the PBGL, barriers still exist to consistently
achieving strong scaling of running time (run-
ning faster on the same problem instance when
more processors are used) for graph algorithms on
distributed-memory architectures.

To leverage the massively multithreaded archi-
tectures we described earlier, we extended a small
subset of the BGL into the Multi-Threaded Graph
Library (MTGL).8 This library retains the BGL’s
look and feel, yet encapsulates the use of nonstan-
dard features such as compiler directives for paral-
lelization and word-level synchronization operators.
We still use the visitor pattern to give algorithm
programmers entry points for custom computation.
Although much of the architecture-specific detail is
encapsulated in software abstractions, the custom
routines provided must still be thread safe, which
requires a higher level of programmer expertise.

Algorithmic Results
To compare graph algorithm implementations on
different platforms, let’s review some recent work
(more details appear elsewhere9). We consider two

March/April 2008 � 17

fundamental graph algorithms: s − t connectivity
and single-source shortest paths (SSSPs). In s − t
connectivity, the goal is to find a path from vertex s
to vertex t that traverses the fewest possible edges.
In SSSPs, each edge has a length, so the goal is to
find the shortest-length path from a specific vertex
to all other vertices in the graph.

Data
Graphs associated with physical simulations of-
ten have a structure induced from physical ge-
ometry—edges tend to connect vertices that are
geometrically nearby. However, the growing field
of informatics is characterized by data sets of rela-
tionships deduced by analyzing information rather
than by modeling physical objects. A canonical
example is the network of relationships between
people in a population (social network). Stanley
Milgram’s small-world experiment,10 which led to
the “six degrees of separation” principle, found that
by following just a few edges in a social network,
we might end up anywhere. However, informatics
data sets with this small-world property lack spatial
locality and are therefore more challenging to map
to distributed-memory parallel computers. An-
other common characteristic of informatics graphs
is an inverse power law degree distribution—the
vast majority of entities in these networks tend to
be connected to just a few other entities, whereas
a few “high degree” entities are connected to an
enormous number of other entities.

Let’s focus here on two different, purely syn-
thetic classes of graphs: Erdös-Rényi3 random
graphs and a class of inverse power law graphs
constructed by recursively adding adjacencies
to a matrix in an intentionally uneven way
(RMAT).11 We can construct an Erdös-Rényi
graph by assigning a uniform edge probability
to each possible edge and then using a random-
number generator to determine which edges exist.
RMAT graph construction involves recursively
partitioning an adjacency matrix and then un-
evenly assigning neighbor relationships. Unlike
Erdös-Rényi graphs, RMAT graphs have an in-
verse power law degree distribution.

However, among the machines we’ll discuss
shortly, only the MTA-2 has a programming model
and architecture sufficiently robust to easily test in-
stances of inverse power law graphs with close to a
billion edges. Andy Yoo and his colleagues’ work12
was limited to Erdös-Rényi graphs, and the PBGL’s
current RMAT generator doesn’t scale to large in-
stances. We know of no distributed-memory results
for gigascale inverse power law graphs. Given this
limitation, we only describe results for Erdös-Rényi

graphs and note that the MTA-2 performance on
like-sized RMAT graphs is almost identical.

High-degree nodes are a challenge for distrib-
uted-memory machines for several reasons. A
standard scientific computing practice for distrib-
uted-memory platforms is to store “ghost nodes”
on each processor to represent the neighbors of all
the processor’s graph vertices. With ghost nodes,
vertices can traverse their neighbors, know which
of them are stored remotely, and avoid some re-
mote communication. However, this simple strat-
egy doesn’t scale to large instances of graphs with
inverse power law distributions because a single
processor can’t be expected to store ghost nodes
for high-degree nodes’ neighbors. As an alterna-
tive, Yoo and his colleagues avoided using ghost
nodes, but in their approach, high-degree vertices
require very large message buffers. Ghost nodes
limit memory scalability and help runtime scal-
ability, which creates a fundamental tension.

s – t Connectivity
For s – t connectivity, we can consider the follow-
ing simple algorithm: given two vertices s and t,
find s’s neighbors and see if any of them is t. If not,
then find t’s neighbors and see if any of them is one
of the vertices in s’s expanding frontier. Repeat this
process by expanding the smaller of the frontiers of
s and t until the two frontiers intersect (see Figure
1). Yoo and his colleagues used an algorithm like
this on Erdös-Rényi graphs of 3.2 billion nodes
and reported their results from the 32,768 proces-
sors of the world’s largest distributed-memory ma-
chine, BlueGene/L. Notably, this implementation
was memory efficient because it didn’t use ghost
nodes. However, as we’ll discuss, this came at the
cost of significantly reduced performance.

For a fixed-size problem, Yoo and his colleagues
reported a speedup of roughly 65 on 450 proces-
sors. They also reported runtimes for a series of
scaled problems in which the graph size grew with
the number of processors. However, because the
amount of work in s – t connectivity grows less
quickly than the graph’s size, the scalability assess-
ment requires some care.

