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The middleware of scientific computing 

Computers 

Continuous 
physical modeling 

Linear algebra Ax = b 



Example:  The Temperature Problem 

 

•  A cabin in the snow 
•  Wall temperature is 0°, except for a radiator at 100° 
•  What is the temperature in the interior? 



Example:  The Temperature Problem 

 

•  A cabin in the snow (a square region J) 
•  Wall temperature is 0°, except for a radiator at 100° 
•  What is the temperature in the interior? 



The physics:  Poisson’s equation 
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Many Physical Models Use Stencil Computations 
•  PDE models of heat, fluids, structures, … 
•  Weather, airplanes, bridges, bones, … 
•  Game of Life 
•  many, many others 
 



Model Problem:  Solving Poisson’s equation for temperature 

•  Discrete approximation to Poisson’s equation: 

t(i) = ¼ ( t(i-k) + t(i-1) + t(i+1) + t(i+k) ) 

•  Intuitively:  
Temperature at a point is the average  

of the temperatures at surrounding points 
 

k = n1/2 



            Examples of stencils 

 
 

5-point stencil in 2D 
 (temperature problem) 

9-point stencil in 2D 
(game of Life)  

7-point stencil in 3D 
(3D temperature problem)  

25-point stencil in 3D 
(seismic modeling)  

… and many more 
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Parallelizing Stencil Computations 
•  Parallelism is simple 

•  Grid is a regular data structure 
•  Even decomposition across processors gives load balance 

•  Spatial locality limits communication cost 
•  Communicate only boundary values from neighboring patches 

•  Communication volume     
•  v = total # of boundary cells between patches 
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Two-dimensional block decomposition 
•  n mesh cells, p processors 
•  Each processor has a patch of n/p cells 
•  Block row (or block col) layout:     v = 2 * p * sqrt(n) 
•  2-dimensional block layout:          v = 4 * sqrt(p) * sqrt(n) 



Detailed complexity measures for data movement I:     
                   Latency/Bandwidth Model 
 
 

Moving data between processors by message-passing 
 

•  Machine parameters: 
•   α   or   tstartup      latency (message startup time in seconds)  
•   β    or  tdata        inverse bandwidth (in seconds per word) 

•  between nodes of Triton,  α ∼ 2.2 × 10-6  and  β ∼ 6.4 × 10-9 

•  Time to send & recv or bcast a message of w words:    α + w*β 

•  tcomm    total commmunication time 

•  tcomp     total computation time 

•  Total parallel time:  tp   =   tcomp  +  tcomm  
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Ghost Nodes in Stencil Computations 

Comm cost = α * (#messages) + β * (total size of messages) 

•  Keep a ghost copy of neighbors’ boundary nodes 
•  Communicate every second iteration, not every iteration 
•  Reduces #messages, not total size of messages 
•  Costs extra memory and computation 
•  Can also use more than one layer of ghost nodes 

Green = my interior nodes 

Yellow  
  = neighbors’ boundary nodes  
  = my “ghost nodes”  

Blue = my boundary nodes 
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Parallelism in  Regular meshes 
•  Computing a Stencil on a regular mesh 

•  need to communicate mesh points near boundary to neighboring 
processors. 

•  Often done with ghost regions 
•  Surface-to-volume ratio keeps communication down, but 

•  Still may be problematic in practice 

Implemented using 
“ghost” regions.  "

Adds memory overhead"



Model Problem:  Solving Poisson’s equation for temperature 

•  Discrete approximation to Poisson’s equation: 

t(i) = ¼ ( t(i-k) + t(i-1) + t(i+1) + t(i+k) ) 

•  Intuitively:  
Temperature at a point is the average  

of the temperatures at surrounding points 
 

k = n1/2 



Model Problem:  Solving Poisson’s equation for temperature 

•  For each i from 1 to n, except on the boundaries: 

– t(i-k) – t(i-1) + 4*t(i) – t(i+1) – t(i+k) = 0 
 

•  n equations in n unknowns:  A*t = b 
•  Each row of A has at most 5 nonzeros 

•  In three dimensions, k = n1/3  and each row has at most 7 nzs 

k = n1/2 



A Stencil Computation Solves a System of Linear Equations 
•  Solve Ax = b  for  x 
•  Matrix A, right-hand side vector b, unknown vector x 
•  A is sparse:  most of the entries are 0 



Conjugate gradient iteration to solve A*x=b 

•  One matrix-vector multiplication per iteration 
•  Two vector dot products per iteration 
•  Four n-vectors of working storage 

x0 =  0,    r0 =  b,    d0 =  r0     (these are all vectors)	


for  k  =  1, 2, 3, . . .	

