CS 140 : Feb 19, 2015 Cilk Scheduling & Applications

- Analyzing quicksort
- Optional: Master method for solving divide-and-conquer recurrences
- Tips on parallelism and overheads
- Greedy scheduling and parallel slackness
- Cilk runtime

Thanks to Charles E. Leiserson for some of these slides

Potential Parallelism

Because the Span Law dictates that $T_P \ge T_{\infty}$, the maximum possible speedup given T_1 and T_{∞} is

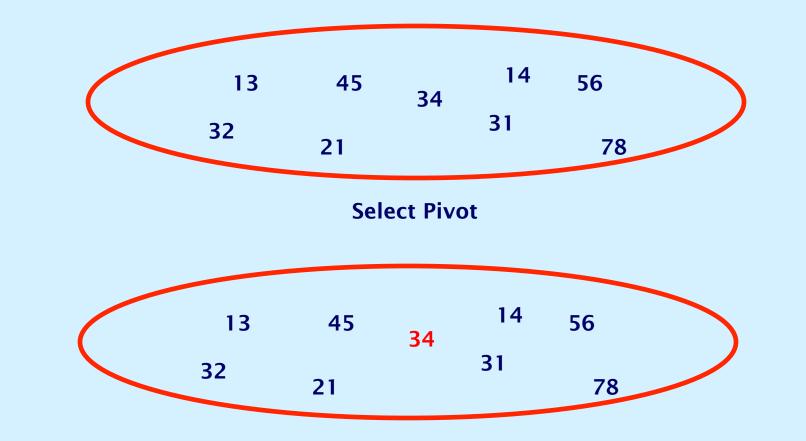
$T_1/T_{\infty} = potential parallelism$

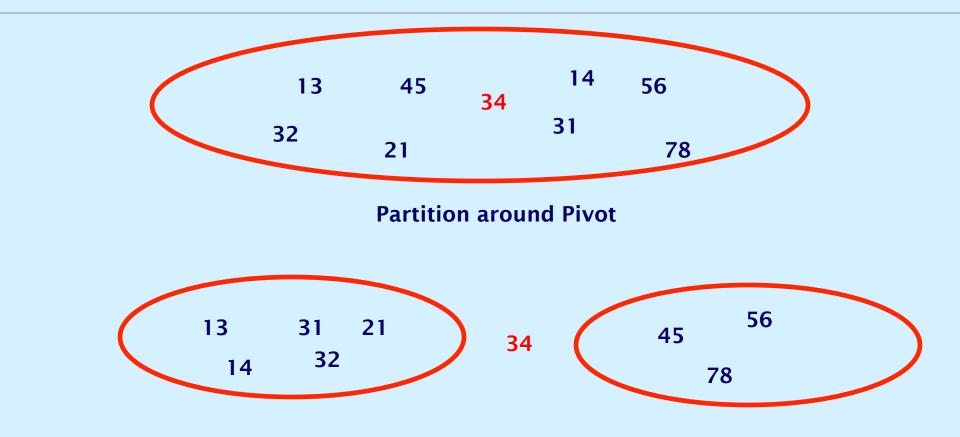
= the average amount of work per step along the span.

