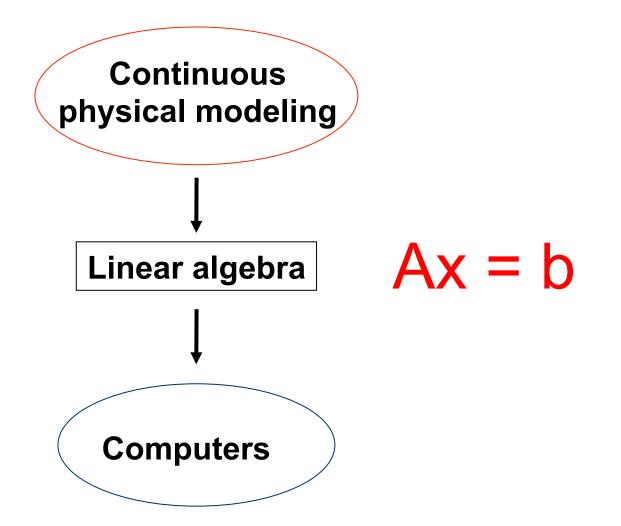
Conjugate gradients, sparse matrix-vector multiplication, graphs, and meshes

Thanks to Aydin Buluc, Umit Catalyurek, Alan Edelman, and Kathy Yelick for some of these slides.

The middleware of scientific computing

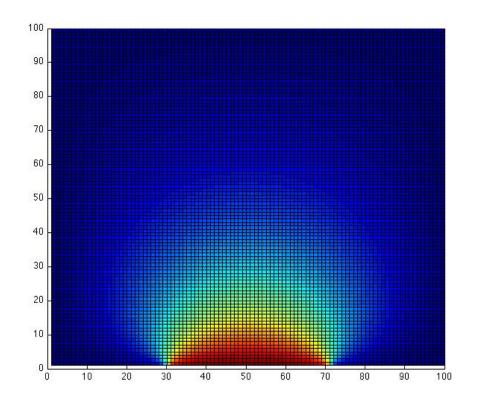


Example: The Temperature Problem

- A cabin in the snow
- Wall temperature is 0°, except for a radiator at 100°
- What is the temperature in the interior?

Example: The Temperature Problem

- A cabin in the snow (a square region ☺)
- Wall temperature is 0°, except for a radiator at 100°
- What is the temperature in the interior?



The physics: Poisson's equation

$$\nabla^2 u(x, y) \equiv \frac{\partial^2 u}{\partial x^2}(x, y) + \frac{\partial^2 u}{\partial y^2}(x, y) = f(x, y)$$

for $(x, y) \in \mathbb{R} = \{ (x, y) \mid a < x < b, c < y < d \}$, and
 $u(x, y) = g(x, y)$

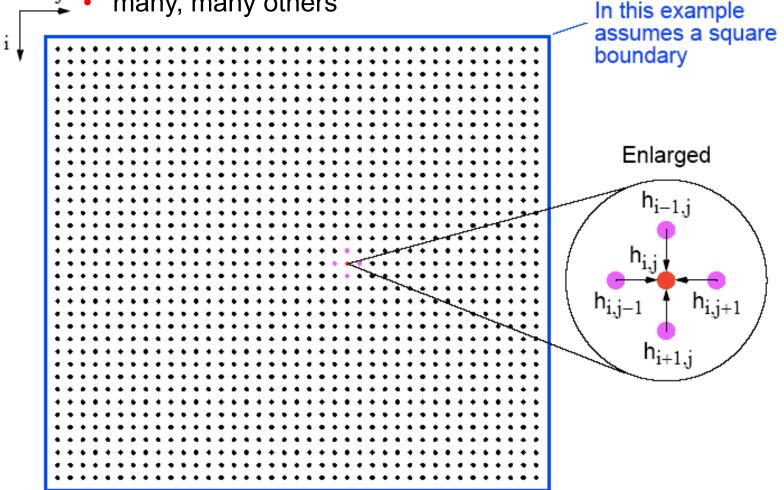
for (x, y) on the boundary of *R*.

