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CS 140 :  Feb 19, 2015 
Cilk Scheduling & Applications 

 
•   Analyzing quicksort 
•   Optional:  Master method for solving 
       divide-and-conquer recurrences 
•   Tips on parallelism and overheads 
•   Greedy scheduling and parallel slackness 
•   Cilk runtime 

Thanks to Charles E. Leiserson for some of these slides 
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Potential Parallelism 

Because the Span Law dictates 
that TP ≥ T∞, the maximum 
possible speedup given T1 and T∞ is 
 
T1/T∞  = potential parallelism 

 = the average  
  amount of work  
  per step along  
  the span. 
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Sorting   
∙  Sorting is possibly the most frequently 

executed operation in computing! 
∙  Quicksort is the fastest sorting algorithm 

in practice with an average running time 
of O(N log N), (but O(N2) worst case 
performance) 

∙  Mergesort has worst case performance of 
O(N log N) for sorting N elements 

∙  Both based on the recursive divide-and-
conquer paradigm  



  4 

QUICKSORT 
∙  Basic Quicksort sorting an array S works 

as follows: 
§  If the number of elements in S is 0 or 1, then 

return. 
§  Pick any element v in S. Call this pivot. 
§  Partition the set S-{v} into two disjoint 

groups: 
♦  S1 = {x ε S-{v} | x ≤ v} 
♦  S2 = {x ε S-{v} | x ≥ v} 

§  Return quicksort(S1) followed by v followed by 
quicksort(S2) 
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QUICKSORT 
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Quicksort recursively 
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Parallelizing Quicksort 
∙  Serial Quicksort sorts an array S as 

follows: 
§  If the number of elements in S is 0 or 1, then 

return. 
§  Pick any element v in S. Call this pivot. 
§  Partition the set S-{v} into two disjoint 

groups: 
♦  S1 = {x ε S-{v} | x ≤ v} 
♦  S2 = {x ε S-{v} | x ≥ v} 

§  Return quicksort(S1) followed by v followed by 
quicksort(S2) 
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template <typename T> 

void qsort(T begin, T end) {  

 

  if (begin != end) { 

 

     T middle = partition(begin, end, …); 

 

     cilk_spawn qsort(begin, middle);  

     qsort(max(begin + 1, middle), end);   // No cilk_spawn on this line!  

     cilk_sync; 

  } 

} 

Parallel Quicksort (Basic) 
• The second recursive call to qsort does not 
depend on the results of the first recursive call 
• We have an opportunity to speed up the call by 
making both calls in parallel.  
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Actual Performance 
∙  ./qsort 500000 -cilk_set_worker_count 1 

>> 0.083 seconds 
∙  ./qsort 500000 -cilk_set_worker_count 16 

>> 0.014 seconds 
∙  Speedup = T1/T16 = 0.083/0.014 = 5.93 
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Actual Performance 
∙  ./qsort 500000 -cilk_set_worker_count 1 

>> 0.083 seconds 
∙  ./qsort 500000 -cilk_set_worker_count 16 

>> 0.014 seconds 
∙  Speedup = T1/T16 = 0.083/0.014 = 5.93 

∙  ./qsort 50000000 -cilk_set_worker_count 1 
>> 10.57 seconds 

∙  ./qsort 50000000 -cilk_set_worker_count 16 
>> 1.58 seconds 

∙  Speedup = T1/T16 = 10.57/1.58 = 6.67 

 
 
 

Why not better??? 
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Measure Work/Span Empirically 
∙  cilkview -w ./qsort 50000000 

   Work = 21593799861 
     Span = 1261403043 
     Burdened span = 1261600249 
     Parallelism = 17.1189 
     Burdened parallelism = 17.1162 
     #Spawn = 50000000 
     #Atomic instructions = 14 
 
∙  cilkview -w ./qsort 500000 

    Work = 178835973 
   Span = 14378443 
   Burdened span = 14525767 
   Parallelism = 12.4378 
    Burdened parallelism = 12.3116 
   #Spawn = 500000 
   #Atomic instructions = 8 

 

workspan ws; 
ws.start(); 
sample_qsort(a, a + n); 
ws.stop(); 
ws.report(std::cout); 
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Analyzing Quicksort 
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Quicksort recursively 

13 14 21 32 31 34  45 56 78 

13 14 21 32 31 34  45 56 78 

Assume we have a “great” partitioner 
that always generates two balanced sets 
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∙  Work: 
T1(n) = 2T1(n/2) + Θ(n) 
2T1(n/2) = 4T1(n/4) + 2 Θ(n/2) 
…. 
…. 
n/2 T1(2) = n T1(1) + n/2 Θ(2) 

T1(n)  =   Θ(n lg n) 
 

∙  Span recurrence: T∞(n) = T∞(n/2) + Θ(n) 
 Solves to   T∞(n) = Θ(n)  

 
 

Analyzing Quicksort 

+ 
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Analyzing Quicksort 

∙  Indeed, partitioning (i.e., constructing the 
array S1 = {x ε S-{v} | x ≤ v}) can be 
accomplished in parallel in time Θ(lg n) 

∙  Which gives a span T∞(n) = Θ(lg2n ) 
∙  And parallelism Θ(n/lg n) 

∙  Basic parallel qsort can be found under 
$cilkpath/examples/qsort  

Parallelism: T1(n) 
T∞(n) 

= Θ(lg n) Not much ! 