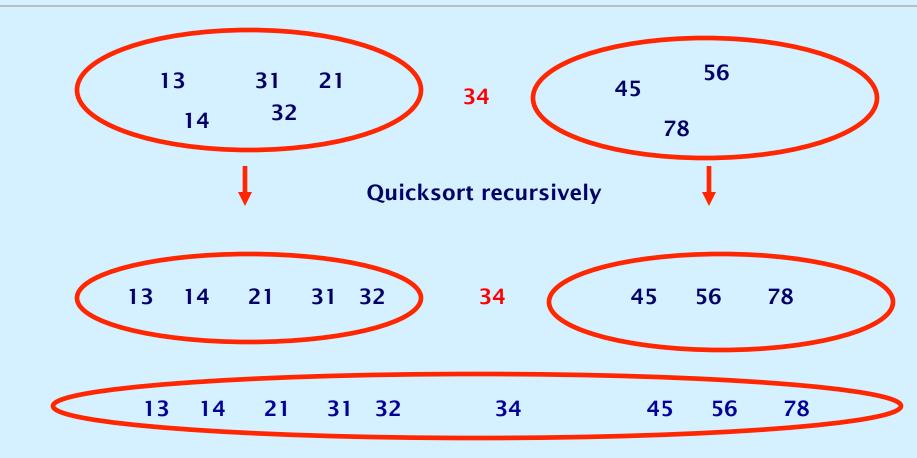
Sorting

- Sorting is possibly the most frequently executed operation in computing!
- Quicksort is the fastest sorting algorithm in practice with an average running time of O(N log N), (but O(N²) worst case performance)
- Mergesort has worst case performance of O(N log N) for sorting N elements
- Both based on the recursive divide-andconquer paradigm

- Basic Quicksort sorting an array S works as follows:
 - If the number of elements in S is 0 or 1, then return.
 - Pick any element v in S. Call this pivot.
 - Partition the set S-{v} into two disjoint groups:
 - $\bullet S_1 = \{ x \in S \{ v \} \mid x \le v \}$
 - $\bullet S_2 = \{x \in S \{v\} \mid x \ge v\}$
 - Return quicksort(S₁) followed by v followed by quicksort(S₂)







Parallelizing Quicksort

- Serial Quicksort sorts an array S as follows:
 - If the number of elements in S is 0 or 1, then return.
 - Pick any element v in S. Call this pivot.
 - Partition the set S-{v} into two disjoint groups:
 - $\bullet S_1 = \{ x \in S \{ v \} \mid x \le v \}$
 - $\bullet S_2 = \{x \in S \{v\} \mid x \ge v\}$
 - Return quicksort(S₁) <u>followed by</u> v followed by quicksort(S₂)

Parallel Quicksort (Basic)

• The second recursive call to *qsort* does not depend on the results of the first recursive call

•We have an opportunity to speed up the call by making both calls in parallel.

```
template <typename T>
void qsort(T begin, T end) {
    if (begin != end) {
        T middle = partition(begin, end, ...);
        cilk_spawn qsort(begin, middle);
        qsort(max(begin + 1, middle), end); // No cilk_spawn on this line!
        cilk_sync;
    }
}
```

Actual Performance

- ./qsort 500000 -cilk_set_worker_count 1
 >> 0.083 seconds
- ./qsort 500000 -cilk_set_worker_count 16
 >> 0.014 seconds
- Speedup = $T_1/T_{16} = 0.083/0.014 = 5.93$

Actual Performance

- ./qsort 500000 -cilk_set_worker_count 1
 >> 0.083 seconds
- ./qsort 500000 -cilk_set_worker_count 16
 > 0.014 seconds
- Speedup = $T_1/T_{16} = 0.083/0.014 = 5.93$
- ./qsort 5000000 -cilk_set_worker_count 1
 >> 10.57 seconds
- ./qsort 5000000 -cilk_set_worker_count 16
 >> 1.58 seconds
- Speedup = $T_1/T_{16} = 10.57/1.58 = 6.67$

Why not better???

