
 1

CS 140 : Feb 19, 2015
Cilk Scheduling & Applications

•  Analyzing quicksort
•  Optional: Master method for solving 
 divide-and-conquer recurrences
•  Tips on parallelism and overheads
•  Greedy scheduling and parallel slackness
•  Cilk runtime

Thanks to Charles E. Leiserson for some of these slides

 2

Potential Parallelism

Because the Span Law dictates
that TP ≥ T∞, the maximum
possible speedup given T1 and T∞ is

T1/T∞ = potential parallelism

 = the average  
 amount of work  
 per step along  
 the span.

 3

Sorting
∙  Sorting is possibly the most frequently

executed operation in computing!
∙  Quicksort is the fastest sorting algorithm

in practice with an average running time
of O(N log N), (but O(N2) worst case
performance)

∙  Mergesort has worst case performance of
O(N log N) for sorting N elements

∙  Both based on the recursive divide-and-
conquer paradigm

 4

QUICKSORT
∙  Basic Quicksort sorting an array S works

as follows:
§  If the number of elements in S is 0 or 1, then

return.
§  Pick any element v in S. Call this pivot.
§  Partition the set S-{v} into two disjoint

groups:
♦  S1 = {x ε S-{v} | x ≤ v}
♦  S2 = {x ε S-{v} | x ≥ v}

§  Return quicksort(S1) followed by v followed by
quicksort(S2)

 5

QUICKSORT

13

21

34
56

32 31

45

78

14

Select Pivot

13

21

34
56

32 31

45

78

14

 6

QUICKSORT

13

21

34
56

32 31

45

78

14

Partition around Pivot

13

14

21

32

31 45
56

78

34

 7

QUICKSORT

13

14

21

32

31 45
56

78

34

Quicksort recursively

13 14 21 32 31 34 45 56 78

13 14 21 32 31 34 45 56 78

 8

Parallelizing Quicksort
∙  Serial Quicksort sorts an array S as

follows:
§  If the number of elements in S is 0 or 1, then

return.
§  Pick any element v in S. Call this pivot.
§  Partition the set S-{v} into two disjoint

groups:
♦  S1 = {x ε S-{v} | x ≤ v}
♦  S2 = {x ε S-{v} | x ≥ v}

§  Return quicksort(S1) followed by v followed by
quicksort(S2)

 9

template <typename T>

void qsort(T begin, T end) {

 if (begin != end) {

 T middle = partition(begin, end, …);

 cilk_spawn qsort(begin, middle);

 qsort(max(begin + 1, middle), end); // No cilk_spawn on this line!

 cilk_sync;

 }

}

Parallel Quicksort (Basic)
• The second recursive call to qsort does not
depend on the results of the first recursive call
• We have an opportunity to speed up the call by
making both calls in parallel.

 10

Actual Performance
∙  ./qsort 500000 -cilk_set_worker_count 1

>> 0.083 seconds
∙  ./qsort 500000 -cilk_set_worker_count 16

>> 0.014 seconds
∙  Speedup = T1/T16 = 0.083/0.014 = 5.93

 11

Actual Performance
∙  ./qsort 500000 -cilk_set_worker_count 1

>> 0.083 seconds
∙  ./qsort 500000 -cilk_set_worker_count 16

>> 0.014 seconds
∙  Speedup = T1/T16 = 0.083/0.014 = 5.93

∙  ./qsort 50000000 -cilk_set_worker_count 1
>> 10.57 seconds

∙  ./qsort 50000000 -cilk_set_worker_count 16
>> 1.58 seconds

∙  Speedup = T1/T16 = 10.57/1.58 = 6.67

Why not better???

 12

Measure Work/Span Empirically
∙  cilkview -w ./qsort 50000000

 Work = 21593799861
 Span = 1261403043
 Burdened span = 1261600249
 Parallelism = 17.1189
 Burdened parallelism = 17.1162
 #Spawn = 50000000
 #Atomic instructions = 14

∙  cilkview -w ./qsort 500000

 Work = 178835973
 Span = 14378443
 Burdened span = 14525767
 Parallelism = 12.4378
 Burdened parallelism = 12.3116
 #Spawn = 500000
 #Atomic instructions = 8

workspan ws;
ws.start();
sample_qsort(a, a + n);
ws.stop();
ws.report(std::cout);

 13

Analyzing Quicksort

13

14

21

32

31 45
56

78

34

Quicksort recursively

13 14 21 32 31 34 45 56 78

13 14 21 32 31 34 45 56 78

Assume we have a “great” partitioner
that always generates two balanced sets

 14

∙  Work:
T1(n) = 2T1(n/2) + Θ(n)
2T1(n/2) = 4T1(n/4) + 2 Θ(n/2)
….
….
n/2 T1(2) = n T1(1) + n/2 Θ(2)

T1(n) = Θ(n lg n)

∙  Span recurrence: T∞(n) = T∞(n/2) + Θ(n)
 Solves to T∞(n) = Θ(n)

Analyzing Quicksort

+

 15

Analyzing Quicksort

∙  Indeed, partitioning (i.e., constructing the
array S1 = {x ε S-{v} | x ≤ v}) can be
accomplished in parallel in time Θ(lg n)

∙  Which gives a span T∞(n) = Θ(lg2n)
∙  And parallelism Θ(n/lg n)

∙  Basic parallel qsort can be found under
$cilkpath/examples/qsort

Parallelism: T1(n)
T∞(n)

= Θ(lg n) Not much !

