
CS 140 Midterm 1 -- 5 February 2009

Problem 1 [20 points total] Each of p processors starts out with the coordinates (x, y) of a single
point in the plane. Our goal is to compute the center of gravity (cx, cy) of the p points, and the
average distance avgdist from the center of gravity to the points. The values of cx, cy, and avgdist
should end up on processor 0. Here are the formulas:

cx = (x[0] + ... + x[p-1]) / p

cy = (y[0] + ... + y[p-1]) / p

dist[i] = sqrt((x[i] - cx) 2 + (y[i] - cy) 2)

avgdist = (dist[0] + ... + dist[p-1]) / p

For example, if p = 3 and the points are (0, 0), (1, 2), and (2, 1), then (cx, cy) is (1, 1), the distances
are sqrt(2), 1, and 1, and avgdist comes out to be (2+sqrt(2))/3 or about 1.14.

(1a) [10 points] Using pseudo-code, show how to do this in MPI using send and recv. You don’t
have to write a complete syntactically correct program, just the computations and MPI calls.

(1b) [10 points] Using pseudo-code, show how to do this in MPI using broadcast and reduce.

Problem 2 [28 points] A vector x of n doubles is divided evenly among p processors, each
processor having n/p elements of x. We want to end up with the sum of all the elements of x on
processor P0, using only sends and receives to communicate. Here are three algorithms:

Algorithm 1: Each processor sends all its elements of x to P0, which then adds them up.

Algorithm 2: Each processor adds up its own n/p elements, then sends the result to P0, which adds
up those sums.

Algorithm 3: Each processor adds up its own n/p elements. Then each odd-numbered processor
P(k) sends its element to its even-numbered left neighbor P(k-1), which adds the received element to
its own element. Then each of P2, P6, P10, ... sends its sum to the “divisible-by-4” processor to its
left (P2 to P0, P6 to P4, P10 to P8, and so forth), which adds the received maximum to its own sum.
This repeats with each processor P(8k+4) sending to P(8k), then P(16k+8) sending to P(16k), and
so on, until finally the only receiving processor is P0.

We count computation time in terms of additions, so the time for the sequential algorithm on one
processor is just t1 = n – 1. We will ignore the difference between n and n - 1, and say that t1 = n.

Fill in the following table with the computation time tp on p processors, the speedup s, and the
communication volume v, always as a function of both n and p. You can compute tp as the
maximum time over all the processors. You can ignore differences of plus or minus one.
Two entries are filled in to start you off.

 Parallel time
tp

Speedup
s

Comm volume
v

Algorithm 1 n

Algorithm 2

p

Algorithm 3

Problem 3 (This problem was about programming assignment 3, which was different in 2009
than this year; in 2010 we’ll ask questions about the n-body assigment instead.)

Problem 4 [10 points] You have a function called accumulate that computes the sum of elements
in an array of size n = 2k. The serial version of your code looks like the following:

double accumulate(double * array, int n) {

double sum = 0;
for (int i = 0; i < n; i++) {

 sum += array[i];
}
return sum;

}

Suppose that you need to parallelize this function using cilk++ in order to get better performance on
your multicore desktop. Your friend tells you that simply replacing the for loop with the cilk_for
keyword would work. Do you agree with him/her? Explain why or why not.

Problem 5 [15 points total] The Magic Dornick algorithm (which I just made up) has two steps.
The first step takes time n2 on one processor, but it is embarrassingly parallel. The second step takes
time 100*n on one processor, and there is no known way to do it in parallel. Answer the following
questions about the Magic Dornick algorithm (ignoring communication time).

(5a) [5 points] What is the work as a function of n?

(5b) [5 points] What is the span as a function of n?

(5c) [5 points] Suppose n = 1000. If we are willing to buy as many processors as we want, what is
the best speedup we can achieve?