Measure Work/Span Empirically

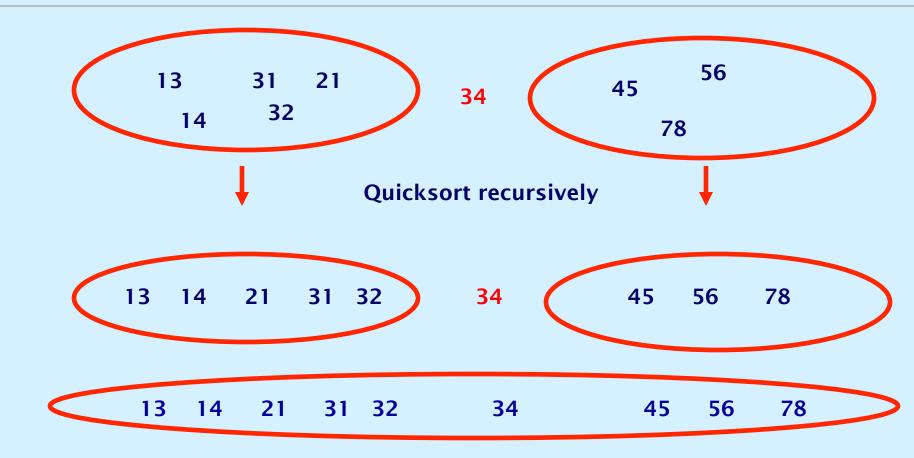
cilkview –w ./qsort 5000000

Work = 21593799861 Span = 1261403043 Burdened span = 1261600249 Parallelism = **17.1189** Burdened parallelism = 17.1162 #Spawn = 5000000 #Atomic instructions = 14

cilkview –w ./qsort 500000

Work = 178835973 Span = 14378443 Burdened span = 14525767 Parallelism = **12.4378** Burdened parallelism = 12.3116 #Spawn = 500000 #Atomic instructions = 8 workspan ws; ws.start(); sample_qsort(a, a + n); ws.stop(); ws.report(std::cout);

Analyzing Quicksort



Assume we have a "great" partitioner that always generates two balanced sets

Analyzing Quicksort

• Work:

$$T_1(n) = 2T_1(n/2) + \Theta(n)$$

 $2T_1(n/2) = 4T_1(n/4) + 2 \Theta(n/2)$
....
+ $n/2 T_1(2) = n T_1(1) + n/2 \Theta(2)$
 $T_1(n) = \Theta(n \lg n)$
• aritioning
not parallel

• Span recurrence: $T_{\infty}(n) = T_{\infty}(n/2) + \Theta(n)$ Solves to $T_{\infty}(n) = \Theta(n)$

Analyzing Quicksort

Parallelism:
$$\frac{T_1(n)}{T_{\infty}(n)} = \Theta(\lg n)$$
 Not much !

- Indeed, partitioning (i.e., constructing the array $S_1 = \{x \in S \{v\} \mid x \le v\}$) can be accomplished in parallel in time $\Theta(\lg n)$
- Which gives a span $T_{\infty}(n) = \Theta(\lg^2 n)$
- And parallelism $\Theta(n/\lg n)$
- Basic parallel qsort can be found under \$cilkpath/examples/qsort

The Master Method (Optional)

The *Master Method* for solving recurrences applies to recurrences of the form

T(n) = a T(n/b) + f(n)

where $a \ge 1$, b > 1, and f is asymptotically positive.

IDEA: Compare $n^{\log_b a}$ with f(n).

* The base case is always $T(n) = \Theta(1)$ for sufficiently small n.

Master Method — CASE 1

$$T(n) = aT(n/b) + f(n)$$
$$n^{\log_b a} \gg f(n)$$

Specifically, $f(n) = O(n^{\log_b a - \epsilon})$ for some const $\epsilon > 0$

Solution: $T(n) = \Theta(n^{\log_b a})$

Strassen matrix multiplication: $a = 7, b = 2, f(n) = n^2$ $\Rightarrow T_1(n) = \Theta(n^{\log_2 7}) = O(n^{2.81})_{17}$

Master Method — CASE 2

$$T(n) = aT(n/b) + f(n)$$
$$n^{\log_{b}a} \approx f(n)$$

Specifically, $f(n) = \Theta(n^{\log_b a} \lg^k n)$ for some const $k \ge 0$

Solution: $T(n) = \Theta(n^{\log_{b}a} | g^{k+1}n))$

quicksort work: a=2, b=2, f(n)=n, k=0 \rightarrow T₁(n) = Θ (n lg n) qsort span: a=1, b=2, f(n)=lg n, k=1 \rightarrow T_{∞}(n) = Θ (lg²n)

Master Method — CASE 3

$$T(n) = aT(n/b) + f(n)$$
$$n^{\log_b a} \ll f(n)$$

Specifically, $f(n) = \Omega(n^{\log_b a} + \epsilon)$ for some const $\epsilon > 0$, and *(regularity)* $a \cdot f(n/b) \le c \cdot f(n)$ for some const c < 1

