Complexity Measures for Parallel Computation

Complexity Measures for Parallel Computation

Problem parameters:

- n index of problem size
- p number of processors

Algorithm parameters:

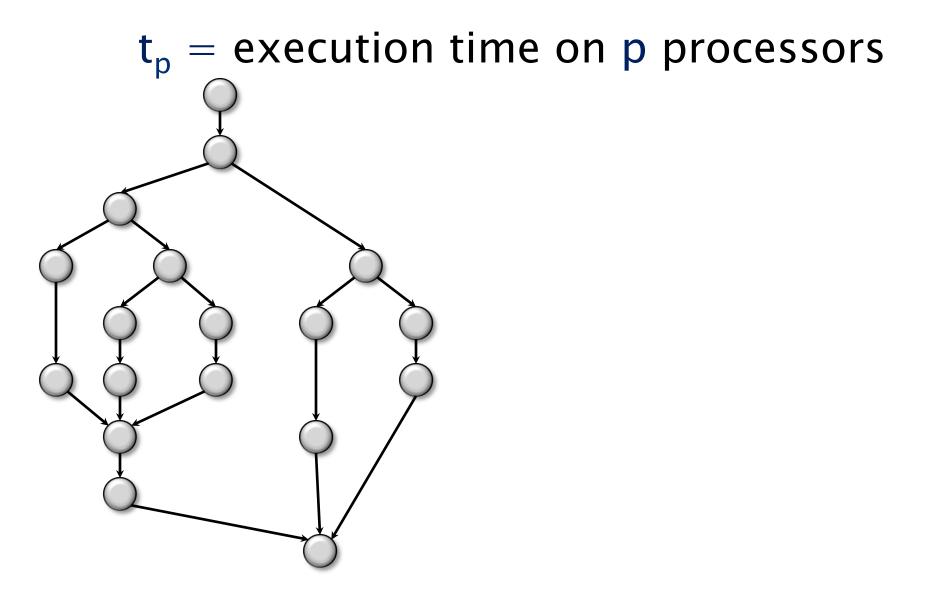
- t_p running time on p processors
- t₁ time on 1 processor = sequential time = "work"
- t_{∞} time on unlimited procs = critical path length = "span"
- v total communication volume

