
CS 140: 
Sparse Matrix-Vector Multiplication  

and Graph Partitioning 



•  Lay out matrix and vectors by rows 
•  y(i) = sum(A(i,j)*x(j)) 
•  Only compute terms with A(i,j) ≠ 0 

•  Algorithm 
Each processor i: 
   Broadcast x(i) 
   Compute y(i) = A(i,:)*x 
Comm volume v = p*n (way too much!)  

•  Reducing communication volume 
1.  Only send each proc the parts of x it needs  
2.  Reorder matrix for better locality by graph partitioning 
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Parallel sparse matrix-vector product 



2D block decomposition for 5-point stencil 
•  n stencil cells, p processors 
•  Each processor has a patch of n/p cells 
•  Block row (or block col) layout:     v = 2 * p * sqrt(n) 
•  2-dimensional block layout:          v = 4 * sqrt(p) * sqrt(n) 



Graphs and Sparse Matrices  
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•  Sparse matrix is a representation of a (sparse) graph 

•  Matrix entries are edge weights 
•  Number of nonzeros per row is the vertex degree 

•  Edges represent data dependencies in matrix-vector 
multiplication 



Sparse Matrix Vector Multiplication 



Graph partitioning 

•  Assigns subgraphs to processors 
•  Determines parallelism and locality. 
•  Tries to make subgraphs all same size (load balance) 
•  Tries to minimize edge crossings (communication). 
•  Exact minimization is NP-complete. 

edge crossings = 6 edge crossings = 10 



Applications of graph partitioning 

•  Telephone network design 
•  The original application!  1970 algorithm due to Kernighan & Lin 

•  Sparse Matrix times Vector Multiplication 
•  To solve Ax = b, partial differential equations, eigenvalue problems, … 
•  N = {1,…,n},     (j,k) in E if  A(j,k) nonzero,  
•  WN(j) = #nonzeros in row j,   WE(j,k) = 1 

•  Data mining and clustering 
•  Physical Mapping of DNA 
•  VLSI Layout 
•  Sparse Gaussian Elimination 

•  Reorder matrix rows and columns to decrease “fill” in factors 

•  Load Balancing while Minimizing Communication 
•  . . . 



> load meshes 
> gplotg(Airfoil,Axy) 
> specdice(Airfoil,Axy,5) 
> meshdemo 
 
 
 

Graph partitioning demo 

spectral bisection 
32-way partition 



Partitioning by Repeated Bisection 

•  To partition into 2k parts, bisect graph recursively k times 
 



Umit V. Catalyurek 
 

Recursive Bisection 

•  Recursive bisection approach: 

•  Partition data into two sets. 

•  Recursively subdivide each set into two 
sets. 

•  Only minor modifications needed to allow 
P ≠ 2n.  

 



CS 240A:  Graph and hypergraph partitioning 
(excerpts) 

 
 

Thanks to Aydin Buluc, Umit Catalyurek,  
Alan Edelman, and Kathy Yelick  

for some of these slides. 
 
 

 The whole CS240A partitioning lecture is at  
http://cs.ucsb.edu/~gilbert/cs240a/slides/cs240a-partitioning.pdf 



Graph partitioning in practice 

•  Graph partitioning heuristics have been an active 
research area for many years, often motivated by 
partitioning for parallel computation.  

•  Some techniques: 
•  Iterative-swapping (Kernighan-Lin, Fiduccia-Matheysses) 
•  Spectral partitioning (uses eigenvectors of Laplacian matrix of graph) 
•  Geometric partitioning (for meshes with specified vertex coordinates) 
•  Breadth-first search (fast but dated) 

•  Many popular modern codes (e.g. Metis, Chaco, Zoltan) 
use multilevel iterative swapping 



Iterative swapping:  
Kernighan/Lin, Fiduccia/Mattheyses 
•  Take a initial partition and iteratively improve it 

•  Kernighan/Lin (1970), cost = O(|N|3) but simple 
•  Fiduccia/Mattheyses (1982), cost = O(|E|) but more complicated 

•  Start with a weighted graph and a partition A U B, 
where |A| = |B| 
•  T = cost(A,B) = Σ {weight(e): e connects nodes in A and B} 
•  Find subsets X of A and Y of B with |X| = |Y| 
•  Swapping X and Y should decrease cost: 

•  newA = A - X U Y    and    newB = B - Y U X 
•  newT = cost(newA , newB) < cost(A,B) 

•  Compute newT efficiently for many possible X and Y, 
(not time to do all possible), then choose smallest 



Simplified Fiduccia-Mattheyses:  Example (1) 

a 

h g 
f e 

d c 

b 
Red nodes are in Part1; 
black nodes are in Part2. 