On an Erdös-Rényi graph, it’s straightforward
enough to analyze the expected number of vertices
to be visited to find the shortest path between s and
t, but if we apply the algorithm in Figure 1 to the
instances Yoo and his colleagues studied, the num-
ber of vertices visited should be roughly 177 times
larger for the graph on 32,768 nodes than for the
graph on one node. With the runtime growing by
a factor of three, this suggests an overall speedup
factor of approximately 60 times. Unfortunately,

18� Computing in Science & Engineering

Yoo and his colleagues didn’t test their code on
RMAT instances, in part because of concerns
about message-buffer sizes.

However, David Bader and Kamesh Madduri13
implemented the same s – t connectivity algorithm
on the MTA-2 and achieved a speedup factor of
roughly 28 on 40 processors for both Erdös-Rényi
and RMAT instances. A simple counting argu-
ment based on the number of vertices touched
during the s – t connectivity algorithm suggests
that the computation done by 32,768 processors
on BlueGene/L could be done by five to 10 pro-
cessors of an MTA-2 with sufficient memory.

 Andrew Lumsdaine and his colleagues9 imple-
mented the same algorithm in the PBGL and
achieved excellent single-processor performance.
They used compact data structures to improve
cache utilization, resulting in single-processor per-
formance comparable to that obtained by Yoo and
his colleagues with BlueGene/L. However, Lums-
daine and his group weren’t able to reduce run-
time as processors were added, even with the use
of ghost nodes. Fundamentally, there isn’t much
work to do in an s – t connectivity algorithm: even
if the graph is large, only a small subset of vertices
must be visited for Erdös-Rényi graphs. Thus, it’s
difficult to outperform a fast serial algorithm.

Single-Source Shortest Paths
A fundamental problem in graph theory is that
of finding SSSPs. Given a single starting vertex,
SSSP algorithms compute a shortest path to each
vertex in the graph, as Figure 2 shows. A classical
algorithm by Edsger Dijkstra solves this problem
by sequentially finding and “settling” the closest
unsettled vertex to the source.14 This elegant al-
gorithm is inherently serial, but several variations

of it attempt to find and exploit parallelism by
identifying vertices that might be settled simul-
taneously. Such algorithms are highly sensitive
to the type of graph processed, and some graph
types, such as road networks, don’t offer enough
parallelism for these schemes to work well. How-
ever, in the case of Erdös-Rényi random graphs
and RMAT graphs, researchers have obtained
some positive results. Perhaps the most notable
of these came from Madduri and his colleagues,15
who used an implementation of Ulrich Meyer and
Peter Sanders’ delta-stepping algorithm16 to find
the SSSP on an RMAT graph of roughly 1 billion
edges in approximately 10 seconds on a 40 pro-
cessor MTA-2. The single MTA-2 processor time
for the same instance was 371 seconds, yielding a
parallel speedup factor of roughly 30 times.

Lumsdaine and his colleagues developed a
PBGL version of the same algorithm on an Op-
teron cluster, for which they reported perfor-
mance at roughly an order of magnitude slower
than the MTA-2 performance. The Opterons in
their experiment had 2.0-GHz clocks, and the
MTA-2 processors clocked at 220 MHz, suggest-
ing that the MTA-2 was roughly two orders more
efficient than the Opterons for this problem. It’s
also worth noting that the researchers’ PBGL
code used ghost nodes, making it less memory
efficient than the MTA-2 software.

However, unlike in the s – t connectivity study,
the PBGL implementation of delta stepping dis-
played excellent scalability, which speaks well
for the PBGL’s generic programming software
model. The PBGL delta-stepping implementation
required roughly one day of programming effort
and one day of benchmarking effort; pre-PBGL
distributed graph algorithm implementations of
similar complexity often required orders of mag-
nitude more development effort.

A s combinatorial algorithms become
increasingly important in science, en-
gineering, and other applications, their
distinctive computational requirements

will grow in significance. We focused here on the
challenges of graph algorithms, but we believe
that many combinatorial (and other) algorithms
will face similar challenges. Unlike most scientific
computing kernels, graph algorithms exhibit com-
plex memory access patterns and limited amounts
of actual processing. Consequently, their perfor-
mance is determined by the computer’s ability
to access memory, not by actual processor speed.
Complex data dependencies and dynamic fine-

s t

1 2

3

Figure 1. Simple connectivity algorithm. For two
vertices s and t, (1) find s’s neighbors and see if t is
one of them, (2) find t’s neighbors and see if s or
one of its neighbors is one of them, or (3) alternate
back to s and expand its frontier one more level.

March/April 2008 � 19

grained parallelism often result in poor parallel
performance on traditional machines.

Although graphs might be an extreme case, we
believe a broad trend exists in the scientific com-
puting community toward increasingly complex
and memory-limited simulations: unstructured
grids involve much more complex memory access
patterns than structured ones, adaptive grids are
even more challenging and lead to dynamic par-
allelism, and multiphase and multiphysics simu-
lations add an additional degree of dynamism.
These complex calculations generally achieve a
very low percentage of peak performance on a sin-
gle processor and exhibit poor parallel scalability.