Many Physical Models Use Stencil Computations

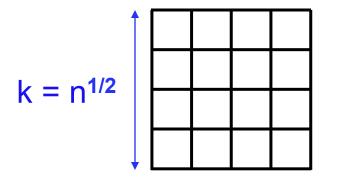
- PDE models of heat, fluids, structures, ... •
- Weather, airplanes, bridges, bones, ... •
- Game of Life •

J

many, many others



Model Problem: Solving Poisson's equation for temperature



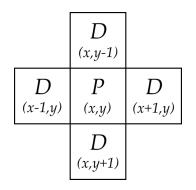
• Discrete approximation to Poisson's equation:

 $t(i) = \frac{1}{4} (t(i-k) + t(i-1) + t(i+1) + t(i+k))$

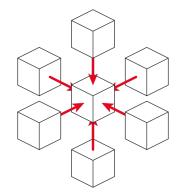
• Intuitively:

Temperature at a point is the average of the temperatures at surrounding points

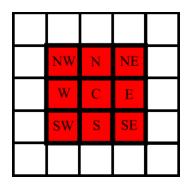
Examples of stencils

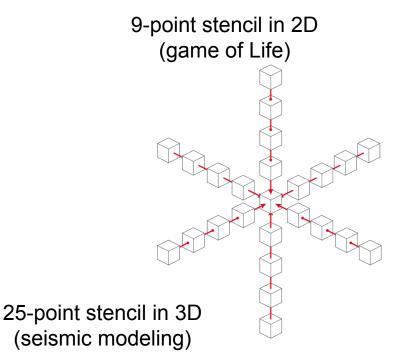


5-point stencil in 2D (temperature problem)



7-point stencil in 3D (3D temperature problem)

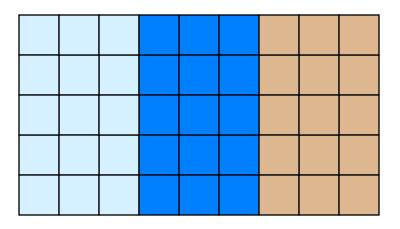




... and many more

Parallelizing Stencil Computations

- Parallelism is simple
 - Grid is a regular data structure
 - Even decomposition across processors gives load balance
- Spatial locality limits communication cost
 - Communicate only boundary values from neighboring patches



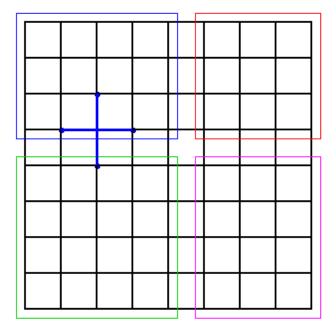
- Communication volume
 - v = total # of boundary cells between patches

Two-dimensional block decomposition

- n mesh cells, p processors
- Each processor has a patch of n/p cells
- Block row (or block col) layout: v = 2 * p * sqrt(n)
- 2-dimensional block layout: v = 4 * sqrt(p) * sqrt(n)

 $v = 2 \cdot p \cdot sqrt(n)$ $v = 4 \cdot sqrt(p) \cdot sqrt(n)$

Partitioning of the 2D Heat Equation



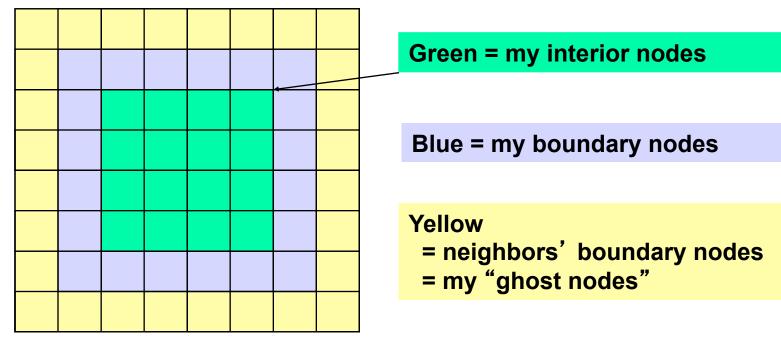
Detailed complexity measures for data movement I: Latency/Bandwidth Model

Moving data between processors by message-passing

- Machine parameters:
 - α or $t_{startup}$ latency (message startup time in seconds)
 - β or t_{data} inverse bandwidth (in seconds per word)
 - between nodes of Triton, $\alpha \sim 2.2 \times 10^{-6}$ and $\beta \sim 6.4 \times 10^{-9}$
- Time to send & recv or bcast a message of w words: $\alpha + w^*\beta$
- t_{comm} total communication time
- t_{comp} total computation time
- Total parallel time: $t_p = t_{comp} + t_{comm}$