Way better !

 16

The Master Method (Optional)

The Master Method for solving recurrences
applies to recurrences of the form

T(n) = a T(n/b) + f(n) ,
where a ≥ 1, b > 1, and f is asymptotically
positive.

IDEA: Compare nlogba with f(n) .

* The base case is always T(n) = Θ(1) for sufficiently small n.

*

 17

Master Method — CASE 1

nlogba ≫ f(n)

T(n) = a T(n/b) + f(n)

Specifically, f(n) = O(nlogba – ε) for some const ε > 0

Solution: T(n) = Θ(nlogba)

Strassen matrix multiplication: a =7, b=2, f(n) = n2  
 è T1(n) = Θ(nlog27) = O(n2.81)

 18

Master Method — CASE 2

nlogba ≈ f(n)

Specifically, f(n) = Θ(nlogbalgkn) for some const k ≥ 0

Solution: T(n) = Θ(nlogbalgk+1n))

T(n) = a T(n/b) + f(n)

quicksort work: a=2, b=2, f(n)=n, k=0 è T1(n) = Θ(n lg n)  
 qsort span: a=1, b=2, f(n)=lg n, k=1 è T∞(n) = Θ(lg2n)

 19

Master Method — CASE 3

nlogba ≪ f(n)

Specifically, f(n) = Ω(nlogba + ε) for some const ε>0,  
 and (regularity) a�f(n/b) ≤ c�f(n) for some const c<1

Solution: T(n) = Θ(f(n))

T(n) = a T(n/b) + f(n)

Eg: qsort span (bad version): a=1, b=2, f(n)=n è T∞(n) = Θ(n)

 20

Master Method Summary

CASE 1: f (n) = O(nlogba – ε), constant ε > 0
⇒ T(n) = Θ(nlogba) .

CASE 2: f (n) = Θ(nlogba lgkn), constant k ≥ 0
⇒ T(n) = Θ(nlogba lgk+1n) .

CASE 3: f (n) = Ω(nlogba + ε), constant ε > 0,
and regularity condition
⇒ T(n) = Θ(f(n)) .

T(n) = a T(n/b) + f(n)

 21

Potential Parallelism

Because the Span Law dictates
that TP ≥ T∞, the maximum
possible speedup given T1 and T∞ is

T1/T∞ = potential parallelism

 = the average  
 amount of work  
 per step along  
 the span.

 22

Three Tips on Parallelism
1. Minimize span to maximize parallelism. Try to

generate 10 times more parallelism than
processors for near-perfect linear speedup.

2.  If you have plenty of parallelism, try to trade
some if it off for reduced work overheads.

3.  Use divide-and-conquer recursion or parallel
loops rather than spawning one small thing off
after another.

for (int i=0; i<n; ++i) {
 cilk_spawn foo(i);
}
cilk_sync;

cilk_for (int i=0; i<n; ++i) {
 foo(i);
}

Do this:

Not this:

 23

Three Tips on Overheads

1.  Make sure that work/#spawns is not too small.
•  Coarsen by using function calls and inlining near

the leaves of recursion rather than spawning.

2.  Parallelize outer loops if you can, not inner loops
(otherwise, you’ll have high burdened parallelism,
which includes runtime and scheduling overhead).  
If you must parallelize an inner loop, coarsen it, but
not too much.
•  500 iterations should be plenty coarse for even

the most meager loop. Fewer iterations should
suffice for “fatter” loops.

3.  Use reducers only in sufficiently fat loops.

 24

Scheduling

∙ Cilk allows the
programmer to express
potential parallelism in
an application.
∙ The Cilk scheduler

maps strands onto
processors dynamically
at runtime.
∙ Since on-line

schedulers are
complicated, we’ll
explore the ideas with
an off-line scheduler.

Network

…

Memory I/O

P
P

P

P

$ $ $

A strand is a sequence of

instructions that doesn’t contain
any parallel constructs

 25

Greedy Scheduling

IDEA: Do as much as possible on every step.
Definition: A strand is ready
if all its predecessors have
executed.

 26

Greedy Scheduling

IDEA: Do as much as possible on every step.
Definition: A strand is ready
if all its predecessors have
executed.
Complete step
∙ ≥ P strands ready.
∙ Run any P.

