
Conjugate gradients,
sparse matrix-vector multiplication,

graphs, and meshes

Thanks to Aydin Buluc, Umit Catalyurek,
Alan Edelman, and Kathy Yelick

for some of these slides.

The middleware of scientific computing

Computers

Continuous
physical modeling

Linear algebra Ax = b

Example: The Temperature Problem

•  A cabin in the snow
•  Wall temperature is 0°, except for a radiator at 100°
•  What is the temperature in the interior?

Example: The Temperature Problem

•  A cabin in the snow (a square region J)
•  Wall temperature is 0°, except for a radiator at 100°
•  What is the temperature in the interior?

The physics: Poisson’s equation

6.43

Many Physical Models Use Stencil Computations
•  PDE models of heat, fluids, structures, …
•  Weather, airplanes, bridges, bones, …
•  Game of Life
•  many, many others

Model Problem: Solving Poisson’s equation for temperature

•  Discrete approximation to Poisson’s equation:

t(i) = ¼ (t(i-k) + t(i-1) + t(i+1) + t(i+k))

•  Intuitively:
Temperature at a point is the average

of the temperatures at surrounding points

k = n1/2

 Examples of stencils

5-point stencil in 2D
 (temperature problem)

9-point stencil in 2D
(game of Life)

7-point stencil in 3D
(3D temperature problem)

25-point stencil in 3D
(seismic modeling)

… and many more

9"

Parallelizing Stencil Computations
•  Parallelism is simple

•  Grid is a regular data structure
•  Even decomposition across processors gives load balance

•  Spatial locality limits communication cost
•  Communicate only boundary values from neighboring patches

•  Communication volume
•  v = total # of boundary cells between patches

10"

Two-dimensional block decomposition
•  n mesh cells, p processors
•  Each processor has a patch of n/p cells
•  Block row (or block col) layout: v = 2 * p * sqrt(n)
•  2-dimensional block layout: v = 4 * sqrt(p) * sqrt(n)

Detailed complexity measures for data movement I:
 Latency/Bandwidth Model

Moving data between processors by message-passing

•  Machine parameters:
•  α or tstartup latency (message startup time in seconds)
•  β or tdata inverse bandwidth (in seconds per word)

•  between nodes of Triton, α ∼ 2.2 × 10-6 and β ∼ 6.4 × 10-9

•  Time to send & recv or bcast a message of w words: α + w*β

•  tcomm total commmunication time

•  tcomp total computation time

•  Total parallel time: tp = tcomp + tcomm

12"

Ghost Nodes in Stencil Computations

Comm cost = α * (#messages) + β * (total size of messages)

•  Keep a ghost copy of neighbors’ boundary nodes
•  Communicate every second iteration, not every iteration
•  Reduces #messages, not total size of messages
•  Costs extra memory and computation
•  Can also use more than one layer of ghost nodes

Green = my interior nodes

Yellow
 = neighbors’ boundary nodes
 = my “ghost nodes”

Blue = my boundary nodes

13

Parallelism in Regular meshes
•  Computing a Stencil on a regular mesh

•  need to communicate mesh points near boundary to neighboring
processors.

•  Often done with ghost regions
•  Surface-to-volume ratio keeps communication down, but

•  Still may be problematic in practice

Implemented using
“ghost” regions. "

Adds memory overhead"

Model Problem: Solving Poisson’s equation for temperature

•  Discrete approximation to Poisson’s equation:

t(i) = ¼ (t(i-k) + t(i-1) + t(i+1) + t(i+k))

•  Intuitively:
Temperature at a point is the average

of the temperatures at surrounding points

k = n1/2

Model Problem: Solving Poisson’s equation for temperature

•  For each i from 1 to n, except on the boundaries:

– t(i-k) – t(i-1) + 4*t(i) – t(i+1) – t(i+k) = 0

•  n equations in n unknowns: A*t = b
•  Each row of A has at most 5 nonzeros

•  In three dimensions, k = n1/3 and each row has at most 7 nzs

k = n1/2

A Stencil Computation Solves a System of Linear Equations
•  Solve Ax = b for x
•  Matrix A, right-hand side vector b, unknown vector x
•  A is sparse: most of the entries are 0

Conjugate gradient iteration to solve A*x=b

•  One matrix-vector multiplication per iteration
•  Two vector dot products per iteration
•  Four n-vectors of working storage

x0 = 0, r0 = b, d0 = r0 (these are all vectors)	

for k = 1, 2, 3, . . .	

