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CS 140 :  Jan 27 – Feb 3, 2010
Multicore (and Shared Memory) 
Programming with Cilk++

• Multicore and NUMA architectures
• Multithreaded Programming
• Cilk++ as a concurrency platform
• Divide and conquer paradigm for Cilk++

Thanks to Charles E. Leiserson for some of these slides
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Multicore Architecture

Network

…

Memory I/O

$ $ $

Chip Multiprocessor (CMP)

core corecore
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cc-NUMA Architectures

AMD 8-way Opteron Server (neumann@cs.ucsb.edu)

A processor 
(CMP) with 
2/4 cores Memory 

bank local to 
a processor 
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cc-NUMA Architectures

∙ No Front Side Bus

∙ Integrated memory controller 

∙ On-die interconnect among CMPs 

∙ Main memory is physically distributed
among CMPs (i.e. each piece of memory 
has an affinity to a CMP)

∙ NUMA: Non-uniform memory access.
 For multi-socket servers only 

 Your desktop is safe (well, for now at least)

 Triton nodes are also NUMA !
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Desktop Multicores Today

This is your AMD Shangai or Intel Core i7 (Nehalem) !

On-die 
interconnect 

Private 
cache: Cache 
coherence is 
required 
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Multithreaded Programming

∙ A thread of execution is a fork of a 
computer program into two or more 
concurrently running tasks. 

∙ POSIX Threads (Pthreads) is a set of 
threading interfaces developed by the IEEE

∙ Assembly of shared memory programming

∙ Programmer has to manually:
 Create and terminating threads

 Wait for threads to complete 

 Manage the interaction between threads using 
mutexes, condition variables, etc.
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Concurrency Platforms

• Programming directly on PThreads is 
painful and error-prone.

• With PThreads, you either sacrifice memory 
usage or load-balance among processors 

• A concurrency platform provides linguistic 
support and handles load balancing.

• Examples:
• Threading Building Blocks (TBB)
• OpenMP
• Cilk++

Ahh! Sigh! 
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Cilk vs. PThreads

How will the following code execute in 
PThreads?  In Cilk?

for (i=1; i<1000000000; i++) {
spawn-or-fork foo(i);  

}
sync-or-join;

What if foo contains code that waits (e.g., spins) on 
a variable being set by another instance of foo?

This different is a liveness property:
∙ Cilk threads are spawned lazily, “may” parallelism

∙ PThreads are spawned eagerly, “must” parallelism
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Cilk vs. OpenMP

∙ Cilk++ guarantees space bounds. On P 
processors, Cilk++ uses no more than P 
times the stack space of a serial 
execution. 

∙ Cilk++ has serial semantics. 

∙ Cilk++ has a solution for global variables 
(a construct called "hyperobjects") 

∙ Cilk++ has nested parallelism that works 
and provides guaranteed speed-up. 

∙ Cilk++ has a race detector for debugging 
and software release. 
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Great, how do we program it?

∙ Cilk++ is a faithful extension of C++

∙ Programmer implement algorithms 
mostly in the divide-and-conquer (DAC) 
paradigm. Two hints to the compiler:
 cilk_spawn: the following function can run in 

parallel with the caller.

 cilk_sync: all spawned children must return 
before program execution can continue

∙ Third keyword for programmer 
convenience only (compiler converts it to 
spawns/syncs under the covers) 
 cilk_for
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template <typename T>

void qsort(T begin, T end) { 

if (begin != end) {

T middle = partition( 

begin, 

end, 

bind2nd( less<typename iterator_traits<T>::value_type>(), 

*begin )

);

cilk_spawn qsort(begin, middle); 

qsort(max(begin + 1, middle), end); 

cilk_sync;

}

}

The named child
function may execute 
in parallel with the 
parent caller.

Control cannot pass this 
point until all spawned 
children have returned.

Example: Quicksort

Nested Parallelism
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Cilk++ Loops

∙ A cilk_for loop’s iterations execute in 
parallel.

∙ The index must be declared in the loop 
initializer.

∙ The end condition is evaluated exactly 
once at the beginning of the loop.

∙ Loop increments should be a const value

cilk_for (int i=1; i<n; ++i) {

cilk_for (int j=0; j<i; ++j) {

B[i][j] = A[j][i];

}

}

Example: Matrix transpose



13

Serial Correctness

Cilk++ source

Conventional 
Regression Tests

Reliable Single-
Threaded Code

Cilk++
Compiler

Conventional 
Compiler

Binary

Linker
int fib (int n) {

if (n<2) return (n);

else {

int x,y;

x = fib(n-1);

y = fib(n-2);

return (x+y);

}

} Serialization

int fib (int n) {

if (n<2) return (n);

else {

int x,y;

x = cilk_spawn fib(n-1);

y = fib(n-2);

cilk_sync;

return (x+y);

}

}

Cilk++ Runtime 
Library

The serialization is the 
code with the Cilk++
keywords replaced by 
null or C++ keywords.

Serial correctness can 
be debugged and 
verified by running the 
multithreaded code on a 
single processor.
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Serialization

#ifdef CILKPAR

#include <cilk.h>

#else

#define cilk_for for

#define cilk_main main

#define cilk_spawn

#define cilk_sync

#endif

 cilk++ -DCILKPAR –O2 –o parallel.exe main.cpp
 g++ –O2 –o serial.exe main.cpp

How to seamlessly switch between serial 
c++ and parallel cilk++ programs?

