
CS 140: 
Computation on Graphs – 
Maximal Independent Sets 



A graph problem:  Maximal Independent Set 

1 

8 7 
6 5 

4 3 

2 

•    Graph with vertices V = {1,2,…,n} 

•    A set S of vertices is independent if no 
    two vertices in S are neighbors. 

•    An independent set S is maximal if it is 
    impossible to add another vertex and 
    stay independent 

•    An independent set S is maximum  
    if no other independent set has more 
    vertices 

•    Finding a maximum independent set is 
    intractably difficult (NP-hard) 

•    Finding a maximal independent set is 
    easy, at least on one processor. 

  

The set of red vertices  
S = {4, 5} is independent 

and is maximal 
but not maximum 



Sequential Maximal Independent Set Algorithm 
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2 1.  S = empty set; 

2.  for  vertex v = 1 to n { 

3.      if (v has no neighbor in S) { 

4.          add v to S 

5.      } 

6.  } 

  

S = { } 
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2 1.  S = empty set; 

2.  for  vertex v = 1 to n { 

3.      if (v has no neighbor in S) { 

4.          add v to S 

5.      } 

6.  } 

  

S = { 1 } 
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2 1.  S = empty set; 

2.  for  vertex v = 1 to n { 

3.      if (v has no neighbor in S) { 

4.          add v to S 

5.      } 

6.  } 

  

S = { 1, 5 } 
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2 1.  S = empty set; 

2.  for  vertex v = 1 to n { 

3.      if (v has no neighbor in S) { 

4.          add v to S 

5.      } 

6.  } 

  

S = { 1, 5, 6 } 

work ~ O(n),  but  span ~O(n) 



Parallel, Randomized MIS Algorithm   [Luby] 
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2 1.  S = empty set;  C = V; 

2.  while  C  is not empty { 

3.      label each v in C with a random r(v); 

4.      for all v in C in parallel { 

5.          if r(v) < min( r(neighbors of v) ) { 

6.              move v from C to S; 

7.              remove neighbors of v from C; 

8.          } 

9.      } 

10.  } 

  

S = { } 

C = { 1, 2, 3, 4, 5, 6, 7, 8 } 



Parallel, Randomized MIS Algorithm   [Luby] 
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2 1.  S = empty set;  C = V; 

2.  while  C  is not empty { 

3.      label each v in C with a random r(v); 

4.      for all v in C in parallel { 

5.          if r(v) < min( r(neighbors of v) ) { 

6.              move v from C to S; 

7.              remove neighbors of v from C; 

8.          } 

9.      } 

10.  } 

  

S = { } 

C = { 1, 2, 3, 4, 5, 6, 7, 8 } 
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Parallel, Randomized MIS Algorithm   [Luby] 
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2 1.  S = empty set;  C = V; 

2.  while  C  is not empty { 

3.      label each v in C with a random r(v); 

4.      for all v in C in parallel { 

5.          if r(v) < min( r(neighbors of v) ) { 

6.              move v from C to S; 

7.              remove neighbors of v from C; 

8.          } 

9.      } 

10.  } 

  

S = { 1, 5 } 

C = { 6, 8 } 
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Parallel, Randomized MIS Algorithm   [Luby] 
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2 1.  S = empty set;  C = V; 

2.  while  C  is not empty { 

3.      label each v in C with a random r(v); 

4.      for all v in C in parallel { 

5.          if r(v) < min( r(neighbors of v) ) { 

6.              move v from C to S; 

7.              remove neighbors of v from C; 

8.          } 

9.      } 

10.  } 

  

S = { 1, 5 } 

C = { 6, 8 } 
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Parallel, Randomized MIS Algorithm   [Luby] 
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2 1.  S = empty set;  C = V; 

2.  while  C  is not empty { 

3.      label each v in C with a random r(v); 

4.      for all v in C in parallel { 

5.          if r(v) < min( r(neighbors of v) ) { 

6.              move v from C to S; 

7.              remove neighbors of v from C; 

8.          } 

9.      } 

10.  } 

  

S = { 1, 5, 8 } 

C = { } 
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Parallel, Randomized MIS Algorithm   [Luby] 

1 

8 7 
6 5 

4 3 

2 1.  S = empty set;  C = V; 

2.  while  C  is not empty { 

3.      label each v in C with a random r(v); 

4.      for all v in C in parallel { 

5.          if r(v) < min( r(neighbors of v) ) { 

6.              move v from C to S; 

7.              remove neighbors of v from C; 

8.          } 

9.      } 

10.  } 

  

Theorem:  This algorithm 
“very probably” finishes 
within O(log n) rounds. 

work ~ O(n log n),  but  span ~O(log n) 