Ghost Nodes in Stencil Computations

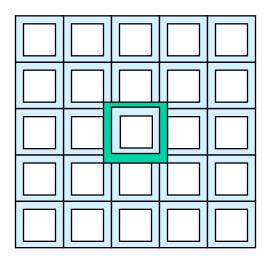
Comm cost = α * (#messages) + β * (total size of messages)



- Keep a ghost copy of neighbors' boundary nodes
- Communicate every second iteration, not every iteration
- Reduces #messages, not total size of messages
- Costs extra memory and computation
- Can also use more than one layer of ghost nodes 12

Parallelism in Regular meshes

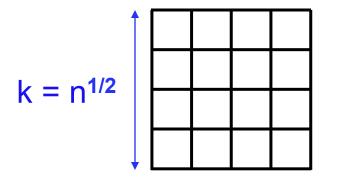
- Computing a Stencil on a regular mesh
 - need to communicate mesh points near boundary to neighboring processors.
 - Often done with ghost regions
 - Surface-to-volume ratio keeps communication down, but
 - Still may be problematic in practice



Implemented using "ghost" regions.

Adds memory overhead

Model Problem: Solving Poisson's equation for temperature



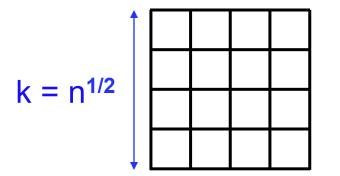
• Discrete approximation to Poisson's equation:

 $t(i) = \frac{1}{4} (t(i-k) + t(i-1) + t(i+1) + t(i+k))$

• Intuitively:

Temperature at a point is the average of the temperatures at surrounding points

Model Problem: Solving Poisson's equation for temperature



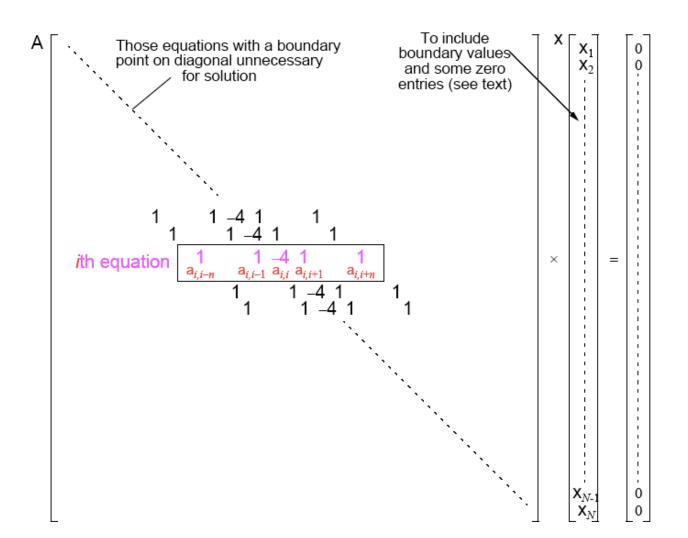
• For each i from 1 to n, except on the boundaries:

 $-t(i-k) - t(i-1) + 4^{*}t(i) - t(i+1) - t(i+k) = 0$

- n equations in n unknowns: A*t = b
- Each row of A has at most 5 nonzeros
- In three dimensions, $k = n^{1/3}$ and each row has at most 7 nzs

A Stencil Computation Solves a System of Linear Equations

- Solve Ax = b for x
- Matrix A, right-hand side vector b, unknown vector x
- A is *sparse*: most of the entries are 0



Conjugate gradient iteration to solve A*x=b

$$\begin{split} x_0 &= 0, \quad r_0 = b, \quad d_0 = r_0 \quad (\text{these are all vectors}) \\ \hline \textbf{for} \quad k &= 1, 2, 3, \dots \\ \alpha_k &= (r^T_{k-1}r_{k-1}) / (d^T_{k-1}Ad_{k-1}) \quad \text{step length} \\ x_k &= x_{k-1} + \alpha_k \, d_{k-1} \qquad \text{approximate solution} \\ r_k &= r_{k-1} - \alpha_k \, Ad_{k-1} \qquad \text{residual } = b - Ax_k \\ \beta_k &= (r^T_k r_k) / (r^T_{k-1}r_{k-1}) \qquad \text{improvement} \\ d_k &= r_k + \beta_k \, d_{k-1} \qquad \text{search direction} \end{split}$$

