CS 140:
Computation on Graphs —
Maximal Independent Sets

A graph problem: Maximal Independent Set

» Graph with vertices V ={1,2,...,n}

 Aset S of vertices is independent if no
two vertices in S are neighbors.

* Anindependent set S is maximal if it is
Impossible to add another vertex and

stay independent
| O J°
* An independent set S is maximum
if no other independent set has more
vertices

* Finding a maximum independent set is The set of red vertices
intractably difficult (NP-hard) S = {4, 5} is independent

« Finding a maximal independent set is and is maximal
easy, at least on one processor. but not maximum

Sequential Maximal Independent Set Algorithm

S = empty set;
for vertexv=1ton/{
if (v has no neighbor in S) {
addvto S

o o kL h o~

Sequential Maximal Independent Set Algorithm

S = empty set;
for vertexv=1ton/{
if (v has no neighbor in S) {
addvto S

o o kL h o~

Sequential Maximal Independent Set Algorithm

S = empty set;
for vertexv=1ton/{
if (v has no neighbor in S) {
addvto S

o o kL h o~

Sequential Maximal Independent Set Algorithm

S = empty set;
for vertexv=1ton/{
if (v has no neighbor in S) {
addvto S

o o kL h o~

S={1,5,6}

work ~ O(n), but span ~O(n)

Parallel, Randomized MIS Algorithm [Luby]

1. S=emptyset; C=V,

2. while C is not empty {

3 label each v in C with a random r(v);

4 for all vin C in parallel { 5 ‘ b‘ 6
5 if r(v) < min(r(neighbors of v)) {

6. move Vv from C to S;

7 remove neighbors of v from C;

g } S={}

9 } C={1,2,3,4,5,6,7,8}
10. }

Parallel, Randomized MIS Algorithm [Luby]

2.6 4.1
1. S=emptyset; C=V,
2. while C is not empty {
3 label each v in C with a random r(v); s g
4 for all vin C in parallel { 5())6
3 if r(v) < min(r(neighbors of v)) {
6. move v from C to S; 9.7 9.3
7 remove neighbors of v from C;
3 } S={}
9 } C={1,2,3,4,5,6,7,8}
10. }

Parallel, Randomized MIS Algorithm [Luby]

2.6 4.1
1. S=emptyset; C=V,
2. while C is not empty {
3 label each v in C with a random r(v); s g
4 for all vin C in parallel { 5())6
3 if r(v) < min(r(neighbors of v)) {
6. move v from C to S; 9.7 9.3
7 remove neighbors of v from C;
3 } S={1,5}
9 } C={6,8}
10. }

Parallel, Randomized MIS Algorithm [Luby]

1. S=emptyset; C=V,

2. while C is not empty {

3 label each v in C with a random r(v); 57
4 for all vin C in parallel { 5())6
3 if r(v) < min(r(neighbors of v)) {

6. move v from C to S; 1.8

7 remove neighbors of v from C;

3 } S={1,5}

9 } C={6,8}

10. }

Parallel, Randomized MIS Algorithm [Luby]

1. S=emptyset; C=V,

2. while C is not empty {

3 label each v in C with a random r(v); 57
4 for all vin C in parallel { 5() OL
3 if r(v) < min(r(neighbors of v)) {

6. move v from C to S; 1.8

7 remove neighbors of v from C;

3 } $={1,5,8}

0.) c={}

10. }

Parallel, Randomized MIS Algorithm [Luby]

1. S=emptyset; C=V,

2. while C is not empty {

3 label each v in C with a random r(v);

4 for all vin C in parallel { 5 ‘ b‘ 6

3 if r(v) < min(r(neighbors of v)) {

6. move v from C to S;

7 remove neighbors of v from C;

3 } Theorem: This algorithm
“very probably” finishes

9 } within O(log n) rounds.

10. }

work ~ O(n log n), but span ~O(log n)

