
 
CS 140 Assignment 5: 

NFA Based String Matching 
 

Assigned February 10, 2010 
 

Due by 11:59 pm Wednesday, February 24 
 

The purpose of this assignment is for you to gain experience in a common real-world 
scenario: You are given an existing sequential program, and you will parallelize it using 
Cilk++.   Your job is to convert the sequential program into a parallel one, without 
introducing any data races, and get a reasonable speedup.  For grading purposes, both 
correctness and performance will count.   
 
For this assignment, there is one part of the program you will parallelize (because it will 
be executed many times on large inputs), and another part that you will leave sequential 
(because it only runs once).  You will measure speedup only on the part you parallelize. 
 
1. The problem domain 
 
The underlying problem is to locate a “target” character string that fits a particular 
description, within a particular set of  text “data”.  Versions of this problem show up in 
many different applications, ranging from the “find” command in a word processor to the 
reconstruction of a biological genome from DNA sequencing data.  Finding a simple 
string in a word processor is an easy computation; but when the strings and the data get 
very long, parallel computing must come into play.   
 
For this homework, you will parallelize a sequential code for a very basic and important 
string matching problem.  There are two inputs:  first, a “regular expression” that 
describes the set of target strings you’re looking for; second, a string (or maybe a list of 
strings) to be checked against the regular expression to see if they match the target set. 
 
The program first converts the regular expression into a so-called “nondeterministic finite 
state automaton” or NFA, which is a description of an abstract machine that recognizes 
strings that match the regular expression.  You don’t need to parallelize this conversion, 
because it only happens once on a small data set.  The second step is the core of the 
algorithm, and the most important part:  Here the program takes a particular input string 
and uses the NFA to decide whether or not the string is in the target set.  You will 
parallelize this core part of the algorithm, which checks one single input string against the 
NFA.  The input string can be extremely long in practice, so parallel efficiency makes a 
difference in this step. 
 
 



2.  What to implement 
 
You will start with the serial code at http://www.cs.ucsb.edu/~cs140/cilk/nfa.cpp, and 
produce a parallel version of it.  This program accepts two input files, one that contains 
the regular expression representing the target set, and one that contains a list of strings to 
be checked to see whether they are targets.   
 
Compile the serial program using:   >> g++ -O2 nfa.cpp -o nfa 
 
Execute the serial program using:    >> ./nfa regex.in strings.in accepted.out 
 
Sample regex and strings files are available on the course web site, along with the 
corresponding output file.   
 
For example, the regular expression, a(a|b)+bc matches any string that starts with the 
character ‘a’, ends with ‘bc’, and in the middle has a substring of length at least one that 
contains only a’s and b’s. This regular expression matches the string abbbc but not the 
string abc.  
 
So, what do you actually need to change to parallelize this code, and what can you leave 
alone? 
 
The program first converts the regular expression into an NFA.  You don’t need to 
parallelize (or even look at) that part of the code.  In fact, we put that code in a different 
header file, http://www.cs.ucsb.edu/~cs140/cilk/construct.h.  You will need this header to 
compile your program, but you shouldn’t modify it. 
 
The next part of the code reads the input string and uses the NFA to decide whether any 
substring of the input string matches the target set as defined by the regular expression.  
You are expected to parallelize the part of the code that matches any substring of the 
given input string.  In particular, 
 

1) You should parallelize the breadth-first search operation within the matchprefix() 
function. For that, you must convert the global data structures to appropriate 
hyperobjects. This is a non-trivial task, and is the bulk of the homework.  

 
2) You can, if you wish, perform a different matchprefix() for every possible suffix 

of the input strng in parallel.  
 
3) You may use your imagination to find any other way of paralellizing the 

computation on a single input string. 
 

You are not, however, allowed to parallelize across the different input strings.  These are 
intended to be separate, independent test cases for your parallel program.  Each string in 
the strings.in file should be processed in its proper order, one after the other.  
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3.  Theoretical background 
 
The rich theory of formal languages defines a hierarchy of languages, based on their 
computability and expressiveness. The simplest and easiest-to-recognize languages are 
regular languages. They can be recognized in linear time using abstract machines called 
finite state automata. A finite state automaton is a machine that contains a finite number 
of states, transitions between states, and actions performed during transitions.  
 
For string matching, you can think of a finite state automaton as a directed graph, where 
states are vertices and transitions are edges. Each edge has a label that is either a 
character from the alphabet, or an empty (epsilon) label.  A finite state automaton has two 
kinds of special states: one start state (s0), and some number of final states.  
 
The automaton processes an input string one character at a time.  The automaton starts in 
state s0, and follows edges (transitions) from one state to another.  The automaton can 
follow an edge labelled by a character only if the edge label matches the next character in 
the input string; in that case, it consumes that character and moves on to the following 
character in the input string.  The automaton can also follow an epsilon edge (with an 
empty label) without consuming the input character. 
 
This can end in one of two ways: either the automaton reaches a state where it is stuck 
because no label matches the next input character and there is no epsilon transition, or it 
reads the last character of the input.  If, after reading the last input character, the 
automaton is in one of the final states, the input string is declared to be a target string.  If 
the automaton gets stuck, or if it finishes reading the string in a non-final state, the input 
string is declared to be a non-target string. 
 
The tricky part of this is that, at any given point, the automaton might have more than one 
choice of what to do next -- there might be two or more transitions labelled with the next 
input character, or one or more epsilon transitions might be available.  Therefore, the 
automaton has to explore all possible paths before concluding that the input string is not a 
target -- the rule is that if any possible path ends in a final state, the input string is a 
target. 
 
There are several ways to explore the possible paths through this “non-deterministic” 
automaton.  Theoretically, there is a way to convert any non-deterministic automaton to a 
deterministic one, where there is never any choice about which way to go; but that 
conversion can grow the size of the automaton exponentially, making it impractical.  A 
better alternative is to explore the different possible paths through the automaton in 
parallel. 
 
The original, “classical” way to explore all the paths was to use depth-first search with 
backtracking to follow one path at a time. However, for our parallel implementation, we 
use a breadth-first search that explores all the paths at the same time. 
 
 



 
Here is an illustration of the breadth-first search approach with input string “abbb”.  The 
caret ^ shows how much of the string has been consumed, and the shaded circles are all 
the states the NFA could possibly be in at that step.  The start state is at the far left, and 
the only final state is at the far right.  The string is accepted as a target because one of the 
paths (the bottom path) ends in the final state after consuming the entire string. 
 
 

 
 
 
In the code, the breadth-first search is implemented using two lists of states. The current 
list (or clist) holds the current set of possible states (the shaded circles above), and the 
next list (or nlist) holds the new frontier that is one step ahead. The search is broken into 
phases, where each phase consists of examining all the states in the current list, 
computing their successors, and storing those successors that have not yet been seen into 
the next list. At the end of each phase, the nlist becomes the clist. 
 
More information on this subject is at http://swtch.com/~rsc/regexp/regexp1.html 
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4.  What to turn in 
 

Report the parallel scaling of your code on large test inputs (which will be available a 
week before the deadline). Use the same methodology as hw3 for increasing the number 
of active cores (CILK_NPROC=n) for scaling.   
 
Turn in your parallel nfa.cilk code and a set of plots that show the scaling behavior. 
 
You may do this homework singly or in pairs. 