- One matrix-vector multiplication per iteration
- Two vector dot products per iteration
- Four n-vectors of working storage

Vector and matrix primitives for CG

• DAXPY: $v = \alpha^* v + \beta^* w$ (vectors v, w; scalars α , β)

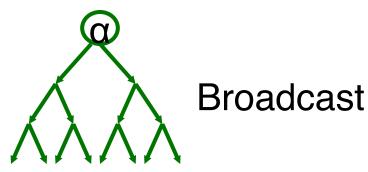
- Broadcast the scalars α and β , then independent * and +
- comm volume = 2p, span = log n
- DDOT: $\alpha = v^{T*}w = \sum_{j} v[j]^*w[j]$ (vectors v, w; scalar α)
 - Independent *, then + reduction
 - comm volume = p, span = log n
- Matvec: v = A*w

(matrix A, vectors v, w)

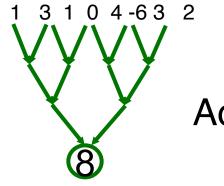
- The hard part
- But all you need is a subroutine to compute v from w
- Sometimes you don't need to store A (e.g. temperature problem)
- Usually you do need to store A, but it's sparse ...

Broadcast and reduction

• Broadcast of 1 value to p processors in log p time



- Reduction of p values to 1 in log p time
- Takes advantage of associativity in +, *, min, max, etc.



Add-reduction

Where's the data (temperature problem)?

- The matrix A: Nowhere!!
- The vectors x, b, r, d:
 - Each vector is one value per stencil point
 - Divide stencil points among processors, n/p points each
- How do you divide up the sqrt(n) by sqrt(n) region of points?
- Block row (or block col) layout: v = 2 * p * sqrt(n)
- 2-dimensional block layout: v = 4 * sqrt(p) * sqrt(n)

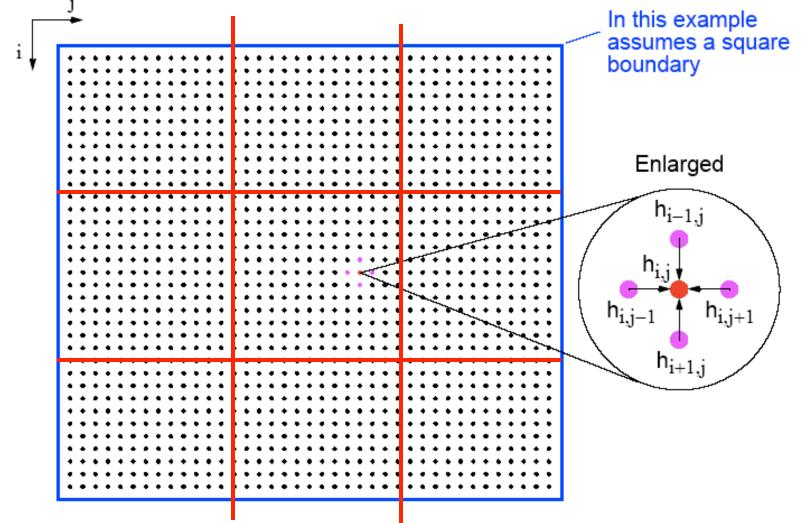
How do you partition the sqrt(n) by sqrt(n) stencil points?

- First version: number the grid by rows
- Leads to a block row decomposition of the region

```
v = 2 * p * sqrt(n)
                                                                                       In this example
                                                                                       assumes a square
i
                                                                                       boundary
                                                                                           Enlarged
                                                                                              h_{i-1,j}
                                                                                           h<sub>i,j</sub>.
                                                                                      h<sub>i,j-1</sub>
                                                                                                     h<sub>i,j+1</sub>
                                                                                             \mathsf{h}_{i+1,j}
```

How do you partition the sqrt(n) by sqrt(n) stencil points?