P = 3

 27

Greedy Scheduling

IDEA: Do as much as possible on every step.
Definition: A strand is ready
if all its predecessors have
executed.
Complete step
∙ ≥ P strands ready.
∙ Run any P.

P = 3

Incomplete step
∙ < P strands ready.
∙ Run all of them.

 28

Theorem : Any greedy scheduler achieves
TP ≤ T1/P + T∞.

Analysis of Greedy

Proof.
∙ # complete steps ≤ T1/P,

since each complete step
performs P work.

∙ # incomplete steps ≤ T∞,
since each incomplete step
reduces the span of the
unexecuted dag by 1. ■

P = 3

 29

Optimality of Greedy

Theorem. Any greedy scheduler achieves
within a factor of 2 of optimal.
Proof. Let TP* be the execution time
produced by the optimal scheduler.
Since TP* ≥ max{T1/P, T∞} by the Work and
Span Laws, we have

 TP ≤ T1/P + T∞
 ≤ 2·max{T1/P, T∞}
 ≤ 2TP* . ■

 30

Linear Speedup

Theorem. Any greedy scheduler
achieves near-perfect linear
speedup whenever P ≪ T1/T∞.
Proof. Since P ≪ T1/T∞ is equivalent
to T∞ ≪ T1/P, the Greedy Scheduling
Theorem gives us

 TP ≤ T1/P + T∞
 ≈ T1/P .

Thus, the speedup is T1/TP ≈ P. ■

Definition. The quantity T1/PT∞ is
called the parallel slackness.

 31

Each worker (processor) maintains a work deque of
ready strands, and it manipulates the bottom of the
deque like a stack

P

spawn
call
call
call

P

spawn
spawn

P P

call
spawn

call

spawn
call call

Call!

Cilk Runtime System

 32

P

spawn
call
call
call

spawn

P

spawn
spawn

P P

call
spawn

call

spawn
call call

Spawn!

Each worker (processor) maintains a work deque of
ready strands, and it manipulates the bottom of the
deque like a stack

Cilk Runtime System

 33

P

spawn
call
call
call

spawn
spawn

P

spawn
spawn

P P

call
spawn

call
call

spawn
call

spawn
call

Spawn! Spawn! Call!

Each worker (processor) maintains a work deque of
ready strands, and it manipulates the bottom of the
deque like a stack

Cilk Runtime System

 34

spawn
call

P

spawn
call
call
call

spawn

P

spawn

P P

call
spawn

call
call

spawn
call

spawn
spawn

Return!

Each worker (processor) maintains a work deque of
ready strands, and it manipulates the bottom of the
deque like a stack

Cilk Runtime System

 35

spawn

P

spawn
call
call
call

spawn

P

spawn

P P

call
spawn

call
call

spawn
call

spawn
spawn

Return!

Each worker (processor) maintains a work deque of
ready strands, and it manipulates the bottom of the
deque like a stack

Cilk Runtime System

 36

P

spawn
call
call
call

spawn

P

spawn

P P

call
spawn

call
call

spawn
call

spawn
spawn

When a worker runs out of work, it steals
from the top of a random victim’s deque.

Steal!

Each worker (processor) maintains a work deque of
ready strands, and it manipulates the bottom of the
deque like a stack

Cilk Runtime System

 37

P

spawn
call
call
call

spawn

P

spawn

P P

call
spawn

call
call

spawn
call

spawn
spawn

Steal!

Each worker (processor) maintains a work deque of
ready strands, and it manipulates the bottom of the
deque like a stack

Cilk Runtime System

When a worker runs out of work, it steals
from the top of a random victim’s deque.

 38

P

spawn
call
call
call

spawn

P

spawn

P P

call
spawn

call
call

spawn
call

spawn
spawn

Each worker (processor) maintains a work deque of
ready strands, and it manipulates the bottom of the
deque like a stack

Cilk Runtime System

When a worker runs out of work, it steals
from the top of a random victim’s deque.

 39

P

spawn
call
call
call

spawn

P

spawn

P P

call
spawn

call
call

spawn
call

spawn
spawn

Spawn!

spawn

Each worker (processor) maintains a work deque of
ready strands, and it manipulates the bottom of the
deque like a stack

Cilk Runtime System

When a worker runs out of work, it steals
from the top of a random victim’s deque.

 40

P

spawn
call
call
call

spawn

P

spawn

P P

call
spawn

call
call

spawn
call

spawn
spawn

spawn

Each worker (processor) maintains a work deque of
ready strands, and it manipulates the bottom of the
deque like a stack

Cilk Runtime System

When a worker runs out of work, it steals
from the top of a random victim’s deque.

 41

P

spawn
call
call
call

spawn

P

spawn

P P

call
spawn

call
call

spawn
call

spawn
spawn

spawn

Theorem: With sufficient parallelism, workers
steal infrequently ⇒ linear speed-up.

Each worker (processor) maintains a work deque of
ready strands, and it manipulates the bottom of the
deque like a stack

Cilk Runtime System