Solution: $T(n) = \Theta(f(n))$

Eg: qsort span (bad version): a=1, b=2, $f(n)=n \rightarrow T_{\infty}(n) = \Theta(n)$

Master Method Summary

$$T(n) = aT(n/b) + f(n)$$

CASE 1: $f(n) = O(n^{\log_b a} - \epsilon)$, constant $\epsilon > 0$ $\Rightarrow T(n) = \Theta(n^{\log_b a})$. **CASE 2**: $f(n) = \Theta(n^{\log_b a} \lg^k n)$, constant $k \ge 0$ $\Rightarrow T(n) = \Theta(n^{\log_{b^a}} \lg^{k+1} n)$. **CASE 3**: $f(n) = \Omega(n^{\log_b a} + \epsilon)$, constant $\epsilon > 0$, and regularity condition $\Rightarrow T(n) = \Theta(f(n))$.

Potential Parallelism

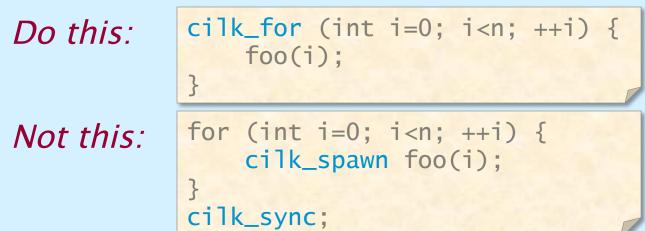
Because the Span Law dictates that $T_P \ge T_{\infty}$, the maximum possible speedup given T_1 and T_{∞} is

$T_1/T_{\infty} = potential parallelism$

= the average amount of work per step along the span.

Three Tips on Parallelism

- Minimize span to maximize parallelism. Try to generate 10 times more parallelism than processors for near-perfect linear speedup.
- 2. If you have plenty of parallelism, try to trade some if it off for *reduced work overheads*.
- 3. Use *divide-and-conquer recursion* or *parallel loops* rather than spawning one small thing off after another.



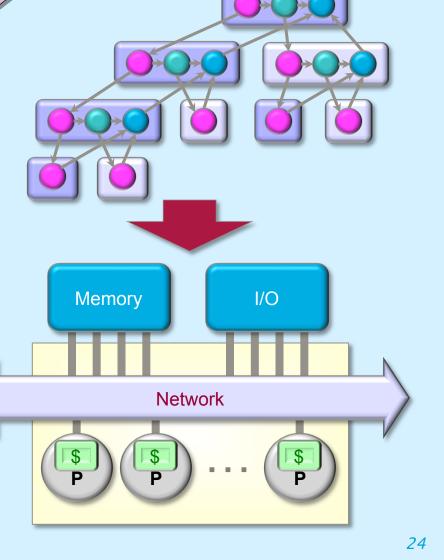
Three Tips on Overheads

- 1. Make sure that work/#spawns is not too small.
 - Coarsen by using function calls and *inlining* near the leaves of recursion rather than spawning.
- 2. Parallelize *outer loops* if you can, not inner loops (otherwise, you'll have high *burdened parallelism*, which includes runtime and scheduling overhead). If you must parallelize an inner loop, coarsen it, but not too much.
 - 500 iterations should be plenty coarse for even the most meager loop. Fewer iterations should suffice for "fatter" loops.
- 3. Use *reducers* only in sufficiently fat loops.

Scheduling

A strand is a sequence of instructions that doesn't contain any parallel constructs

- Cilk allows the programmer to e ess potential paralles m in an application
- The Cilk *scheduler* maps strands onto processors dynamically at runtime.
- Since *on-line* schedulers are complicated, we'll explore the ideas with an *off-line* scheduler.



Greedy Scheduling

IDEA: Do as much as possible on every step. *Definition:* A strand is *ready* if all its <u>predecessors</u> have executed.

Greedy Scheduling

IDEA: Do as much as possible on every step. *Definition:* A strand is *ready* if all its <u>predecessors</u> have executed. P = 3

Complete step

• \geq P strands ready.

• Run any P.