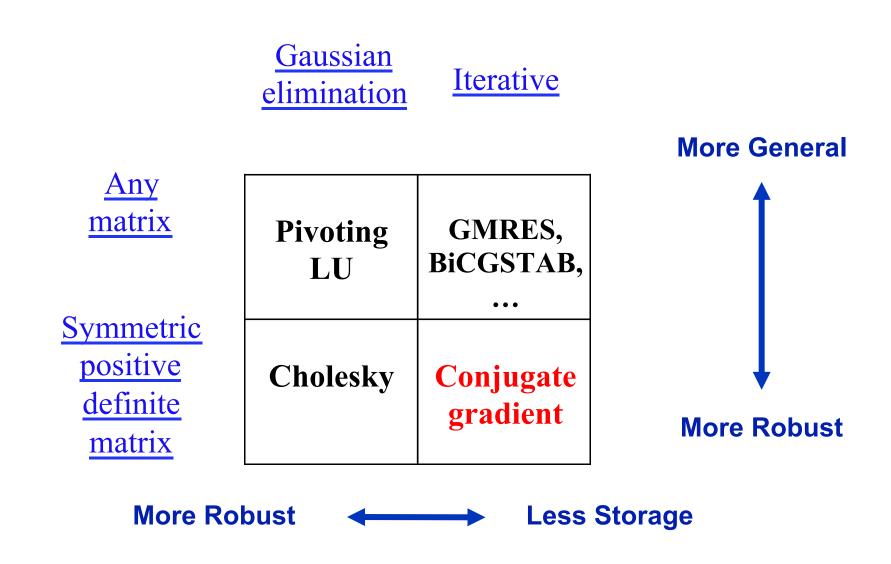
- Second version: 2D block decomposition
- Numbering is a little more complicated
- v = 4 * sqrt(p) * sqrt(n)



Where's the data (temperature problem)?

- The matrix A: Nowhere!!
- The vectors x, b, r, d:
 - Each vector is one value per stencil point
 - Divide stencil points among processors, n/p points each
- How do you divide up the sqrt(n) by sqrt(n) region of points?
- Block row (or block col) layout: v = 2 * p * sqrt(n)
- 2-dimensional block layout: v = 4 * sqrt(p) * sqrt(n)

The Landscape of Ax = b Algorithms



• CG can be used to solve *any* system Ax = b, if ...

- CG can be used to solve any system Ax = b, if ...
- The matrix A is symmetric (a_{ij} = a_{ji}) ...
- ... and *positive definite* (all eigenvalues > 0).

- CG can be used to solve any system Ax = b, if ...
- The matrix A is symmetric (a_{ii} = a_{ii}) ...
- ... and positive definite (all eigenvalues > 0).
- Symmetric positive definite matrices occur a lot in scientific computing & data analysis!

- CG can be used to solve any system Ax = b, if ...
- The matrix A is symmetric (a_{ii} = a_{ii}) ...
- ... and positive definite (all eigenvalues > 0).
- Symmetric positive definite matrices occur a lot in scientific computing & data analysis!
- But usually the matrix isn't just a stencil.
- Now we do need to store the matrix A. Where's the data?

- CG can be used to solve any system Ax = b, if ...
- The matrix A is symmetric (a_{ii} = a_{ii}) ...
- ... and positive definite (all eigenvalues > 0).
- Symmetric positive definite matrices occur a lot in scientific computing & data analysis!
- But usually the matrix isn't just a stencil.
- Now we do need to store the matrix A. Where's the data?
- The key is to use graph data structures and algorithms.

Vector and matrix primitives for CG

• DAXPY: $v = \alpha^* v + \beta^* w$ (vectors v, w; scalars α , β)

- Broadcast the scalars α and β , then independent * and +
- comm volume = 2p, span = log n
- DDOT: $\alpha = v^{T*}w = \sum_{j} v[j]^*w[j]$ (vectors v, w; scalar α)
 - Independent *, then + reduction
 - comm volume = p, span = log n
- Matvec: v = A*w

(matrix A, vectors v, w)

- The hard part
- But all you need is a subroutine to compute v from w
- Sometimes you don't need to store A (e.g. temperature problem)
- Usually you do need to store A, but it's sparse ...

