
 1

CS 140 : Feb 2, 2015
Multicore (and Shared Memory)
Programming with Cilk Plus

•  Multicore and shared memory
•  Cilk Plus and the divide & conquer paradigm
•  Data races
•  Analyzing performance in Cilk Plus

Thanks to Charles E. Leiserson for some of these slides

 2

Multicore Architecture

Network

…

Memory I/O

$ $ $

Chip Multiprocessor

core core core

 3

Desktop Multicores Today

This is your AMD Shangai or Intel Core i7 (Nehalem) !

On-chip
interconnect

Private cache:
Cache
coherence is
required

 4

62-core Xeon Phi chip

 5

Cilk (Plus)
∙  Cilk Plus is a faithful extension of C++
∙  Programs use the divide-and-conquer

paradigm. Two hints to the compiler:
§  cilk_spawn: this function can run in parallel

with its caller.
§  cilk_sync: all spawned children must return

before execution passes this point.
∙  Third hint for convenience only (compiler

converts it to cilk_spawn and cilk_sync)
§  cilk_for: loop iterations can run in parallel.

∙  Cilk also has reducers to avoid data races
in global variables.

 6

History (and names) of Cilk
∙  MIT Cilk: 1994 – 2006

§  Cilk started as a research project at MIT…

∙  Cilk Arts Cilk++: 2006 – 2009
§  Then Leiserson & co. built a commercial compiler…

∙  Intel Cilk++: 2009 - 2010
§  … then Intel bought Cilk++ from Cilk Arts …

∙  Intel Cilk Plus: 2010 – now
§  … and made it part of “Intel Parallel Building Blocks”
§  Cilk Plus is also a branch of gcc++ now.

∙  Intel Cilk Plus is the one you are using on Triton!
§  There are also free downloads of old Cilk++ around.

 7

QUICKSORT

13

21

34
56

32 31

45

78

14

Partition around Pivot

13

14

21

32

31 45
56

78

34

 8

QUICKSORT

13

14

21

32

31 45
56

78

34

Quicksort recursively

13 14 21 32 31 34 45 56 78

13 14 21 32 31 34 45 56 78

 9

template <typename T>

void qsort(T begin, T end) {

 if (begin != end) {

 T middle = partition(begin, end, …);

 cilk_spawn qsort(begin, middle);

 qsort(max(begin + 1, middle), end);

 cilk_sync;

 }

}

Example: Quicksort

Nested Parallelism

 10

template <typename T>

void qsort(T begin, T end) {

 if (begin != end) {

 T middle = partition(begin, end, …);

 cilk_spawn qsort(begin, middle);

 qsort(max(begin + 1, middle), end);

 cilk_sync;

 }

}

Example: Quicksort

Nested Parallelism

The named child
function may execute
in parallel with the
parent caller.

Control cannot pass this
point until all spawned
children have returned.

 11

Cilk Loops

∙ A cilk_for loop’s iterations execute in parallel.
∙ Loop index must be declared in the cilk_for().
∙ End condition is evaluated just once,  

 at the beginning of the loop.
∙ Loop increment must be a const value.
∙ No “break” or “return” allowed inside the loop.

cilk_for (int i=1; i<n; ++i) {
 cilk_for (int j=0; j<i; ++j) {
 B[i][j] = A[j][i];
 }
}

Example: Matrix transpose

 12

Serial Correctness

Conventional
Regression Tests

Reliable Single-
Threaded Code

Cilk Plus
Compiler

Conventional
Compiler

Binary

Linker
int fib (int n) {
if (n<2) return (n);
 else {
 int x,y;
 x = fib(n-1);
 y = fib(n-2);
 return (x+y);
 }
} Serialization

int fib (int n) {
 if (n<2) return (n);
 else {
 int x,y;
 x = cilk_spawn fib(n-1);
 y = fib(n-2);
 cilk_sync;
 return (x+y);
 }
}

Cilk Plus Runtime
Library

Serial correctness can
be debugged and
verified by running the
multithreaded code on a
single processor.

Cilk source

The serialization is the
code with the Cilk
keywords replaced by
null or C++ keywords.

 13

Serialization

#ifdef CILKPAR
 #include <cilk.h>

#else
 #define cilk_for for
 #define cilk_main main
 #define cilk_spawn
 #define cilk_sync

#endif

Ø  cilk++ -DCILKPAR –O2 –o parallel.exe main.cpp
Ø g++ –O2 –o serial.exe main.cpp

How to seamlessly switch between serial c++
and parallel cilk plus programs?

Add to the
beginning of
your program

Compile !

 14

int fib (int n) {
 if (n<2) return (n);
 else {
 int x,y;
 x = cilk_spawn fib(n-1);
 y = fib(n-2);
 cilk_sync;
 return (x+y);
 }
}

Parallel Correctness

Cilk source

Cilk Plus
Compiler

Conventional
Compiler

Binary

Reliable Multi-
Threaded Code

Cilkscreen
Race Detector

Parallel
Regression Tests

Linker

Parallel correctness can be debugged
and verified with the Cilkscreen race
detector, which guarantees to find
inconsistencies with the serial code
quickly.