Greedy Scheduling

IDEA: Do as much as possible on every step. *Definition:* A strand is *ready* if all its <u>predecessors</u> have executed. P = 3

Complete step

- \geq P strands ready.
- Run any P.

Incomplete step

- < P strands ready.
- Run all of them.

Analysis of Greedy

Theorem : Any greedy scheduler achieves $T_P \le T_1/P + T_\infty$.

Proof.

- # complete steps ≤ T₁/P, since each complete step performs P work.
- # incomplete steps ≤ T_∞, since each incomplete step reduces the span of the <u>unexecuted dag</u> by 1.

P = 3

Optimality of Greedy

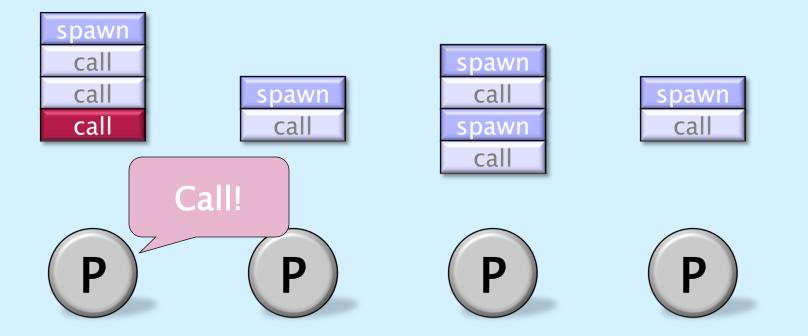
Theorem. Any greedy scheduler achieves within a factor of 2 of optimal.

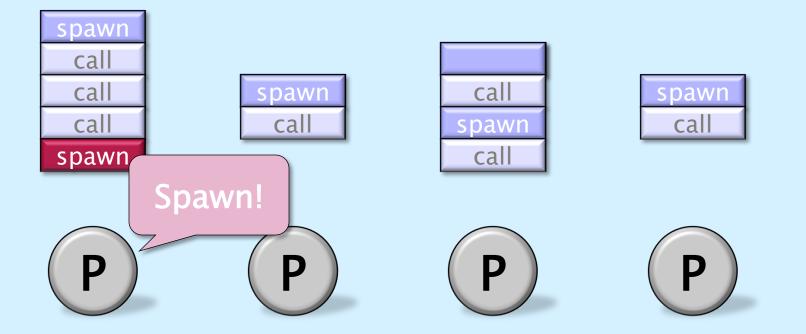
Proof. Let T_P^* be the execution time produced by the optimal scheduler. Since $T_P^* \ge max\{T_1/P, T_\infty\}$ by the Work and Span Laws, we have

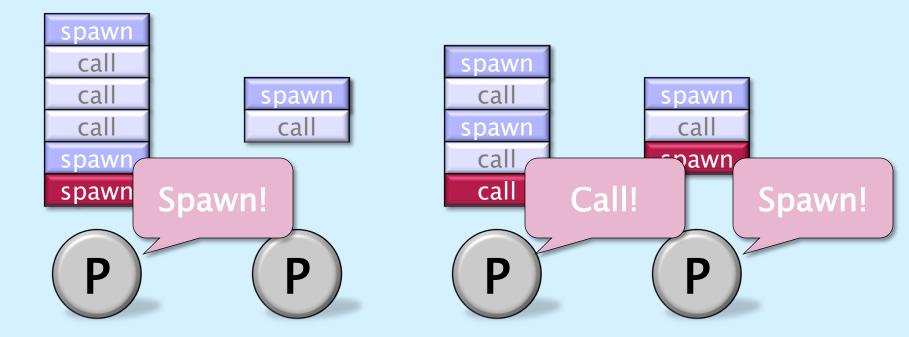
$$\begin{array}{l} \mathsf{T}_{\mathsf{P}} \leq \mathsf{T}_{1}/\mathsf{P} + \mathsf{T}_{\infty} \\ \leq 2 \cdot \max\{\mathsf{T}_{1}/\mathsf{P}, \mathsf{T}_{\infty}\} \\ \leq 2\mathsf{T}_{\mathsf{P}}^{*} \cdot \quad \blacksquare \end{array}$$