Graphs and Sparse Matrices

• Sparse matrix is a representation of a (sparse) graph

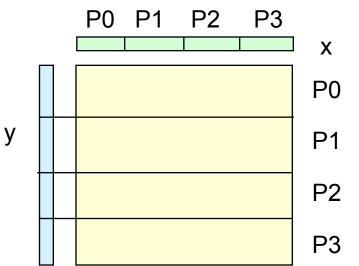


- Matrix entries are edge weights
- Number of nonzeros per row is the vertex degree
- Edges represent data dependencies in matrix-vector multiplication

Parallel Dense Matrix-Vector Product (Review)

• y = A*x, where A is a dense matrix

- Layout:
 - 1D by rows
- Algorithm: Foreach processor j Broadcast X(j) Compute A(p)*x(j)

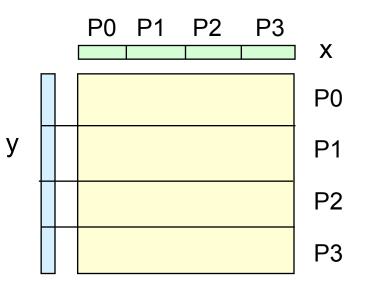


- A(i) is the n by n/p block row that processor Pi owns
- Algorithm uses the formula

 $Y(i) = A(i)^*X = \sum_j A(i)^*X(j)$

Parallel sparse matrix-vector product

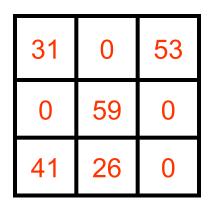
- Lay out matrix and vectors by rows
- y(i) = sum(A(i,j)*x(j))
- Only compute terms with A(i,j) ≠ 0
- <u>Algorithm</u>
 Each processor i:
 Broadcast x(i)
 Compute y(i) = A(i,:)*x

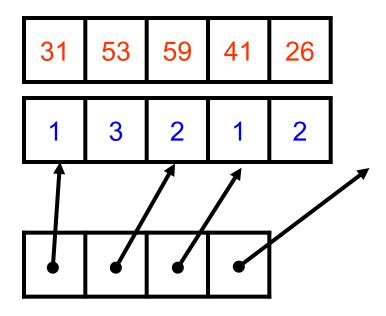


Optimizations

- Only send each proc the parts of x it needs, to reduce comm
- Reorder matrix for better locality by graph partitioning
- Worry about balancing number of nonzeros / processor, if rows have very different nonzero counts

Data structure for sparse matrix A (stored by rows)



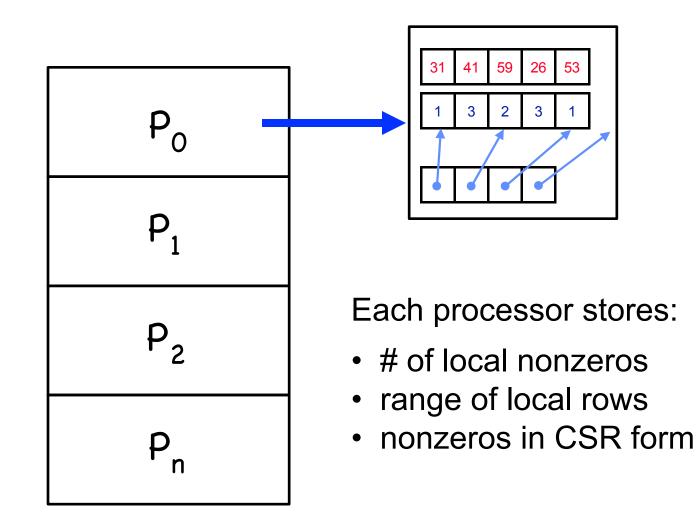


• Full matrix:

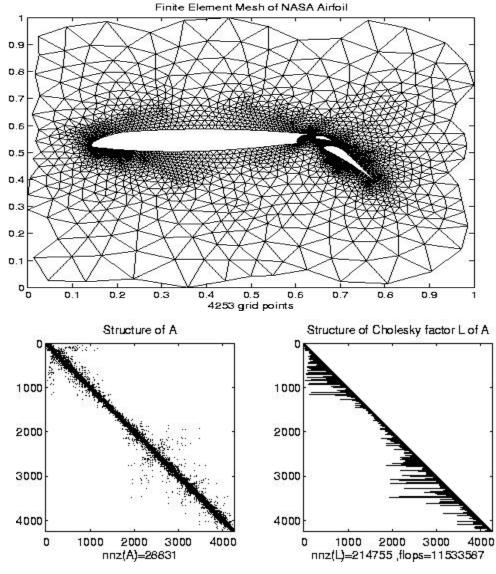
- 2-dimensional array of real or complex numbers
- (nrows*ncols) memory