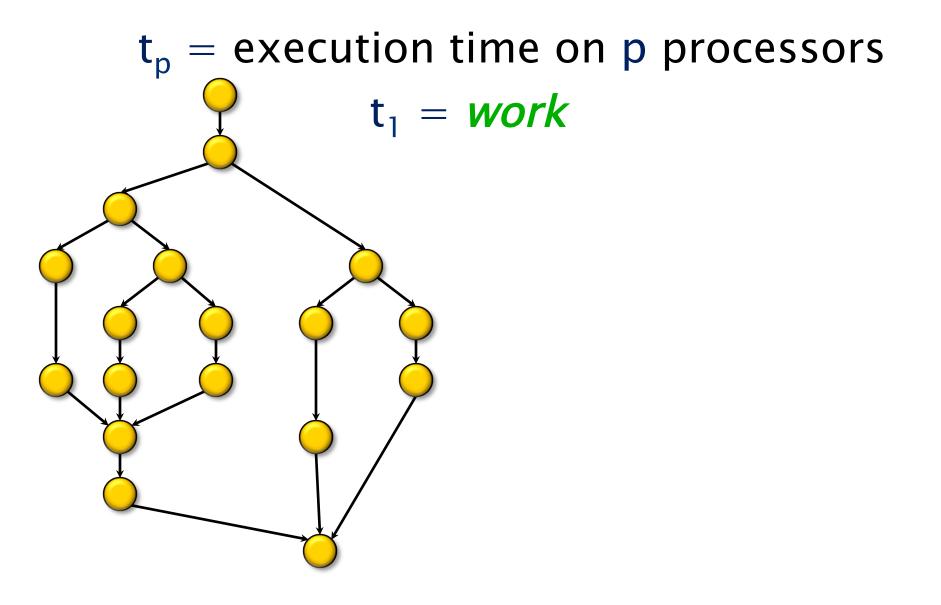
Performance measures

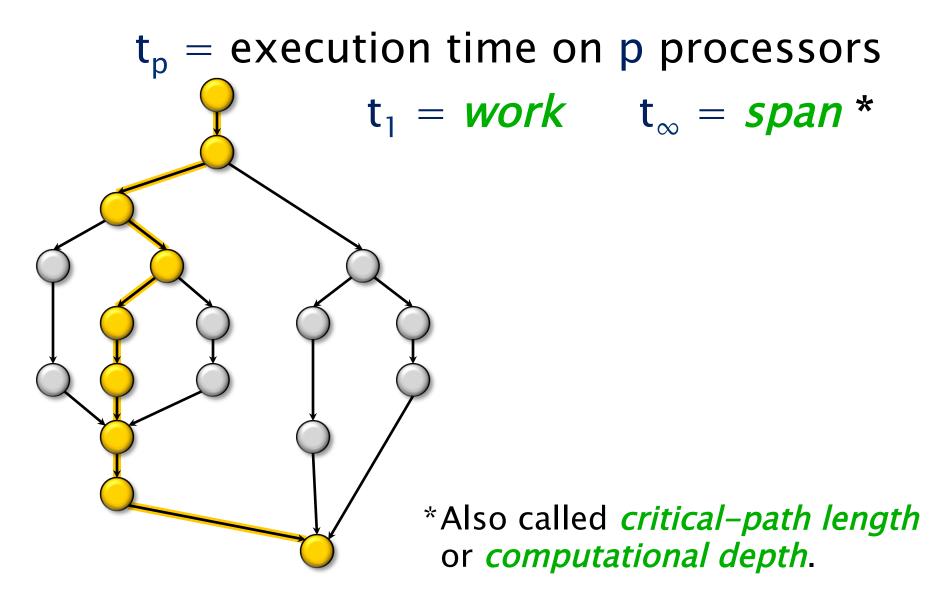
- speedup $s = t_1 / t_p$
- efficiency $e = t_1 / (p^*t_p) = s / p$
- (potential) parallelism $pp = t_1 / t_{\infty}$
- computational intensity $q = t_1 / v$

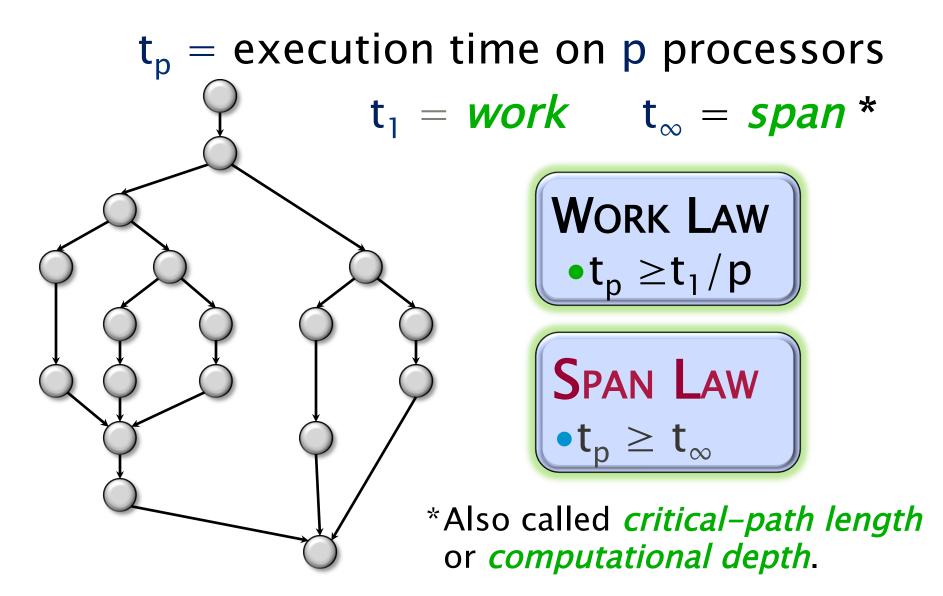
Several possible models!

- Execution time and parallelism:
 - Work / Span Model
- Total <u>cost</u> of moving data:
 - Communication Volume Model
- Detailed models that try to capture <u>time</u> for moving data:
 - Latency / Bandwidth Model (for message-passing)
 - Cache Memory Model
 (for hierarchical memory)
 - Other detailed models we won't discuss: LogP, UMH,