	

αk = (rT

k-1rk-1) / (dT
k-1Adk-1) step length

	

xk = xk-1 + αk dk-1 approximate solution

	

 rk = rk-1 – αk Adk-1 residual = b - Axk	

	

βk = (rT

k rk) / (rT
k-1rk-1) improvement	

	

dk = rk + βk dk-1 search direction	

	

Vector and matrix primitives for CG

•  DAXPY: v = α*v + β*w (vectors v, w; scalars α, β)

•  Broadcast the scalars α and β, then independent * and +
•  comm volume = 2p, span = log n

•  DDOT: α = vT*w = Σj v[j]*w[j] (vectors v, w; scalar α)
•  Independent *, then + reduction
•  comm volume = p, span = log n

•  Matvec: v = A*w (matrix A, vectors v, w)
•  The hard part
•  But all you need is a subroutine to compute v from w
•  Sometimes you don’t need to store A (e.g. temperature problem)
•  Usually you do need to store A, but it’s sparse ...

Broadcast and reduction
•  Broadcast of 1 value to p processors in log p time

•  Reduction of p values to 1 in log p time
•  Takes advantage of associativity in +, *, min, max, etc.

α

8

 1 3 1 0 4 -6 3 2"

Add-reduction"

Broadcast"

Where’s the data (temperature problem)?

•  The matrix A: Nowhere!!

•  The vectors x, b, r, d:
•  Each vector is one value per stencil point
•  Divide stencil points among processors, n/p points each

•  How do you divide up the sqrt(n) by sqrt(n) region of points?

•  Block row (or block col) layout: v = 2 * p * sqrt(n)

•  2-dimensional block layout: v = 4 * sqrt(p) * sqrt(n)

6.43

How do you partition the sqrt(n) by sqrt(n) stencil points?
•  First version: number the grid by rows
•  Leads to a block row decomposition of the region
•  v = 2 * p * sqrt(n)

6.43

How do you partition the sqrt(n) by sqrt(n) stencil points?
•  Second version: 2D block decomposition
•  Numbering is a little more complicated
•  v = 4 * sqrt(p) * sqrt(n)

Where’s the data (temperature problem)?

•  The matrix A: Nowhere!!

•  The vectors x, b, r, d:
•  Each vector is one value per stencil point
•  Divide stencil points among processors, n/p points each

•  How do you divide up the sqrt(n) by sqrt(n) region of points?

•  Block row (or block col) layout: v = 2 * p * sqrt(n)

•  2-dimensional block layout: v = 4 * sqrt(p) * sqrt(n)

The Landscape of Ax = b Algorithms

Pivoting

LU

GMRES,

BiCGSTAB,
…

Cholesky

Conjugate
gradient

Gaussian
elimination Iterative

Any
matrix

Symmetric
positive
definite
matrix

More Robust Less Storage

More Robust

More General

Conjugate gradient in general

•  CG can be used to solve any system Ax = b, if …

Conjugate gradient in general

•  CG can be used to solve any system Ax = b, if …
•  The matrix A is symmetric (aij = aji) …
•  … and positive definite (all eigenvalues > 0).

Conjugate gradient in general

•  CG can be used to solve any system Ax = b, if …
•  The matrix A is symmetric (aij = aji) …
•  … and positive definite (all eigenvalues > 0).

•  Symmetric positive definite matrices occur a lot
 in scientific computing & data analysis!

Conjugate gradient in general

•  CG can be used to solve any system Ax = b, if …
•  The matrix A is symmetric (aij = aji) …
•  … and positive definite (all eigenvalues > 0).

•  Symmetric positive definite matrices occur a lot
 in scientific computing & data analysis!