- Sparse matrix:
 - compressed row storage
 - about (2*nzs + nrows) memory

Distributed-memory sparse matrix data structure

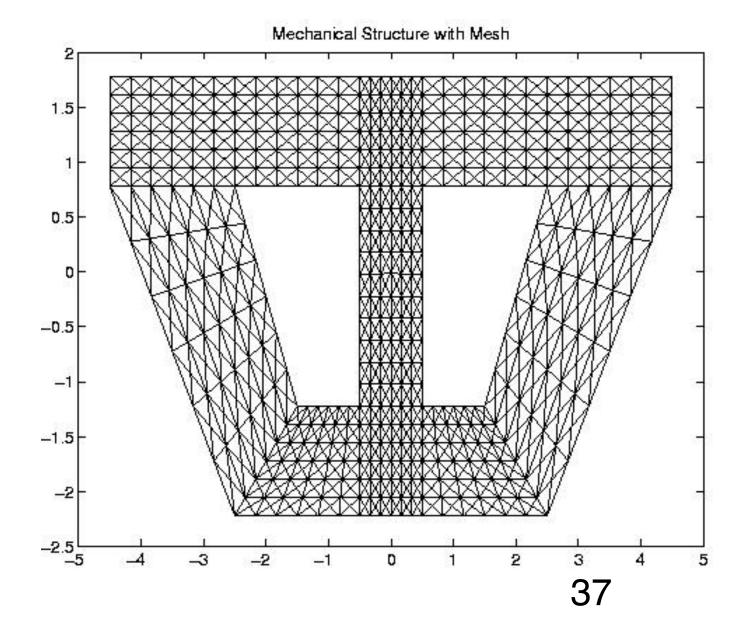


Irregular mesh: NASA Airfoil in 2D

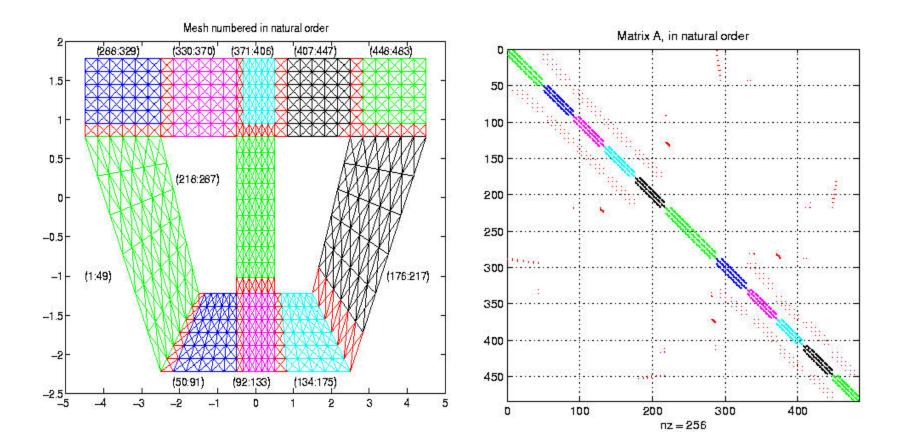


36

Composite Mesh from a Mechanical Structure

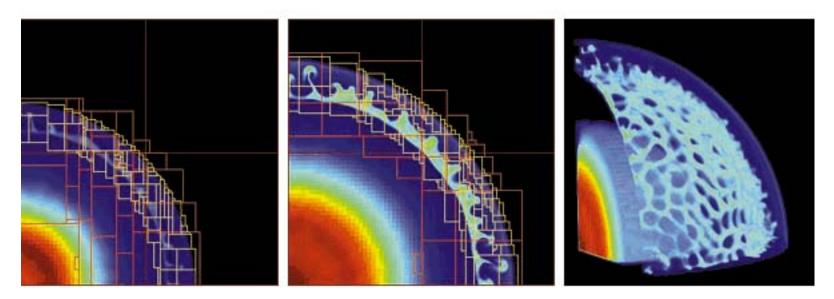


Converting the Mesh to a Matrix



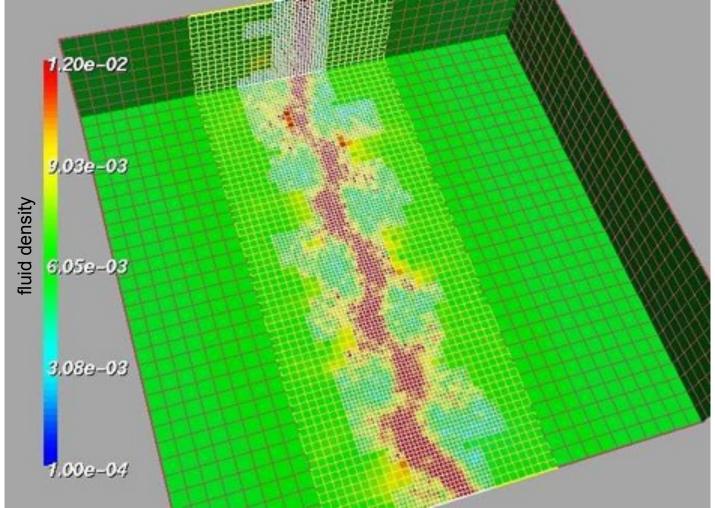
38

Adaptive Mesh Refinement (AMR)



- Adaptive mesh around an explosion
- Refinement done by calculating errors

