
CS 140:
Sparse Matrix-Vector Multiplication

and Graph Partitioning

•  Lay out matrix and vectors by rows
•  y(i) = sum(A(i,j)*x(j))
•  Only compute terms with A(i,j) ≠ 0

•  Algorithm
Each processor i:
 Broadcast x(i)
 Compute y(i) = A(i,:)*x
Comm volume v = p*n (way too much!)

•  Reducing communication volume
1.  Only send each proc the parts of x it needs
2.  Reorder matrix for better locality by graph partitioning

x

y

P0

P1

P2

P3

P0 P1 P2 P3

Parallel sparse matrix-vector product

2D block decomposition for 5-point stencil
•  n stencil cells, p processors
•  Each processor has a patch of n/p cells
•  Block row (or block col) layout: v = 2 * p * sqrt(n)
•  2-dimensional block layout: v = 4 * sqrt(p) * sqrt(n)

Graphs and Sparse Matrices

1 1 1

2 1 1 1

3 1 1 1

4 1 1

5 1 1

6 1 1

 1 2 3 4 5 6

3

6

2

1

5

4

•  Sparse matrix is a representation of a (sparse) graph

•  Matrix entries are edge weights
•  Number of nonzeros per row is the vertex degree

•  Edges represent data dependencies in matrix-vector
multiplication

Sparse Matrix Vector Multiplication

Graph partitioning

•  Assigns subgraphs to processors
•  Determines parallelism and locality.
•  Tries to make subgraphs all same size (load balance)
•  Tries to minimize edge crossings (communication).
•  Exact minimization is NP-complete.

edge crossings = 6 edge crossings = 10

Applications of graph partitioning

•  Telephone network design
•  The original application! 1970 algorithm due to Kernighan & Lin

•  Sparse Matrix times Vector Multiplication
•  To solve Ax = b, partial differential equations, eigenvalue problems, …
•  N = {1,…,n}, (j,k) in E if A(j,k) nonzero,
•  WN(j) = #nonzeros in row j, WE(j,k) = 1

•  Data mining and clustering
•  Physical Mapping of DNA
•  VLSI Layout
•  Sparse Gaussian Elimination

•  Reorder matrix rows and columns to decrease “fill” in factors

•  Load Balancing while Minimizing Communication
•  . . .

> load meshes
> gplotg(Airfoil,Axy)
> specdice(Airfoil,Axy,5)
> meshdemo

Graph partitioning demo

spectral bisection
32-way partition

Partitioning by Repeated Bisection

•  To partition into 2k parts, bisect graph recursively k times

Umit V. Catalyurek

Recursive Bisection

•  Recursive bisection approach:

•  Partition data into two sets.

•  Recursively subdivide each set into two
sets.

•  Only minor modifications needed to allow
P ≠ 2n.

CS 240A: Graph and hypergraph partitioning
(excerpts)

Thanks to Aydin Buluc, Umit Catalyurek,
Alan Edelman, and Kathy Yelick

for some of these slides.

 The whole CS240A partitioning lecture is at
http://cs.ucsb.edu/~gilbert/cs240a/slides/cs240a-partitioning.pdf

Graph partitioning in practice

•  Graph partitioning heuristics have been an active
research area for many years, often motivated by
partitioning for parallel computation.

•  Some techniques:
•  Iterative-swapping (Kernighan-Lin, Fiduccia-Matheysses)
•  Spectral partitioning (uses eigenvectors of Laplacian matrix of graph)
•  Geometric partitioning (for meshes with specified vertex coordinates)
•  Breadth-first search (fast but dated)

•  Many popular modern codes (e.g. Metis, Chaco, Zoltan)
use multilevel iterative swapping

Iterative swapping:
Kernighan/Lin, Fiduccia/Mattheyses
•  Take a initial partition and iteratively improve it

•  Kernighan/Lin (1970), cost = O(|N|3) but simple
•  Fiduccia/Mattheyses (1982), cost = O(|E|) but more complicated

•  Start with a weighted graph and a partition A U B,
where |A| = |B|
•  T = cost(A,B) = Σ {weight(e): e connects nodes in A and B}
•  Find subsets X of A and Y of B with |X| = |Y|
•  Swapping X and Y should decrease cost:

•  newA = A - X U Y and newB = B - Y U X
•  newT = cost(newA , newB) < cost(A,B)

•  Compute newT efficiently for many possible X and Y,
(not time to do all possible), then choose smallest

Simplified Fiduccia-Mattheyses: Example (1)

a

h g
f e

d c

b
Red nodes are in Part1;
black nodes are in Part2.