The initial partition into two 
parts is arbitrary.  In this 
case it cuts 8 edges. 

The initial node gains are 
shown in red. 
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Nodes tentatively moved (and cut size after each pair): 

none (8);  



Simplified Fiduccia-Mattheyses:  Example (2) 

a 

h g 
f e 

d c 

b The node in Part1 with 
largest gain is g.  We 
tentatively move it to Part2 
and recompute the gains of 
its neighbors. 

Tentatively moved nodes 
are hollow circles.  After a 
node is tentatively moved 
its gain doesn’t matter any 
more. 
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Nodes tentatively moved (and cut size after each pair): 

none (8); g,  



Simplified Fiduccia-Mattheyses:  Example (3) 

a 

h g 
f e 

d c 

b The node in Part2 with 
largest gain is d.  We 
tentatively move it to Part1 
and recompute the gains of 
its neighbors. 

After this first tentative 
swap, the cut size is 4. 
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Nodes tentatively moved (and cut size after each pair): 

none (8); g, d (4);  



Simplified Fiduccia-Mattheyses:  Example (4) 

a 

h g 
f e 

d c 

b The unmoved node in 
Part1 with largest gain is f.  
We tentatively move it to 
Part2 and recompute the 
gains of its neighbors. -2 

-1 -2 

-2 

  -1 

Nodes tentatively moved (and cut size after each pair): 

none (8); g, d (4); f 



Simplified Fiduccia-Mattheyses:  Example (5) 

a 

h g 
f e 

d c 

b The unmoved node in 
Part2 with largest gain is c.  
We tentatively move it to 
Part1 and recompute the 
gains of its neighbors. 

After this tentative swap, 
the cut size is 5. 
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Nodes tentatively moved (and cut size after each pair): 

none (8); g, d (4); f, c (5);  



Simplified Fiduccia-Mattheyses:  Example (6) 

a 

h g 
f e 

d c 

b The unmoved node in 
Part1 with largest gain is b.  
We tentatively move it to 
Part2 and recompute the 
gains of its neighbors. 0 

-1 

0 

  

Nodes tentatively moved (and cut size after each pair): 

none (8); g, d (4); f, c (5); b 



Simplified Fiduccia-Mattheyses:  Example (7) 

a 

h g 
f e 

d c 

b There is a tie for largest 
gain between the two 
unmoved nodes in Part2.  
We choose one (say e) 
and tentatively move it to 
Part1.  It has no unmoved 
neighbors so no gains are 
recomputed. 

After this tentative swap 
the cut size is 7. 
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Nodes tentatively moved (and cut size after each pair): 

none (8); g, d (4); f, c (5); b, e (7); 



Simplified Fiduccia-Mattheyses:  Example (8) 

a 

h g 
f e 

d c 

b The unmoved node in 
Part1 with the largest gain 
(the only one) is a.  We 
tentatively move it to Part2.  
It has no unmoved 
neighbors so no gains are 
recomputed. 

0 

  

Nodes tentatively moved (and cut size after each pair): 

none (8); g, d (4); f, c (5); b, e (7); a 



Simplified Fiduccia-Mattheyses:  Example (9) 

a 

h g 
f e 

d c 

b The unmoved node in 
Part2 with the largest gain 
(the only one) is h.  We 
tentatively move it to Part1. 

The cut size after the final 
tentative swap is 8, the 
same as it was before any 
tentative moves. 

  

Nodes tentatively moved (and cut size after each pair): 

none (8); g, d (4); f, c (5); b, e (7); a, h (8) 



Simplified Fiduccia-Mattheyses:  Example (10) 

a 

h g 
f e 

d c 

b After every node has been 
tentatively moved, we look 
back at the sequence and 
see that the smallest cut 
was 4, after swapping g 
and d.  We make that swap 
permanent and undo all the 
later tentative swaps. 