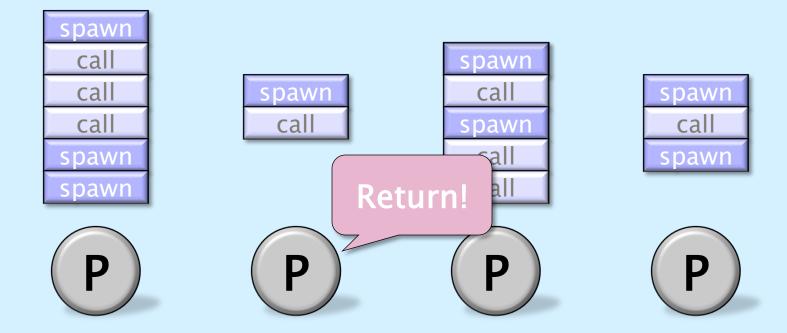
Linear Speedup

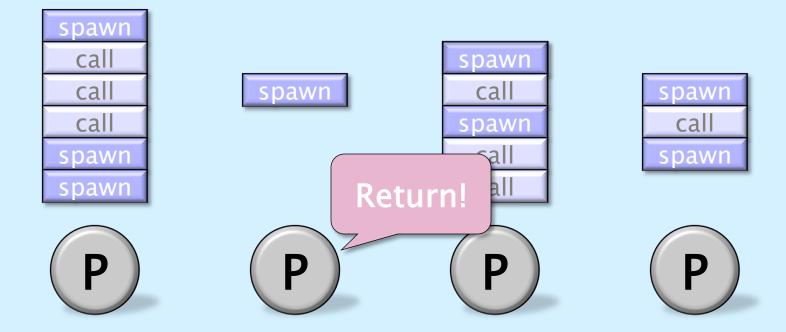
Theorem. Any greedy scheduler achieves near-perfect linear speedup whenever $P \ll T_1/T_{\infty}$. **Proof.** Since $P \ll T_1/T_{\infty}$ is equivalent to $T_{\infty} \ll T_1/P$, the Greedy Scheduling Theorem gives us $T_{P} \leq T_{1}/P + T_{\infty}$ $\approx T_1/P$. Thus, the speedup is $T_1/T_P \approx P$. **Definition.** The quantity T_1/PT_{∞} is called the *parallel slackness*.



