
CS 140:
Computation on Graphs –
Maximal Independent Sets

A graph problem: Maximal Independent Set

1

8 7
6 5

4 3

2

•  Graph with vertices V = {1,2,…,n}

•  A set S of vertices is independent if no
 two vertices in S are neighbors.

•  An independent set S is maximal if it is
 impossible to add another vertex and
 stay independent

•  An independent set S is maximum
 if no other independent set has more
 vertices

•  Finding a maximum independent set is
 intractably difficult (NP-hard)

•  Finding a maximal independent set is
 easy, at least on one processor.

The set of red vertices
S = {4, 5} is independent

and is maximal
but not maximum

Sequential Maximal Independent Set Algorithm

1

8 7
6 5

4 3

2 1.  S = empty set;

2.  for vertex v = 1 to n {

3.  if (v has no neighbor in S) {

4.  add v to S

5.  }

6.  }

S = { }

Sequential Maximal Independent Set Algorithm

1

8 7
6 5

4 3

2 1.  S = empty set;

2.  for vertex v = 1 to n {

3.  if (v has no neighbor in S) {

4.  add v to S

5.  }

6.  }

S = { 1 }

Sequential Maximal Independent Set Algorithm

1

8 7
6 5

4 3

2 1.  S = empty set;

2.  for vertex v = 1 to n {

3.  if (v has no neighbor in S) {

4.  add v to S

5.  }

6.  }

S = { 1, 5 }

Sequential Maximal Independent Set Algorithm

1

8 7
6 5

4 3

2 1.  S = empty set;

2.  for vertex v = 1 to n {

3.  if (v has no neighbor in S) {

4.  add v to S

5.  }

6.  }

S = { 1, 5, 6 }

work ~ O(n), but span ~O(n)

Parallel, Randomized MIS Algorithm [Luby]

1

8 7
6 5

4 3

2 1.  S = empty set; C = V;

2.  while C is not empty {

3.  label each v in C with a random r(v);

4.  for all v in C in parallel {

5.  if r(v) < min(r(neighbors of v)) {

6.  move v from C to S;

7.  remove neighbors of v from C;

8.  }

9.  }

10.  }

S = { }

C = { 1, 2, 3, 4, 5, 6, 7, 8 }

Parallel, Randomized MIS Algorithm [Luby]

1

8 7
6 5

4 3

2 1.  S = empty set; C = V;

2.  while C is not empty {

3.  label each v in C with a random r(v);

4.  for all v in C in parallel {

5.  if r(v) < min(r(neighbors of v)) {

6.  move v from C to S;

7.  remove neighbors of v from C;

8.  }

9.  }

10.  }

S = { }

C = { 1, 2, 3, 4, 5, 6, 7, 8 }

2.6 4.1

5.9 3.1

1.2
5.8

9.3 9.7

Parallel, Randomized MIS Algorithm [Luby]

1

8 7
6 5

4 3

2 1.  S = empty set; C = V;

2.  while C is not empty {

3.  label each v in C with a random r(v);

4.  for all v in C in parallel {

5.  if r(v) < min(r(neighbors of v)) {

6.  move v from C to S;

7.  remove neighbors of v from C;

8.  }

9.  }

10.  }

S = { 1, 5 }

C = { 6, 8 }

2.6 4.1

5.9 3.1

1.2
5.8

9.3 9.7

Parallel, Randomized MIS Algorithm [Luby]

1

8 7
6 5

4 3

2 1.  S = empty set; C = V;

2.  while C is not empty {

3.  label each v in C with a random r(v);

4.  for all v in C in parallel {

5.  if r(v) < min(r(neighbors of v)) {

6.  move v from C to S;

7.  remove neighbors of v from C;

8.  }

9.  }

10.  }

S = { 1, 5 }

C = { 6, 8 }

2.7

1.8

Parallel, Randomized MIS Algorithm [Luby]

1

8 7
6 5

4 3

2 1.  S = empty set; C = V;

2.  while C is not empty {

3.  label each v in C with a random r(v);

4.  for all v in C in parallel {

5.  if r(v) < min(r(neighbors of v)) {

6.  move v from C to S;

7.  remove neighbors of v from C;

8.  }

9.  }

10.  }

S = { 1, 5, 8 }

C = { }

2.7

1.8

Parallel, Randomized MIS Algorithm [Luby]

1

8 7
6 5

4 3

2 1.  S = empty set; C = V;

2.  while C is not empty {

3.  label each v in C with a random r(v);

4.  for all v in C in parallel {

5.  if r(v) < min(r(neighbors of v)) {

6.  move v from C to S;

7.  remove neighbors of v from C;

8.  }

9.  }

10.  }

Theorem: This algorithm
“very probably” finishes
within O(log n) rounds.

work ~ O(n log n), but span ~O(log n)