Way better ! 
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The Master Method (Optional) 

The Master Method for solving recurrences 
applies to recurrences of the form 

T(n) = a T(n/b) + f(n) ,  
where a ≥ 1, b > 1, and f is asymptotically 
positive. 

IDEA: Compare nlogba with f(n) . 

* The base case is always T(n) = Θ(1) for sufficiently small n. 

* 
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Master Method — CASE 1 

nlogba ≫ f(n) 

T(n) = a T(n/b) + f(n) 

Specifically,  f(n) = O(nlogba – ε) for some const ε > 0 
 

Solution:  T(n) = Θ(nlogba) 

Strassen matrix multiplication:  a =7, b=2, f(n) = n2  
                                              è T1(n) = Θ(nlog27) = O(n2.81) 
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Master Method — CASE 2 

nlogba ≈ f(n) 

Specifically, f(n) = Θ(nlogbalgkn) for some const k ≥ 0 
 

Solution:  T(n) = Θ(nlogbalgk+1n))  

T(n) = a T(n/b) + f(n) 

quicksort work:  a=2, b=2, f(n)=n, k=0 è T1(n) = Θ(n lg n)  
  qsort span:  a=1, b=2,  f(n)=lg n, k=1 è T∞(n) = Θ(lg2n) 
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Master Method — CASE 3 

nlogba ≪ f(n) 

Specifically, f(n) = Ω(nlogba + ε) for some const ε>0,   
 and (regularity)  a�f(n/b) ≤ c�f(n) for some const  c<1 
 

Solution:  T(n) = Θ(f(n)) 

T(n) = a T(n/b) + f(n) 

Eg: qsort span (bad version): a=1, b=2, f(n)=n è T∞(n) = Θ(n) 
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Master Method Summary 

CASE 1: f (n) = O(nlogba – ε), constant ε > 0 
⇒ T(n) = Θ(nlogba) . 

CASE 2: f (n) = Θ(nlogba lgkn), constant k ≥ 0  
⇒ T(n) = Θ(nlogba lgk+1n) . 

CASE 3: f (n) = Ω(nlogba + ε), constant ε > 0, 
and regularity condition 
⇒ T(n) = Θ(f(n)) . 

T(n) = a T(n/b) + f(n) 
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Potential Parallelism 

Because the Span Law dictates 
that TP ≥ T∞, the maximum 
possible speedup given T1 and T∞ is 
 
T1/T∞  = potential parallelism 

 = the average  
  amount of work  
  per step along  
  the span. 
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Three Tips on Parallelism 
1. Minimize  span to maximize parallelism.  Try to 

generate 10 times more parallelism than 
processors for near-perfect linear speedup. 

2.  If you have plenty of parallelism, try to trade 
some if it off for reduced work overheads. 

3.  Use divide-and-conquer recursion or parallel 
loops rather than spawning one small thing off 
after another. 

for (int i=0; i<n; ++i) { 
    cilk_spawn foo(i); 
} 
cilk_sync; 

cilk_for (int i=0; i<n; ++i) { 
    foo(i); 
} 

Do this: 

Not this: 
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Three Tips on Overheads 

1.  Make sure that work/#spawns is not too small. 
•  Coarsen by using function calls and inlining near 

the leaves of recursion rather than spawning. 

2.  Parallelize outer loops if you can, not inner loops 
(otherwise, you’ll have high burdened parallelism, 
which includes runtime and scheduling overhead).   
If you must parallelize an inner loop, coarsen it, but 
not too much.   
•  500 iterations should be plenty coarse for even 

the most meager loop. Fewer iterations should 
suffice for “fatter” loops. 

3.  Use reducers only in sufficiently fat loops. 
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Scheduling 

∙ Cilk allows the 
programmer to express 
potential parallelism in 
an application. 
∙ The Cilk scheduler 

maps strands onto 
processors dynamically 
at runtime. 
∙ Since on-line 

schedulers are 
complicated, we’ll 
explore the ideas with 
an off-line  scheduler. 

Network 

… 

Memory I/O 

P 
P 

 
P 

 
P 

$ $ $ 

 
A strand  is a sequence of  

instructions that doesn’t contain  
any parallel constructs 
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Greedy Scheduling 

IDEA: Do as much as possible on every step. 
Definition: A strand is ready  
if all its predecessors have 
executed. 
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Greedy Scheduling 

IDEA: Do as much as possible on every step. 
Definition: A strand is ready  
if all its predecessors have 
executed. 
Complete step  
∙ ≥ P strands ready. 
∙ Run any P. 