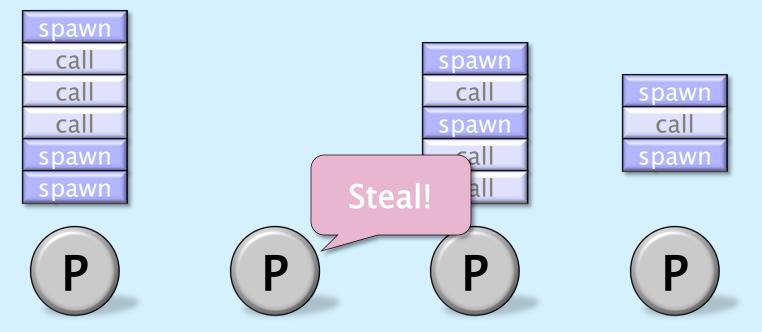




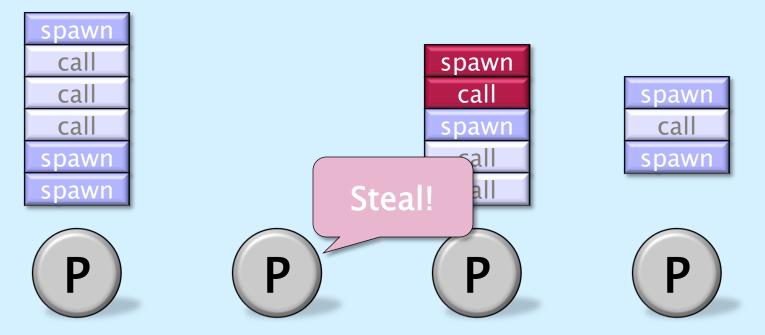




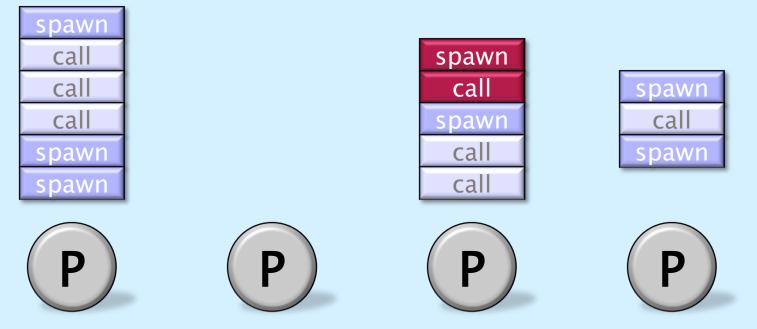
Each worker (processor) maintains a *work deque* of ready strands, and it manipulates the bottom of the deque like a stack



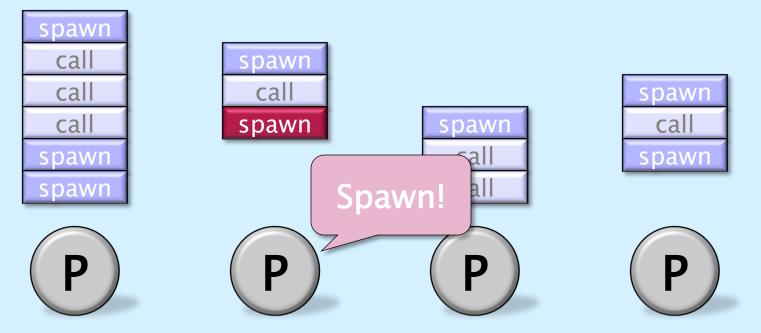
Each worker (processor) maintains a *work deque* of ready strands, and it manipulates the bottom of the deque like a stack



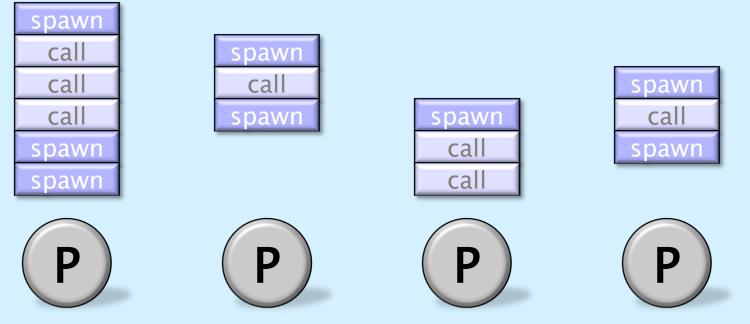
Each worker (processor) maintains a *work deque* of ready strands, and it manipulates the bottom of the deque like a stack



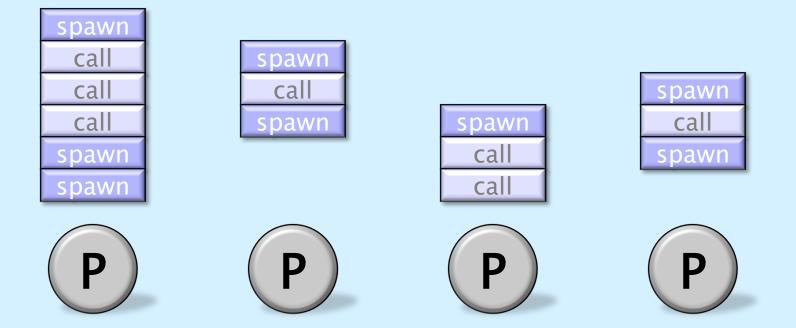
Each worker (processor) maintains a *work deque* of ready strands, and it manipulates the bottom of the deque like a stack



Each worker (processor) maintains a *work deque* of ready strands, and it manipulates the bottom of the deque like a stack



Each worker (processor) maintains a *work deque* of ready strands, and it manipulates the bottom of the deque like a stack



Theorem: With sufficient parallelism, workers steal infrequently \Rightarrow *linear speed-up*.