
CS 140 Midterm 1 -- 8 February 2010

Name Perm#

Problem 1 [20 points total] In Lake Wobegon, all the women are strong, all the men are good-
looking, and all the children are above average. Well, everyone can’t be above average--but here
we’ll count how many are.

We have n kids and p processors. Each processor starts out with n/p elements of a vector IQ
of the n kids’ IQ values. Your goal is to compute the average of all n IQs (that is, their sum divided
by n), and also to figure out how many of the n IQs are larger than average. The results, called
averageIQ and numHighIQ, should end up on processor 0. For example, if the entries in IQ[] are
110, 90, 120, and 100, then the averageIQ is 420 / 4 = 105, and the numHighIQ is 2 (since two
values, 110 and 120, are larger than average). A sequential algorithm to do this on one processor
would be as follows. Note that IQ[] and averageIQ are doubles, not integers.

double sum = 0;
for (int i = 0; i < n; i++)
 sum += IQ[i];
double averageIQ = sum / n;
int numHighIQ = 0;
for (int i = 0; i < n; i++)
 if (IQ[i] > averageIQ) numHighIQ ++;

For this problem only, you don’t have to worry about the efficiency of your code.

(1a) [10 points] Using pseudo-code, show how to do this in MPI using send and recv.

(1b) [10 points] Using pseudo-code, show how to do this in MPI using broadcast and reduce.

Name Perm#

Problem 2 [20 points total] This problem compares two different data layouts for matrix-vector
multiplication on a message-passing machine. All n elements of a vector x are on processor 0. The
elements of an n-by-n array A are divided evenly among p processors, with n2/p elements per
processor. The goal is to have all n elements of the product A*x end up on processor 0. For
Algorithm 1, each processor has n/p rows of A. For Algorithm 2, each processor has a square block
of A with n/sqrt(p) rows and n/sqrt(p) columns. Assume that n is divisible by p, and that p is a
perfect square. You don’t have to show the code for the two algorithms; just answer these questions.

(2a) [2½ points] Draw a clearly labeled diagram of the data layout for Algorithm 1.

(2b) [2½ points] Draw a clearly labeled diagram of the data layout for Algorithm 2.

(2c) [15 points] Complete the following table with the parallel time tp , the span t∞ , and the total
communication volume v for each algorithm. For t, we count only multiplication operations (which
is why the work t1 is n2). You can omit lower-order terms in your answer, for example by writing n2

instead of something like n2 – n + 1.

 Work
t1

Parallel time
tp

Span
 t∞

Comm volume
v

Algorithm 1 n2 n2 / p

Algorithm 2 n2

P0

P2 P1

y

Name Perm#

Problem 3 [20 points] Suppose you have p processors, P(0) through P(p-1), each with local
(double) variables x, y, and d (plus any other local variables you need). Each (x, y) represents a
point in the plane, so each processor has one point. The goal is for each processor to set its own d to
the shortest distance between its point and any other processor’s point. For example, if there are
three processors with points

P(0): x = 1, y = 1 P(1): x = -1, y = 0 P(2): x = 0, y = 0

then (1,1)’s closest point is (0,0), and (-1,0)’s closest point is (0,0),
and (0,0)’s closest point is (-1,0), so the result should be

P(0): d = sqrt(2) P(1): d = 1 P(2): d = 1

Write message-passing code (pseudocode is fine) to achieve this. Rules:
• Use *blocking* send and receive calls for all communication.
• Each processor P(i) should only send to / receive from its neighbors P(i-1) and P(i+1), where

we also include P(p-1) and P(0) as neighbors of each other.
• For full credit, your algorithm should use no more than 2p rounds of message-passing, and

should have parallel computation time tp = O(p).
Hint: Send copies of all the processors’ (x, y) values around a merry-go-round ring.

(Note: It’s an interesting problem in computational geometry to do this in *less* than O(p) parallel
time; but you don’t have to do that for the exam problem.)

x

Name Perm#

Problem 4 [20 points total] You have a function called findmax that computes the largest element
in an array of size n = 2k. The serial version of your code looks like the following:

double findmax(double * array, int n) {
double max = array[0];
for (int i = 1; i < n; i++)

 if (array[i] > max) max = array[i];
return max;

}

(4a) [10 points] Explain briefly why you can’t parallelize this function in cilk++ by just changing
the for loop to a cilk_for. Give a small example (say n = 3 or 4) of what can go wrong.

(4b) [10 points] Describe a way to parallelize this function using cilk_spawn. (You don’t have to
write syntactically correct cilk++ code, just be sure your description is clear.)

Problem 5 [20 points total] Short answer questions.

(5a) [10 points] What is an embarrassingly parallel problem? Give an example.

(5b) [10 points] A sequential program spends 99% of its time on a computation that could be done
efficiently in parallel, and the other 1% on a computation that can’t be parallelized at all. What can
you say about maximum speedup for a parallel version of this program?