Adaptive Mesh



Shock waves in a gas dynamics using AMR (Adaptive Mesh Refinement) See: <u>http://www.llnl.gov/CASC/SAMRAI/</u>

Irregular mesh: Tapered Tube (Multigrid)

Example of Prometheus meshes

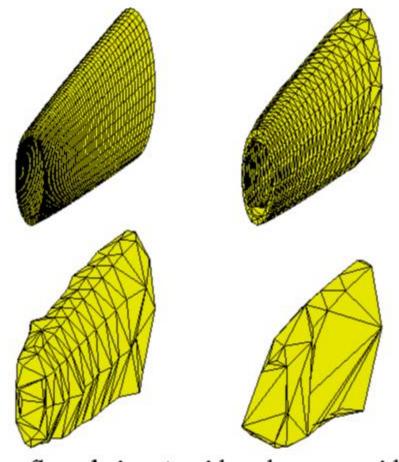
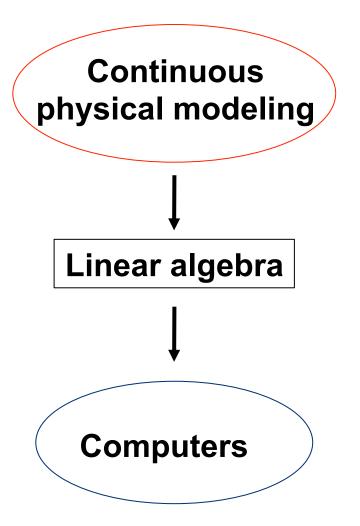
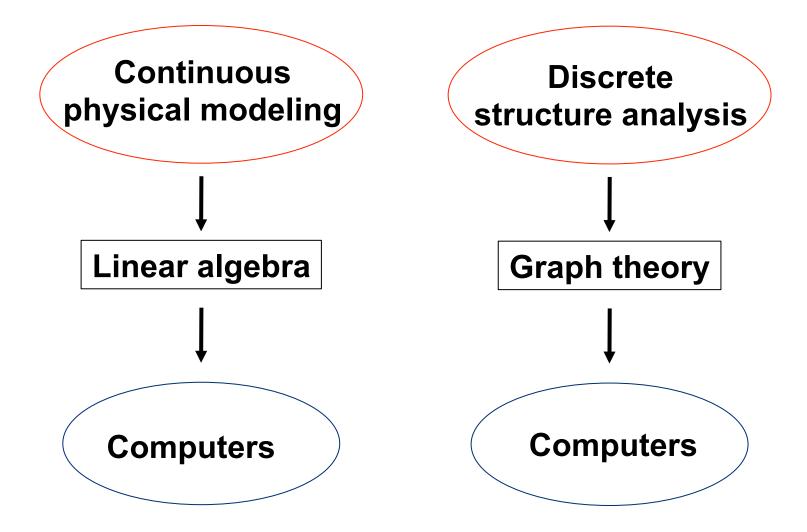


Figure 6 Sample input grid and coarse grids

Scientific computation and data analysis



Scientific computation and data analysis



Scientific computation and data analysis