This is the end of the first 
improvement step. 

  

Nodes tentatively moved (and cut size after each pair): 

none (8); g, d (4); f, c (5); b, e (7); a, h (8) 



Simplified Fiduccia-Mattheyses:  Example (11) 

a 

h g 
f e 

d c 

b Now we recompute the 
gains and do another 
improvement step starting 
from the new size-4 cut.  
The details are not shown. 

The second improvement 
step doesn’t change the 
cut size, so the algorithm 
ends with a cut of size 4. 

In general, we keep doing 
improvement steps as long 
as the cut size keeps 
getting smaller. 

  



Spectral Bisection 
•  Based on theory of Fiedler (1970s),  

rediscovered several times in different communities 

•  Motivation I:  analogy to a vibrating string 

•  Motivation II:  continuous relaxation of discrete 
optimization problem 

•  Implementation: eigenvectors via Lanczos algorithm 
•  To optimize sparse-matrix-vector multiply, we graph partition 
•  To graph partition, we find an eigenvector of a matrix 
•  To find an eigenvector, we do sparse-matrix-vector multiply 
•  No free lunch ... 



Laplacian Matrix 
•  Definition: The Laplacian matrix L(G) of a graph G is a 

symmetric matrix, with one row and column for each 
node. It is defined by 

•  L(G) (i,i) = degree of node i (number of incident edges) 
•  L(G) (i,j) = -1 if i != j and there is an edge (i,j) 
•  L(G) (i,j) = 0 otherwise 
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G =	

 L(G) =	





Properties of Laplacian Matrix 
•  Theorem: L(G) has the following properties  

•  L(G) is symmetric.  
•  This implies the eigenvalues of L(G) are real,  

and its eigenvectors are real and orthogonal. 

•  Rows of L sum to zero: 
•  Let e = [1,…,1]T, i.e. the column vector of all ones.  

Then L(G)*e=0. 

•  The eigenvalues of L(G) are nonnegative: 
•  0 = λ1 <= λ2 <= … <= λn 

•  The number of connected components of G is equal 
to the number of λi that are 0.  



Spectral Bisection Algorithm 
•  Spectral Bisection Algorithm: 

•  Compute eigenvector v2 corresponding to λ2(L(G)) 
 

•  Partition nodes around the median of v2(n) 

•  Why in the world should this work? 

•  Intuition: vibrating string or membrane 

•  Heuristic: continuous relaxation of discrete optimization 



Motivation for Spectral Bisection 
•  Vibrating string 
•  Think of G = 1D mesh as masses (nodes) connected by springs 

(edges), i.e. a string that can vibrate 
•  Vibrating string has modes of vibration, or harmonics 
•  Label nodes by whether mode - or + to partition into N- and N+ 
•  Same idea for other graphs (eg planar graph ~ trampoline) 



2nd eigenvector of L(planar mesh) 



Multilevel Partitioning 
•  If G is too big for our algorithms, what can we do? 

(1) Replace G by a coarse approximation  
      Gc, and partition Gc instead 

(2) Use partition of Gc to get a rough partitioning of G, 
      and then iteratively improve it 

 
•  What if Gc is still too big? 

•  Apply same idea recursively 



Multilevel Partitioning - High Level Algorithm 
       (N+,N- ) = Multilevel_Partition( N, E )	


             … recursive partitioning routine returns N+ and N- where N = N+ U N-	


             if |N| is small	


(1)               Partition G = (N,E)  directly to get N = N+ U N-	


                   Return (N+, N- )	


             else	


(2)               Coarsen G to get an approximation Gc = (Nc, Ec)	


(3)               (Nc+ , Nc- ) = Multilevel_Partition( Nc, Ec )	


(4)               Expand (Nc+ , Nc- ) to a partition  (N+ , N- ) of N	


(5)               Improve the partition ( N+ , N- )	


                   Return ( N+ , N- )	


             endif	
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How do we	


    Coarsen?	


    Expand?	


    Improve?	



“V - cycle:”	





Coarsening by Maximal Matching 



Example of Coarsening 



At bottom of recursion, Partition the coarsest graph 
 
 

…Using spectral bisection, say. 
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Expand a partition of Gc to a partition of G 



After each expansion, Improve the partition… 
… by iterative swapping. 
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