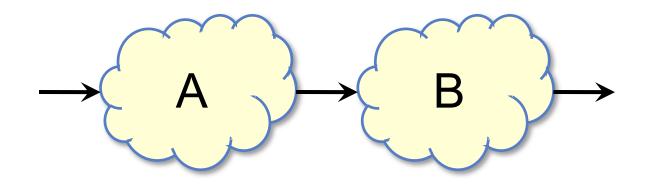






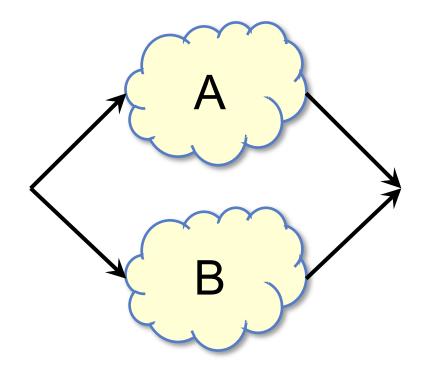


Series Composition



Work: $t_1(A \cup B) = t_1(A) + t_1(B)$ *Span:* $t_{\infty}(A \cup B) = t_{\infty}(A) + t_{\infty}(B)$

Parallel Composition



Work: $t_1(A \cup B) = t_1(A) + t_1(B)$ Span: $t_{\infty}(A \cup B) = max\{t_{\infty}(A), t_{\infty}(B)\}$

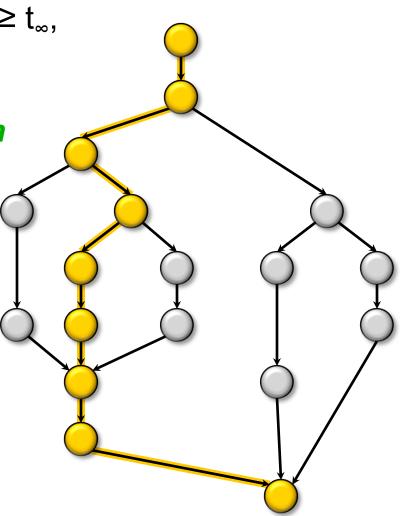
Def. $t_1/t_P = speedup$ on p processors.

If $t_1/t_P = \Theta(p)$, we have *linear speedup*, = p, we have *perfect linear speedup*, > p, we have *superlinear speedup*, (which is not possible in this model, because of the Work Law $t_p \ge t_1/p$)

Parallelism

Because the Span Law requires $t_p \ge t_{\infty}$, the maximum possible speedup is

- t_1/t_{∞} = (potential) parallelism
 - the average amount of work
 per step along the span.



Laws of Parallel Complexity

- Work law: $t_p \ge t_1 / p$
- Span law: $t_p \ge t_{\infty}$
- <u>Amdahl's law</u>:
 - If a fraction f, between 0 and 1, of the work must be done sequentially, then

speedup $\leq 1/f$

• Exercise: prove Amdahl's law from the span law.

Communication Volume Model

- Network of p processors
 - Each with local memory
 - Message-passing
- Communication volume (v)
 - Total size (words) of all messages passed during computation
 - Broadcasting one word costs volume p (actually, p-1)
- No explicit accounting for communication time
 - Thus, can't really model parallel efficiency or speedup; for that, we'd use the latency-bandwidth model (see later slide)

Complexity Measures for Parallel Computation

Problem parameters:

- n index of problem size
- p number of processors

Algorithm parameters:

- t_p running time on p processors
- t₁ time on 1 processor = sequential time = "work"
- t_{∞} time on unlimited procs = critical path length = "span"
- v total communication volume

Performance measures

- speedup $s = t_1 / t_p$
- efficiency $e = t_1 / (p^*t_p) = s / p$
- (potential) parallelism $pp = t_1 / t_{\infty}$
- computational intensity $q = t_1 / v$

Detailed complexity measures for data movement I: Latency/Bandwith Model

Moving data between processors by message-passing

- Machine parameters:
 - α or $t_{startup}$ latency (message startup time in seconds)
 - β or t_{data} inverse bandwidth (in seconds per word)
 - between nodes of Triton, $\alpha \sim 2.2 \times 10^{-6}$ and $\beta \sim 6.4 \times 10^{-9}$
- Time to send & recv or bcast a message of w words: $\alpha + w^*\beta$
- t_{comm} total communication time
- t_{comp} total computation time
- Total parallel time: $t_p = t_{comp} + t_{comm}$

Detailed complexity measures for data movement II: Cache Memory Model

Moving data between cache and memory on one processor:

- Assume just two levels in memory hierarchy, fast and slow
- All data initially in slow memory
 - m = number of memory elements (words) moved between fast and slow memory
 - t_m = time per slow memory operation
 - **f** = number of arithmetic operations
 - $t_f = time per arithmetic operation, t_f << t_m$
 - q = f / m (computational intensity) flops per slow element access
- Minimum possible time = $f * t_f$ when all data in fast memory
- Actual time

• $f * t_f + m * t_m = f * t_f * (1 + t_m/t_f * 1/q)$

• Larger q means time closer to minimum $f * t_f$