The initial partition into two
parts is arbitrary. In this
case it cuts 8 edges.

The initial node gains are
shown in red.

0

1 0

2

3 0

1 -1

Nodes tentatively moved (and cut size after each pair):

none (8);

Simplified Fiduccia-Mattheyses: Example (2)

a

h g
f e

d c

b The node in Part1 with
largest gain is g. We
tentatively move it to Part2
and recompute the gains of
its neighbors.

Tentatively moved nodes
are hollow circles. After a
node is tentatively moved
its gain doesn’t matter any
more.

-2

1 0

2

-2

1 -3

Nodes tentatively moved (and cut size after each pair):

none (8); g,

Simplified Fiduccia-Mattheyses: Example (3)

a

h g
f e

d c

b The node in Part2 with
largest gain is d. We
tentatively move it to Part1
and recompute the gains of
its neighbors.

After this first tentative
swap, the cut size is 4.

-2

-1 -2

0

0

 -1

Nodes tentatively moved (and cut size after each pair):

none (8); g, d (4);

Simplified Fiduccia-Mattheyses: Example (4)

a

h g
f e

d c

b The unmoved node in
Part1 with largest gain is f.
We tentatively move it to
Part2 and recompute the
gains of its neighbors. -2

-1 -2

-2

 -1

Nodes tentatively moved (and cut size after each pair):

none (8); g, d (4); f

Simplified Fiduccia-Mattheyses: Example (5)

a

h g
f e

d c

b The unmoved node in
Part2 with largest gain is c.
We tentatively move it to
Part1 and recompute the
gains of its neighbors.

After this tentative swap,
the cut size is 5.

0

-3 -2

0

Nodes tentatively moved (and cut size after each pair):

none (8); g, d (4); f, c (5);

Simplified Fiduccia-Mattheyses: Example (6)

a

h g
f e

d c

b The unmoved node in
Part1 with largest gain is b.
We tentatively move it to
Part2 and recompute the
gains of its neighbors. 0

-1

0

Nodes tentatively moved (and cut size after each pair):

none (8); g, d (4); f, c (5); b

Simplified Fiduccia-Mattheyses: Example (7)

a

h g
f e

d c

b There is a tie for largest
gain between the two
unmoved nodes in Part2.
We choose one (say e)
and tentatively move it to
Part1. It has no unmoved
neighbors so no gains are
recomputed.

After this tentative swap
the cut size is 7.

-1

0

Nodes tentatively moved (and cut size after each pair):

none (8); g, d (4); f, c (5); b, e (7);

Simplified Fiduccia-Mattheyses: Example (8)

a

h g
f e

d c

b The unmoved node in
Part1 with the largest gain
(the only one) is a. We
tentatively move it to Part2.
It has no unmoved
neighbors so no gains are
recomputed.

0

Nodes tentatively moved (and cut size after each pair):

none (8); g, d (4); f, c (5); b, e (7); a

Simplified Fiduccia-Mattheyses: Example (9)

a

h g
f e

d c

b The unmoved node in
Part2 with the largest gain
(the only one) is h. We
tentatively move it to Part1.

The cut size after the final
tentative swap is 8, the
same as it was before any
tentative moves.

Nodes tentatively moved (and cut size after each pair):

none (8); g, d (4); f, c (5); b, e (7); a, h (8)

Simplified Fiduccia-Mattheyses: Example (10)

a

h g
f e

d c

b After every node has been
tentatively moved, we look
back at the sequence and
see that the smallest cut
was 4, after swapping g
and d. We make that swap
permanent and undo all the
later tentative swaps.

This is the end of the first
improvement step.

Nodes tentatively moved (and cut size after each pair):

none (8); g, d (4); f, c (5); b, e (7); a, h (8)

Simplified Fiduccia-Mattheyses: Example (11)

a

h g
f e

d c

b Now we recompute the
gains and do another
improvement step starting
from the new size-4 cut.
The details are not shown.