We believe our work with massively multi-
threaded machines suggests an alternative, with
the potential to significantly improve the per-
formance of challenging computations. Thanks
to the continued forward march of Moore’s law,
current microprocessors have silicon to spare. We
believe this space could be used to support massive
multithreading, resulting in processors and paral-
lel machines that are applicable to a much broader
range of applications than current offerings.�

Acknowledgments
Sandia is a multiprogram laboratory operated by
Sandia Corporation, a Lockheed Martin Company,
for the US Department of Energy’s National Nuclear
Security Administration under contract DE-AC04-
94Al85000. This work was funded under the Labora-
tory Directed Research and Development program.

References
T.A. El-Ghazawi, W.W. Carlson, and J.M. Draper, “UPC
Language Specification, 1.1 ed.,” May 2003; http://upc.lbl.
gov/docs/user.

L. Dagum and R. Menon, “OpenMP: An Industry-Standard
API for Shared-Memory Programming,” IEEE Computational
Science and Eng., vol. 5, no. 1, 1998, pp. 46–55.

IEEE Standard Portable Operating System Interface for Com-
puter Environments, IEEE Press, 1988.

W. Anderson et al., “Early Experiences with Scientific Pro-
grams on the Cray MTA-2,” Proc. Supercomputing 2003, IEEE
CS Press, 2003, pp. 46–58.

A. Stepanov and M. Lee, The Standard Template Library, tech.
report 95-11 (R.1), Hewlett-Packard Labs., 1995.

J. Siek, L.-Q. Lee, and A. Lumsdaine, The Boost Graph Library,
Addison-Wesley, 2002.

D. Gregor and A. Lumsdaine, “The Parallel BGL: A Generic
Library for Distributed Graph Computations,” Proc. Work-
shop Parallel Object-Oriented Scientific Computing (POOSC),
2005, www.osl.iu.edu/publications/prints/2005/Gregor:
POOSC:2005.pdf.

J.W. Berry et al., “Software and Algorithms for Graph Que-
ries on Multithreaded Architectures,” Proc. 21st Int’l Parallel
and Distributed Processing Symp., IEEE Press, 2007, p. 495.

A. Lumsdaine et al., “Challenges in Parallel Graph Process-
ing,” Parallel Processing Letters, vol. 17, no. 1, 2007, pp. 5–20.

1.

2.

3.

4.

5.

6.

7.

8.

9.

S. Milgram, “The Small World Phenomenon,” Psychology
Today, vol. 1, 1967, pp. 61–67.

D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-MAT: A Recur-
sive Model for Graph Mining,” Proc. 4th SIAM Int’l Conf. Data
Mining, SIAM Press, 2004.

A. Yoo et al., “A Scalable Distributed Parallel Breadth-First
Search Algorithm on BlueGene/L,” Proc. Supercomputing
2005, IEEE CS Press, 2005, p. 25.

D. Bader and K. Madduri, “Designing Multithreaded Algo-
rithms for Breadth-First Search and ST-Connectivity on the
Cray MTA-2,” Proc. 35th Int’l Conf. Parallel Processing (ICPP),
IEEE CS Press, 2006, pp. 523–530.

E. Dijkstra, “A Note on Two Problems in Connection with
Graphs,” Numerische Mathematik, vol. 1, 1959, pp. 269–271.

K. Madduri et al., “Parallel Shortest Path Algorithms for
Solving Large-Scale Instances,” Proc. 9th DIMACS Implemen-
tation Challenge: Shortest Paths, 2006; http://dimacs.rutgers.
edu/Workshops/Challenge9/papers/madduri.pdf.

U. Meyer and P. Sanders, “Delta-Stepping: A Parallel Single
Source Shortest Path Algorithm,” Proc. 6th Ann. European
Symp. Algorithms, Springer-Verlag, 1998, pp. 393–404.

Bruce Hendrickson is a Distinguished Member of
Technical Staff in the Informatics and Computer Sci-
ence Department at Sandia National Laboratories,
and an Affiliated Professor of Computer Science at
the University of New Mexico. His research interests
include combinatorial scientific computing, graph al-
gorithms, and parallel computing. Hendrickson has
a PhD in computer science from Cornell University.
Contact him at bahendr@sandia.gov.

Jonathan W. Berry is a Principal Member of Techni-
cal Staff in the Scalable Algorithms Department at
Sandia National Laboratories. His research interests
include graph algorithms and software, as well as
combinatorial optimization. Berry has a PhD in com-
puter science from Rensselaer Polytechnic Institute.
Contact him at jberry@sandia.gov.

10.

11.

12.

13.

14.

15.

16.

0.84

0.394
0.783

0.798
0.911

0.768

0.277

0.277

0.553

0.768

1.246 1.748

0.197

1.551

0.335

0.335

0

Figure 2. Calling an algorithm for a single-source
shortest path (SSSP). The vertices are labeled with
their distance from the single source, and the edges
are labeled with their lengths. The red edges form
an SSSP tree.