•  But usually the matrix isn’t just a stencil.
•  Now we do need to store the matrix A. Where’s the data?

Conjugate gradient in general

•  CG can be used to solve any system Ax = b, if …
•  The matrix A is symmetric (aij = aji) …
•  … and positive definite (all eigenvalues > 0).

•  Symmetric positive definite matrices occur a lot
 in scientific computing & data analysis!

•  But usually the matrix isn’t just a stencil.
•  Now we do need to store the matrix A. Where’s the data?

•  The key is to use graph data structures and algorithms.

Vector and matrix primitives for CG

•  DAXPY: v = α*v + β*w (vectors v, w; scalars α, β)

•  Broadcast the scalars α and β, then independent * and +
•  comm volume = 2p, span = log n

•  DDOT: α = vT*w = Σj v[j]*w[j] (vectors v, w; scalar α)
•  Independent *, then + reduction
•  comm volume = p, span = log n

•  Matvec: v = A*w (matrix A, vectors v, w)
•  The hard part
•  But all you need is a subroutine to compute v from w
•  Sometimes you don’t need to store A (e.g. temperature problem)
•  Usually you do need to store A, but it’s sparse ...

Graphs and Sparse Matrices

1 1 1

2 1 1 1

3 1 1 1

4 1 1

5 1 1

6 1 1

 1 2 3 4 5 6

3

6

2

1

5

4

•  Sparse matrix is a representation of a (sparse) graph

•  Matrix entries are edge weights
•  Number of nonzeros per row is the vertex degree

•  Edges represent data dependencies in matrix-vector
multiplication

Parallel Dense Matrix-Vector Product (Review)
•  y = A*x, where A is a dense matrix

•  Layout:
•  1D by rows

•  Algorithm:
Foreach processor j
 Broadcast X(j)
 Compute A(p)*x(j)

•  A(i) is the n by n/p block row that processor Pi owns
•  Algorithm uses the formula

Y(i) = A(i)*X = Σj A(i)*X(j)

x

y

P0

P1

P2

P3

P0 P1 P2 P3

•  Lay out matrix and vectors by rows
•  y(i) = sum(A(i,j)*x(j))
•  Only compute terms with A(i,j) ≠ 0

•  Algorithm
Each processor i:
 Broadcast x(i)
 Compute y(i) = A(i,:)*x

•  Optimizations
•  Only send each proc the parts of x it needs, to reduce comm
•  Reorder matrix for better locality by graph partitioning
•  Worry about balancing number of nonzeros / processor,

 if rows have very different nonzero counts

x

y

P0

P1

P2

P3

P0 P1 P2 P3

Parallel sparse matrix-vector product

Data structure for sparse matrix A (stored by rows)

•  Full matrix:
•  2-dimensional array of real or

complex numbers

•  (nrows*ncols) memory

31 0 53

0 59 0

41 26 0

31 53 59 41 26

1 3 2 1 2

•  Sparse matrix:
•  compressed row storage

•  about (2*nzs + nrows) memory

P0

P1

P2

Pn

5941 532631

23 131

Each processor stores:

•  # of local nonzeros
•  range of local rows
•  nonzeros in CSR form

Distributed-memory sparse matrix data structure

36"

Irregular mesh: NASA Airfoil in 2D

37"

Composite Mesh from a Mechanical Structure

38

Converting the Mesh to a Matrix

39"

Adaptive Mesh Refinement (AMR)

•  Adaptive mesh around an explosion"

•  Refinement done by calculating errors"

40"

Adaptive Mesh

Shock waves in a gas dynamics using AMR (Adaptive Mesh Refinement)
See: http://www.llnl.gov/CASC/SAMRAI/

flu
id

 d
en

si
ty

41"

Irregular mesh: Tapered Tube (Multigrid)

Scientific computation and data analysis

Computers

Continuous
physical modeling

Linear algebra

Scientific computation and data analysis

Computers

Continuous
physical modeling

Linear algebra

Discrete
structure analysis

Graph theory

Computers

Scientific computation and data analysis

Continuous
physical modeling

Linear algebra & graph theory

Discrete
structure analysis

Computers