The second improvement
step doesn’t change the
cut size, so the algorithm
ends with a cut of size 4.

In general, we keep doing
improvement steps as long
as the cut size keeps
getting smaller.

Spectral Bisection
•  Based on theory of Fiedler (1970s),

rediscovered several times in different communities

•  Motivation I: analogy to a vibrating string

•  Motivation II: continuous relaxation of discrete
optimization problem

•  Implementation: eigenvectors via Lanczos algorithm
•  To optimize sparse-matrix-vector multiply, we graph partition
•  To graph partition, we find an eigenvector of a matrix
•  To find an eigenvector, we do sparse-matrix-vector multiply
•  No free lunch ...

Laplacian Matrix
•  Definition: The Laplacian matrix L(G) of a graph G is a

symmetric matrix, with one row and column for each
node. It is defined by

•  L(G) (i,i) = degree of node i (number of incident edges)
•  L(G) (i,j) = -1 if i != j and there is an edge (i,j)
•  L(G) (i,j) = 0 otherwise

2 -1 -1 0 0 	

-1 2 -1 0 0	

-1 -1 4 -1 -1	

0 0 -1 2 -1	

0 0 -1 -1 2	

1	

2	

 3	

4	

5	

G =	

 L(G) =	

Properties of Laplacian Matrix
•  Theorem: L(G) has the following properties

•  L(G) is symmetric.
•  This implies the eigenvalues of L(G) are real,

and its eigenvectors are real and orthogonal.

•  Rows of L sum to zero:
•  Let e = [1,…,1]T, i.e. the column vector of all ones.

Then L(G)*e=0.

•  The eigenvalues of L(G) are nonnegative:
•  0 = λ1 <= λ2 <= … <= λn

•  The number of connected components of G is equal
to the number of λi that are 0.

Spectral Bisection Algorithm
•  Spectral Bisection Algorithm:

•  Compute eigenvector v2 corresponding to λ2(L(G))

•  Partition nodes around the median of v2(n)

•  Why in the world should this work?

•  Intuition: vibrating string or membrane

•  Heuristic: continuous relaxation of discrete optimization

Motivation for Spectral Bisection
•  Vibrating string
•  Think of G = 1D mesh as masses (nodes) connected by springs

(edges), i.e. a string that can vibrate
•  Vibrating string has modes of vibration, or harmonics
•  Label nodes by whether mode - or + to partition into N- and N+
•  Same idea for other graphs (eg planar graph ~ trampoline)

2nd eigenvector of L(planar mesh)

Multilevel Partitioning
•  If G is too big for our algorithms, what can we do?

(1) Replace G by a coarse approximation
 Gc, and partition Gc instead

(2) Use partition of Gc to get a rough partitioning of G,
 and then iteratively improve it

•  What if Gc is still too big?

•  Apply same idea recursively

Multilevel Partitioning - High Level Algorithm
 (N+,N-) = Multilevel_Partition(N, E)	

 … recursive partitioning routine returns N+ and N- where N = N+ U N-	

 if |N| is small	

(1) Partition G = (N,E) directly to get N = N+ U N-	

 Return (N+, N-)	

 else	

(2) Coarsen G to get an approximation Gc = (Nc, Ec)	

(3) (Nc+ , Nc-) = Multilevel_Partition(Nc, Ec)	

(4) Expand (Nc+ , Nc-) to a partition (N+ , N-) of N	

(5) Improve the partition (N+ , N-)	

 Return (N+ , N-)	

 endif	

(2,3)	

(2,3)	

(2,3)	

(1)	

(4)	

(4)	

(4)	

(5)	

(5)	

(5)	

How do we	

 Coarsen?	

 Expand?	

 Improve?	

“V - cycle:”	

Coarsening by Maximal Matching

Example of Coarsening

At bottom of recursion, Partition the coarsest graph

…Using spectral bisection, say.

2 -1 -1 0 0 	

-1 2 -1 0 0	

-1 -1 4 -1 -1	

0 0 -1 2 -1	

0 0 -1 -1 2	

1	

2	

 3	

4	

5	

G =	

 L(G) =	

Expand a partition of Gc to a partition of G

After each expansion, Improve the partition…
… by iterative swapping.

e

a

h g
f e

d c

b

0

1 0

2

3 0

1 -1

a

h g
f e

d c

b