	
αk =  (rT

k-1rk-1) / (dT
k-1Adk-1)    step length 

	
xk  =  xk-1 + αk dk-1                             approximate solution 

	
 rk =  rk-1 – αk Adk-1                           residual  =  b - Axk	

	
βk =  (rT

k rk) / (rT
k-1rk-1)            improvement	


	
dk  =  rk + βk dk-1                                  search direction	

	




Vector and matrix primitives for CG 
 
•  DAXPY:   v = α*v + β*w         (vectors v, w; scalars α, β) 

•  Broadcast  the scalars α and β, then independent  *  and  + 
•  comm volume = 2p, span = log n 

•  DDOT:     α = vT*w  = Σj v[j]*w[j]   (vectors v, w; scalar α) 
•  Independent  *,  then  +  reduction 
•  comm volume = p, span = log n 

•  Matvec:     v = A*w                      (matrix A, vectors v, w) 
•  The hard part 
•  But all you need is a subroutine to compute v from w 
•  Sometimes you don’t need to store A (e.g. temperature problem) 
•  Usually you do need to store A, but it’s sparse ... 



Broadcast and reduction 
•  Broadcast of 1 value to p processors in log p time 

•  Reduction of p values to 1 in log p time 
•  Takes advantage of associativity in +, *, min, max, etc. 

α 
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Add-reduction"

Broadcast"



Where’s the data (temperature problem)? 

•  The matrix A:  Nowhere!! 

•  The vectors x, b, r, d: 
•  Each vector is one value per stencil point 
•  Divide stencil points among processors, n/p points each 

•  How do you divide up the sqrt(n) by sqrt(n) region of points? 

•  Block row (or block col) layout:     v = 2 * p * sqrt(n) 

•  2-dimensional block layout:          v = 4 * sqrt(p) * sqrt(n) 
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How do you partition the sqrt(n) by sqrt(n) stencil points? 
•  First version: number the grid by rows 
•  Leads to a block row decomposition of the region 
•  v = 2 * p * sqrt(n) 

 



6.43 

How do you partition the sqrt(n) by sqrt(n) stencil points? 
•  Second version: 2D block decomposition 
•  Numbering is a little more complicated 
•  v = 4 * sqrt(p) * sqrt(n) 



Where’s the data (temperature problem)? 

•  The matrix A:  Nowhere!! 

•  The vectors x, b, r, d: 
•  Each vector is one value per stencil point 
•  Divide stencil points among processors, n/p points each 

•  How do you divide up the sqrt(n) by sqrt(n) region of points? 

•  Block row (or block col) layout:     v = 2 * p * sqrt(n) 

•  2-dimensional block layout:          v = 4 * sqrt(p) * sqrt(n) 



The Landscape of Ax = b Algorithms 

 

 
Pivoting 

LU 

 
GMRES, 

BiCGSTAB, 
… 

 
Cholesky 

 
Conjugate 
gradient 

 

 

Gaussian 
elimination Iterative 

Any 
matrix 

Symmetric 
positive 
definite 
matrix 

More Robust Less Storage 

More Robust 

More General 



Conjugate gradient in general 

•  CG can be used to solve any system Ax = b, if … 
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Conjugate gradient in general 

•  CG can be used to solve any system Ax = b, if … 
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•  Symmetric positive definite matrices occur a lot 
 in scientific computing & data analysis! 
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Conjugate gradient in general 

•  CG can be used to solve any system Ax = b, if … 
•  The matrix A is symmetric (aij = aji) … 
•  … and positive definite (all eigenvalues > 0). 