P = 3 
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Greedy Scheduling 

IDEA: Do as much as possible on every step. 
Definition: A strand is ready  
if all its predecessors have 
executed. 
Complete step  
∙ ≥ P strands ready. 
∙ Run any P. 

P = 3 

Incomplete step  
∙ < P strands ready. 
∙ Run all of them. 
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Theorem :  Any greedy scheduler achieves 
TP ≤ T1/P + T∞. 

Analysis of Greedy 

Proof.  
∙ # complete steps ≤ T1/P, 

since each complete step 
performs P work. 

∙ # incomplete steps ≤ T∞, 
since each incomplete step 
reduces the span of the 
unexecuted dag by 1.  ■ 

P = 3 
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Optimality of Greedy 

Theorem.  Any greedy scheduler achieves 
within a factor of 2 of optimal. 
Proof.  Let TP* be the execution time 
produced by the optimal scheduler.   
Since TP* ≥ max{T1/P, T∞} by the Work and 
Span Laws, we have 

 TP  ≤ T1/P + T∞  
  ≤ 2·max{T1/P, T∞} 
  ≤ 2TP* .  ■ 
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Linear Speedup 

Theorem.  Any greedy scheduler 
achieves near-perfect linear 
speedup whenever P ≪ T1/T∞.  
Proof.  Since P ≪ T1/T∞ is equivalent 
to T∞ ≪ T1/P, the Greedy Scheduling 
Theorem gives us  

 TP  ≤ T1/P + T∞ 
  ≈ T1/P . 

Thus, the speedup is T1/TP ≈ P.  ■ 

Definition. The quantity T1/PT∞ is 
called the parallel slackness. 
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Each worker (processor) maintains a work deque  of 
ready strands, and it manipulates the bottom of the 
deque like a stack 

P 

spawn 
call 
call 
call 

P 

spawn 
spawn 

P P 

call 
spawn 

call 

spawn 
call call 

Call! 

Cilk Runtime System 



  32 

P 

spawn 
call 
call 
call 

spawn 

P 

spawn 
spawn 

P P 

call 
spawn 

call 

spawn 
call call 

Spawn! 

Each worker (processor) maintains a work deque  of 
ready strands, and it manipulates the bottom of the 
deque like a stack 

Cilk Runtime System 
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P 

spawn 
call 
call 
call 

spawn 
spawn 
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spawn 
spawn 

P P 

call 
spawn 

call 
call 

spawn 
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spawn 
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Spawn! Spawn! Call! 

Each worker (processor) maintains a work deque  of 
ready strands, and it manipulates the bottom of the 
deque like a stack 

Cilk Runtime System 
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spawn 
call 
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spawn 
call 
call 
call 

spawn 

P 
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spawn 

call 
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spawn 
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spawn 
spawn 

Return! 

Each worker (processor) maintains a work deque  of 
ready strands, and it manipulates the bottom of the 
deque like a stack 

Cilk Runtime System 
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spawn 

P 

spawn 
call 
call 
call 

spawn 
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spawn 
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spawn 
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spawn 
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spawn 
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Return! 

Each worker (processor) maintains a work deque  of 
ready strands, and it manipulates the bottom of the 
deque like a stack 

Cilk Runtime System 
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P 

spawn 
call 
call 
call 

spawn 

P 

spawn 
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call 
spawn 
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spawn 
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spawn 
spawn 

When a worker runs out of work, it steals 
from the top of a random  victim’s deque. 

Steal! 

Each worker (processor) maintains a work deque  of 
ready strands, and it manipulates the bottom of the 
deque like a stack 

Cilk Runtime System 
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Steal! 

Each worker (processor) maintains a work deque  of 
ready strands, and it manipulates the bottom of the 
deque like a stack 

Cilk Runtime System 

When a worker runs out of work, it steals 
from the top of a random  victim’s deque. 
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Each worker (processor) maintains a work deque  of 
ready strands, and it manipulates the bottom of the 
deque like a stack 

Cilk Runtime System 

When a worker runs out of work, it steals 
from the top of a random  victim’s deque. 
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Spawn! 

spawn 

Each worker (processor) maintains a work deque  of 
ready strands, and it manipulates the bottom of the 
deque like a stack 

Cilk Runtime System 

When a worker runs out of work, it steals 
from the top of a random  victim’s deque. 
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Each worker (processor) maintains a work deque  of 
ready strands, and it manipulates the bottom of the 
deque like a stack 

Cilk Runtime System 

When a worker runs out of work, it steals 
from the top of a random  victim’s deque. 
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P 
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call 
call 
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spawn 

Theorem:  With sufficient parallelism, workers 
steal infrequently ⇒ linear speed-up. 

Each worker (processor) maintains a work deque  of 
ready strands, and it manipulates the bottom of the 
deque like a stack 

Cilk Runtime System 


