CS 140 Assignment 2:
Matrix-Vector Multiplication and the Power Method

Assigned January 11, 2010

Due by 11:59 pm Wednesday, January 20

This assignment is to write a parallel program to multiply a matrix by a vector, and to use
this routine in an implementation of the power method to find the absolute value of the largest
eigenvalue of the matrix. You will write separate functions to generate the matrix and to perform
the power method, and you will do some timing experiments with the power method routine.

1 Mathematical background

A square matriz is an n-by-n array A of numbers. The entry in row i, column j of A is written
either a;j or A(7, 7). The rows and columns are numbered from 1 to n. A vector is a one-dimensional
array « whose 7’th entry is x; or x(7). Recall the definition of matrix-vector multiplication: The
product y = Az is a vector y whose elements are
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In words, each element of y is obtained from one row of A and all of z, by computing an inner
product (that is, by adding up the pointwise products). Every element of x contributes to every
element of y; each element of A is used exactly once.

The power method uses matrix-vector multiplication to estimate the size of the largest eigenvalue
of a matrix A, which is also called the spectral radius of A. It works as follows. Start with an
arbitrary vector x. Then repeat the following two steps: divide each element of x by the length (or
norm) of x; second, replace = by the matrix-vector product Az. The length of the vector eventually
converges to the spectral radius of A. In your code, you will repeat the matrix-vector product 1000
times.

There is a sequential Matlab code for the power method on the course web page (under Home-
work 2). You will write a parallel C/MPI code that does the same computation.

2 What to implement

You will write the following C routines:

e generateMatrix: Generates a matrix of specified size, with the data distributed across the
processors as specified in the next section. The section on experiments below defines the
matrices you’ll use for experiments.

e powerMethod: Implements the power method on a given matrix (which is already distributed
across the processors). This routine calls norm2 and matVec.



e norm2: Computes the norm (the length) of a given vector.

e matVec: Multiplies a given matrix (which is already distributed across the processors) by a
given vector.

e main: The main routine that calls generateMatrix and powerMethod, and does the timing.

3 Where’s the data?

You may assume that n, the number of rows and columns of the matrix, is divisible by p, the number
of processors. Distribute the matrix across the processors by rows, with the same number of rows
on each processor; thus, processor 0 gets rows 1 through n/p of A, processor 1 gets rows n/p + 1
through 2n/p, and so forth. Your generateMatrix routine should not do any communication
except for the value of n; each processor should generate its own rows of the matrix, independently
of the others, in parallel.

Put the vector on processor 0. For our purposes, the “arbitrary vector” you start with should
be the vector whose elements are all equal to 1.

When you write your matVec routine, you should do the communication with MPT _Bcast and
MPI_Gather; you will find the code to be much simpler this way than if you do it all with MPI_Send
and MPI Recv.

4 What experiments to do

When you debug parallel code, you have to go very slowly and take one step at a time; otherwise,
when something breaks it is very hard to figure out where the problem is. Use lots of printf ()
statements!

First, debug your matVec routine by itself (called from main), first on one processor, then two
processors, then several processors. Using very small matrices, check to make sure your routine is
getting the same answers as the Matlab code. (Hint: In Matlab, if you omit the semicolon at the
end of any statement, it prints the value computed by the statement; try running powermethod.m
with and without semicolons inside the main loop.)

Second, debug the whole code, always starting with tiny matrices on one, then two, then four
processors. For debugging you will only have to do two or three iterations of the power method to
see if you're getting the same results as Matlab.

The Matlab code generateMatrix.m generates a specific matrix (for which you supply the
size n) that you can use for both debugging and timing experiments. Here is the matrix for n = 6:

100 00O
220000
333 000
4 4 4 400
5 5 5 5 5 0
6 6 6 6 6 6

Because this matrix is triangular (has only zeros above the main diagonal), its eigenvalues are
equal to its diagonal elements, and the spectral radius is therefore equal to n, the largest diagonal
element. However, the power method is pretty slow to converge—for very large n you won’t get
an accurate estimate of the spectral radius in 1000 iterations. That’s okay; you can check your
accuracy on small matrices and use big ones just for timing experiments.



Your code should use MPI_Wtime, and for your timing experiments it should only time the call
to powerMethod, not the matrix generation.
Here are the experiments you should do:

1.

Choose a value of n for which your code runs on one processor in a reasonable amount of time,
say 30 seconds to a minute, with 1000 iterations of the main loop. (On my one-processor
laptop, n = 3000 takes about 40 seconds.) Run your code on this matrix for p = 1, 4, 8, and
16. For each run, report the running time ¢, and the parallel efficiency ¢;/(pt,). Make plots
of the running time versus p, and the parallel efficiency versus p. (You can use Matlab to
plot the data, or any other plot package you want.) You will want to wait to run on 8 and
16 processors until you are absolutely sure your code is giving the right answers on 2 and 4
processors.

. Change your program to do only 10 iterations of the main loop, and recompile it with a

profiling tool. Run a profile of your code, for p = 4 and p = 16. Note that the profiling tools
weren’t working yet as of Monday; we’ll send a note to the Google group later this week with
more details about what kind of profiles we want you to do.

Write a report that describes your experiments and your results. What trends do you see?
Do the running time and efficiency behave as you would expect? Can you explain your results?
(Warning: Experimental timing results on parallel codes are often not nearly as clean as you might
expect from the theory!)

You can debug your code on any machine you like (for example, you can use CSIL for debugging
with p = 1 and p = 2), but the results you turn in must come from runs on Triton.

5 What to turn in

Use ssh or scp to copy your files from Triton to CSIL, and then use turnin hw2@cs140 from CSIL
to turn in the following:

Your source code.
A Makefile that compiles your code.

A report (as a text file or PDF, named report.txt or report.pdf, respectively) containing
instructions for compiling and running your code, plus tables of your run time results, plus
your plots, plus a description and interpretation of your results and any conclusions you draw
from them.

Your directory structure should look like:
o/

./Makefile

./report.pdf or ./report.txt
./your-source-files

and so on with whatever files you need.

If you worked in a team, your report should include the names and CSIL accounts (or perm
number if you don’t have an account) of both members.

Don’t turn in any executable or .o files.

You may do this assignment alone or in groups of two.