Add to the 
beginning of 
your program  

Compile !  
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int fib (int n) {

if (n<2) return (n);

else {

int x,y;

x = cilk_spawn fib(n-1);

y = fib(n-2);

cilk_sync;

return (x+y);

}

}

Parallel Correctness

Cilk++ source

Cilk++
Compiler

Conventional 
Compiler

Binary

Reliable Multi-
Threaded Code

Cilkscreen
Race Detector

Parallel 
Regression Tests

Linker

Parallel correctness can be debugged 
and verified with the Cilkscreen race 
detector, which guarantees to find 
inconsistencies with the serial code 
quickly.
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Race Bugs

Definition. A determinacy race occurs when 
two logically parallel instructions access the 
same memory location and at least one of 
the instructions performs a write.

int x = 0;

cilk_for(int i=0, i<2, ++i) {

x++;

}

assert(x == 2);

A

B C

D

x++;

int x = 0;

assert(x == 2);

x++;

A

B C

D

Example

Dependency Graph
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Race Bugs

r1 = x;

r1++;

x = r1;

r2 = x;

r2++;

x = r2;

x = 0;

assert(x == 2);

1

2

3

4

5

67

8

Definition. A determinacy race occurs when 
two logically parallel instructions access the 
same memory location and at least one of 
the instructions performs a write.

x++;

int x = 0;

assert(x == 2);

x++;

A

B C

D



18

Types of Races

A B Race Type

read read none

read write read race

write read read race

write write write race

Two sections of code are independent if they 
have no determinacy races between them.

Suppose that instruction A and instruction B
both access a location x, and suppose that 
A∥B (A is parallel to B).  
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Avoiding Races

cilk_spawn qsort(begin, middle); 

qsort(max(begin + 1, middle), end); 

cilk_sync;

 All the iterations of a cilk_for should be 
independent.

 Between a cilk_spawn and the corresponding 
cilk_sync, the code of the spawned child should 
be independent of the code of the parent, including 
code executed by additional spawned or called 
children.

Note: The arguments to a spawned function are 
evaluated in the parent before the spawn occurs.

Ex.
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Cilkscreen

∙ Cilkscreen runs off the binary executable:
 Compile your program with the –fcilkscreen 

option to include debugging information.

 Go to the directory with your executable and 
execute cilkscreen your_program [options]

 Cilkscreen prints information about any races it 
detects.

∙ For a given input, Cilkscreen mathematically 
guarantees to localize a race if there exists a 
parallel execution that could produce results 
different from the serial execution.

∙ It runs about 20 times slower than real-time.
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TP = execution time on P processors

T1 = work T∞ = span*

*Also called critical-path length
or computational depth.

WORK LAW

∙TP ≥T1/P

SPAN LAW

∙TP ≥ T∞

Complexity Measures
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Work: T1(A∪B) =

Series Composition

A B

Work: T1(A∪B) = T1(A) + T1(B)

Span: T∞(A∪B) = T∞(A) +T∞(B)Span: T∞(A∪B) =
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Parallel Composition

A

B

Span: T∞(A∪B) = max{T∞(A), T∞(B)}Span: T∞(A∪B) =

Work: T1(A∪B) =Work: T1(A∪B) = T1(A) + T1(B)
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Def.  T1/TP = speedup on P processors.

If T1/TP = (P), we have linear speedup,
= P, we have perfect linear speedup,
> P, we have superlinear speedup, 

which is not possible in this performance 
model, because of the Work Law TP ≥ T1/P.

Speedup
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Parallelism

Because the Span Law dictates 
that TP ≥ T∞, the maximum 
possible speedup given T1
and T∞ is
T1/T∞ = parallelism

= the average 
amount of work 
per step along 
the span.
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Three Tips on Parallelism

1. Minimize the span to maximize parallelism.  Try 
to generate 10 times more parallelism than 
processors for near-perfect linear speedup.

2. If you have plenty of parallelism, try to trade 
some if it off for reduced work overheads.

3. Use divide-and-conquer recursion or parallel 
loops rather than spawning one small thing off 
after another.

for (int i=0; i<n; ++i) {

cilk_spawn foo(i);

}

cilk_sync;

cilk_for (int i=0; i<n; ++i) {

foo(i);

}

Do this:

Not this:
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Three Tips on Overheads

1. Make sure that work/#spawns is not too small.

• Coarsen by using function calls and inlining
near the leaves of recursion rather than 
spawning.

2. Parallelize outer loops if you can, not inner 
loops.  If you must parallelize an inner loop, 
coarsen it, but not too much.  

• 500 iterations should be plenty coarse for 
even the most meager loop.

• Fewer iterations should suffice for “fatter” 
loops.

3. Use reducers only in sufficiently fat loops.
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Sorting

∙ Sorting is possibly the most frequently 
executed operation in computing!

∙ Quicksort is the fastest sorting algorithm 
in practice with an average running time 
of O(N log N), (but O(N2) worst case 
performance)

∙ Mergesort has worst case performance of 
O(N log N) for sorting N elements

∙ Both based on the recursive divide-and-
conquer paradigm 
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QUICKSORT

∙ Basic Quicksort sorting an array S works 
as follows:
 If the number of elements in S is 0 or 1, then 

return.

 Pick any element v in S. Call this pivot.

 Partition the set S-{v} into two disjoint 
groups:

♦ S1 = {x  S-{v} | x  v}

♦ S2 = {x  S-{v} | x  v}

 Return quicksort(S1) followed by v followed by 
quicksort(S2)
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QUICKSORT
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56
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31
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Select Pivot
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QUICKSORT

13

21

34

56

32
31

45
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Partition around Pivot

13

14

21

32

31
45

56

78

34 
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QUICKSORT

13

14

21

32

31
45

56

78

34 

Quicksort recursively

13 14 21 3231 34 45 56 78

13 14 21 3231 34 45 56 78