•  Symmetric positive definite matrices occur a lot 
 in scientific computing & data analysis! 

•  But usually the matrix isn’t just a stencil. 
•  Now we do need to store the matrix A.  Where’s the data? 

•  The key is to use graph data structures and algorithms. 



Vector and matrix primitives for CG 
 
•  DAXPY:   v = α*v + β*w         (vectors v, w; scalars α, β) 

•  Broadcast  the scalars α and β, then independent  *  and  + 
•  comm volume = 2p, span = log n 

•  DDOT:     α = vT*w  = Σj v[j]*w[j]   (vectors v, w; scalar α) 
•  Independent  *,  then  +  reduction 
•  comm volume = p, span = log n 

•  Matvec:     v = A*w                      (matrix A, vectors v, w) 
•  The hard part 
•  But all you need is a subroutine to compute v from w 
•  Sometimes you don’t need to store A (e.g. temperature problem) 
•  Usually you do need to store A, but it’s sparse ... 



Graphs and Sparse Matrices  

1    1                            1 

2    1     1                              1 

3                   1     1               1 

4           1             1          

5                          1       1        

6                                   1      1 

  1     2      3      4      5      6 

3

6

2

1

5

4

•  Sparse matrix is a representation of a (sparse) graph 

•  Matrix entries are edge weights 
•  Number of nonzeros per row is the vertex degree 

•  Edges represent data dependencies in matrix-vector 
multiplication 



Parallel Dense Matrix-Vector Product (Review) 
•  y = A*x, where A is a dense  matrix 

•  Layout:  
•  1D by rows 

•  Algorithm: 
Foreach processor j 
   Broadcast X(j) 
   Compute A(p)*x(j) 

•  A(i) is the n by n/p block row that processor Pi owns 
•  Algorithm uses the formula 

Y(i) = A(i)*X =  Σj A(i)*X(j) 

x 

y 

P0 

P1 

P2 

P3 

P0   P1    P2     P3 



•  Lay out matrix and vectors by rows 
•  y(i) = sum(A(i,j)*x(j)) 
•  Only compute terms with A(i,j) ≠ 0 

•  Algorithm 
Each processor i: 
   Broadcast x(i) 
   Compute y(i) = A(i,:)*x 

•  Optimizations 
•  Only send each proc the parts of x it needs, to reduce comm  
•  Reorder matrix for better locality by graph partitioning 
•  Worry about balancing number of nonzeros / processor,  

  if rows have very different nonzero counts 

x 

y 

P0 

P1 

P2 

P3 

P0   P1    P2     P3 

Parallel sparse matrix-vector product 



Data structure for sparse matrix A (stored by rows) 

•  Full matrix:    
•  2-dimensional array of real or 

complex numbers 

•  (nrows*ncols) memory 

31 0 53 

0 59 0 

41 26 0 

31 53 59 41 26 

1 3 2 1 2 

•  Sparse matrix:  
•  compressed row storage 

•  about (2*nzs + nrows) memory 



P0


P1


P2


Pn


5941 532631

23 131

Each processor stores: 
 

•   # of local nonzeros 
•   range of local rows 
•   nonzeros in CSR form 

Distributed-memory sparse matrix data structure 
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Irregular mesh: NASA Airfoil in 2D 
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Composite Mesh from a Mechanical Structure 
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Converting the Mesh to a Matrix 
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Adaptive Mesh Refinement (AMR) 

•   Adaptive mesh around an explosion"

•   Refinement done by calculating errors"
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Adaptive Mesh 

Shock waves in a gas dynamics using AMR (Adaptive Mesh Refinement) 
See: http://www.llnl.gov/CASC/SAMRAI/   
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Irregular mesh: Tapered Tube (Multigrid) 



Scientific computation and data analysis 
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physical modeling 
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Scientific computation and data analysis 
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physical modeling 

Linear algebra 

Discrete 
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Computers 



Scientific computation and data analysis 

Continuous 
physical modeling 

Linear algebra & graph theory 

Discrete 
structure analysis 

Computers 


