
Complexity Measures
for

Parallel Computation

Complexity Measures for Parallel Computation
Problem parameters:
•  n index of problem size
•  p number of processors

Algorithm parameters:
•  tp running time on p processors
•  t1 time on 1 processor = sequential time = “work”
•  t∞ time on unlimited procs = critical path length = “span”
•  v total communication volume

Performance measures
•  speedup s = t1 / tp
•  efficiency e = t1 / (p*tp) = s / p
•  (potential) parallelism pp = t1 / t∞
•  computational intensity q = t1 / v

Several possible models!

•  Execution time and parallelism:
•  Work / Span Model

•  Total cost of moving data:
•  Communication Volume Model

•  Detailed models that try to capture time for moving data:
•  Latency / Bandwidth Model (for message-passing)
•  Cache Memory Model (for hierarchical memory)

•  Other detailed models we won’t discuss: LogP, UMH, ….

tp = execution time on p processors

Work / Span Model

tp = execution time on p processors
t1 = work

Work / Span Model

tp = execution time on p processors

* Also called critical-path length
 or computational depth.

t1 = work t∞ = span *

Work / Span Model

tp = execution time on p processors
t1 = work t∞ = span *

* Also called critical-path length
 or computational depth.

WORK LAW
∙ tp ≥t1/p

SPAN LAW
∙ tp ≥ t∞

Work / Span Model

Work: t1(A∪B) =

Series Composition

A B

Work: t1(A∪B) = t1(A) + t1(B)
Span: t∞(A∪B) = t∞(A) +t∞(B) Span: t∞(A∪B) =

Parallel Composition

A

B

Span: t∞(A∪B) = max{t∞(A), t∞(B)}
Work: t1(A∪B) = t1(A) + t1(B)

Def. t1/tP = speedup on p processors.

If t1/tP = Θ(p), we have linear speedup,

 = p, we have perfect linear speedup,

 > p, we have superlinear speedup,

 (which is not possible in this model,  
 because of the Work Law tp ≥ t1/p)

Speedup

Parallelism

Because the Span Law requires tp ≥ t∞,
the maximum possible speedup is

t1/t∞ = (potential) parallelism

 = the average
 amount of work
 per step along
 the span.

Laws of Parallel Complexity

•  Work law: tp ≥ t1 / p

•  Span law: tp ≥ t∞

•  Amdahl’s law:

•  If a fraction f, between 0 and 1, of the work must be

done sequentially, then

 speedup ≤ 1 / f

•  Exercise: prove Amdahl’s law from the span law.

Communication Volume Model

•  Network of p processors
•  Each with local memory
•  Message-passing

•  Communication volume (v)
•  Total size (words) of all messages passed during computation
•  Broadcasting one word costs volume p (actually, p-1)

•  No explicit accounting for communication time
•  Thus, can’t really model parallel efficiency or speedup;

for that, we’d use the latency-bandwidth model (see later slide)

Complexity Measures for Parallel Computation
Problem parameters:
•  n index of problem size
•  p number of processors

Algorithm parameters:
•  tp running time on p processors
•  t1 time on 1 processor = sequential time = “work”
•  t∞ time on unlimited procs = critical path length = “span”
•  v total communication volume

Performance measures
•  speedup s = t1 / tp
•  efficiency e = t1 / (p*tp) = s / p
•  (potential) parallelism pp = t1 / t∞
•  computational intensity q = t1 / v

Detailed complexity measures for data movement I:
 Latency/Bandwith Model

Moving data between processors by message-passing

•  Machine parameters:
•  α or tstartup latency (message startup time in seconds)
•  β or tdata inverse bandwidth (in seconds per word)

•  between nodes of Triton, α ∼ 2.2 × 10-6 and β ∼ 6.4 × 10-9

•  Time to send & recv or bcast a message of w words: α + w*β

•  tcomm total commmunication time

•  tcomp total computation time

•  Total parallel time: tp = tcomp + tcomm

Moving data between cache and memory on one processor:
•  Assume just two levels in memory hierarchy, fast and slow
•  All data initially in slow memory

•  m = number of memory elements (words) moved between fast and slow
memory

•  tm = time per slow memory operation

•  f = number of arithmetic operations

•  tf = time per arithmetic operation, tf << tm

•  q = f / m (computational intensity) flops per slow element access

•  Minimum possible time = f * tf when all data in fast memory
•  Actual time

•  f * tf + m * tm = f * tf * (1 + tm/tf * 1/q)

•  Larger q means time closer to minimum f * tf

Detailed complexity measures for data movement II:
 Cache Memory Model