 15

Race Bugs
Definition. A determinacy race occurs when
two logically parallel instructions access the
same memory location and at least one of
the instructions performs a write.

int x = 0;
cilk_for(int i=0, i<2, ++i) {
 x++;
}
assert(x == 2);

A	

B	 C	

D	

x++;

int x = 0;

assert(x == 2);

x++;

A	

B	 C	

D	

Example

Dependency Graph

 16

Race Bugs

r1 = x;

r1++;

x = r1;

r2 = x;

r2++;

x = r2;

x = 0;

assert(x == 2);

1

2

3

4

5

67

8

Definition. A determinacy race occurs when
two logically parallel instructions access the
same memory location and at least one of
the instructions performs a write.

x++;

int x = 0;

assert(x == 2);

x++;

A	

B	 C	

D	

 17

Types of Races

A B Race Type
read read none
read write read race
write read read race
write write write race

Two sections of code are independent if they
have no determinacy races between them.

Suppose that instruction A and instruction B
both access a location x, and suppose that
A∥B (A is parallel to B).

 18

Avoiding Races

cilk_spawn qsort(begin, middle);
qsort(max(begin + 1, middle), end);

cilk_sync;

•  All the iterations of a cilk_for should be
independent.

•  Between a cilk_spawn and the corresponding
cilk_sync, the code of the spawned child should
be independent of the code of the parent, including
code executed by additional spawned or called
children.

Note: The arguments to a spawned function are
evaluated in the parent before the spawn occurs.

Ex.

 19

Cilk Reducers
∙  A reducer is one kind of Cilk hyperobject.
∙  Mostly a solution to global variables, but

also broader applications.

int result = 0;
cilk_for (int i = 0; i < N; ++i) {

 result += MyFunc(i);
}

#include <cilk/reducer_opadd.h>
…
cilk::reducer< cilk::opadd<int> > result;
cilk_for (int i = 0; i < N; ++i) {

 result += MyFunc(i);
}

Data race !

Race free !

This uses one of the predefined
reducers, but you can also write
your own reducer easily

 20

Cilk analysis tools
∙  Cilkscreen race detector:

§  Runs off the executable (compiled specially).
§  Reports any possibility of a data race in a particular

execution with particular input data.
§  Quite a bit slower than real time.

∙  Cilkview scalability analyzer:

§  Runs off the executable (compiled specially).
§  Reports potential parallelism, burdened parallelism,

etc. in theory by counting operations (not by actual
clock time); quite a bit slower than real time.

§  Compare results to measured clock times to
understand the scaling of your code.

 21

Cilkscreen

∙ Cilkscreen runs off the binary executable:
§  Compile your program with the –fcilkscreen

option to include debugging information.
§  Go to the directory with your executable and

execute cilkscreen your_program [options]
§ Cilkscreen prints information about any races it

detects.
∙  For a given input, Cilkscreen mathematically

guarantees to localize a race if there exists a
parallel execution that could produce results
different from the serial execution.

∙  It runs about 20 times slower than real-time.

 22

TP = execution time on P processors
T1 = work T∞ = span*

* Also called critical-path length
 or computational depth.

WORK LAW
∙ TP ≥T1/P

SPAN LAW
∙ TP ≥ T∞

Complexity Measures

 23

Def. T1/TP = speedup on P processors.

If T1/TP = Θ(P), we have linear speedup,
 = P, we have perfect linear speedup,
 > P, we have superlinear speedup,

which is not possible in this performance
model, because of the Work Law TP ≥ T1/P.

Speedup

 24

(Potential) Parallelism

Because the Span Law dictates
that TP ≥ T∞, the maximum
possible speedup given T1 and T∞ is
T1/T∞ = parallelism

 = the average  
 amount of work  
 per step along  
 the span.

 25

Three Tips on Parallelism
1. Minimize the span to maximize parallelism. Try

to generate 10 times more parallelism than
processors for near-perfect linear speedup.

2.  If you have plenty of parallelism, try to trade
some of it off for reduced work overheads.

3.  Use divide-and-conquer recursion or parallel
loops rather than spawning one small thing off
after another.

for (int i=0; i<n; ++i) {
 cilk_spawn foo(i);
}
cilk_sync;

cilk_for (int i=0; i<n; ++i) {
 foo(i);
}

Do this:

Not this:

 26

Three Tips on Overheads

1.  Make sure that work/#spawns is not too small.
•  Coarsen by using function calls and inlining

near the leaves of recursion rather than
spawning.

2.  Parallelize outer loops if you can, not inner
loops. If you must parallelize an inner loop,
coarsen it, but not too much.
•  500 iterations should be plenty coarse for

even the most meager loop.
•  Fewer iterations should suffice for “fatter”

loops.
3.  Use reducers only in sufficiently fat loops.

