
Ghost Cell Pattern

Fredrik Berg Kjolstad Marc Snir
University of Illinois University of Illinois

Urbana-Champaign, USA Urbana-Champaign, USA
kjolsta1@illinois.edu snir@illinois.edu

January 26, 2010

Problem

Many problems consist of a set of points in a grid that are updated in suc-
cessive iterations based on the values of their neighbors in the same grid.
These problems can be divided geometrically into chunks that are computed
on different processors. However, since computing the value of each point
requires the values of other points these computations are not embarrass-
ingly parallel. Specifically, the points at the borders of a chunk require the
values of points from the neighboring chunks. How can we communicate
these values between processes in an efficient and structured manner?

Context

Many problems can be described as a structured grid of points in N dimen-
sions where the location of each point in the grid defines its location in the
problem domain. The values of the points are updated iteratively and for
each update the values of a fixed set of neighboring points are required (see
Structured Grids and Iterative Refinement [1]).

The set of neighboring points that influence the calculations of a point
is often called a stencil. The stencil defines how the value of a point should
be computed from its own and its neighbors’ values. It can take many forms
and can include points that are not directly adjacent to the current point.
Figure 1(a) shows a five-point Laplace operator, which is a stencil that can
be used to find edges in an image. It specifies that the value of a point in the
current iteration shall be the value of its left, right, up and down neighbors
from the previous iteration subtracted from its own value multiplied by four.

1

(a) 5-Point Stencil (b) Stencil that needs a cell from its neighbor

Figure 1: Stencil computation in geometrically decomposed grids

Geometric Decomposition [1] is a common pattern for calculating the
values of such grids in parallel using different processes or threads. In the rest
of this pattern we will use the term process to encompass both processes and
threads unless we are talking about issues directly related to shared memory
in which case we will use the term thread. The basic idea is to divide the grid
into chunks and have each process update one or more of these. As shown
in figure 1(b) a common problem with this approach is how to calculate the
values at the borders between chunks since these require values from one or
more neighboring chunks. Retrieving the required points from the process
processing the neighbor chunk as they are needed is not a good solution as
it would introduce a lot of small communication operations in the middle of
computation which would lead to high latency costs.

Solution

Allocate additional space for a series of ghost cells around the edges of each
chunk. For every iteration have each pair of neighbors exchange their borders
and place the received borders in the ghost cell regions as shown in figure 2.
The ghost cells form a halo around each chunk containing replicates of the
borders of all immediate neighbors. These ghost images are not updated
locally, but provide stencil values when updating the borders of this chunk.

If you have a stencil that extends beyond immediate neighbors or if you
want to trade computation for communication then use a Wide Halo (page
8). If your computation requires cells from diagonal neighbors then you must
also exchange Corner Cells (page 10). If you need additional performance
then Avoid Synchronization that is not required by the problem (page 12).

2

Figure 2: Each chunk receives a vector of ghost cells from neighboring chunks

Forces

Performance vs Complexity A tension exist between the need for per-
formance and the complexity of the implementation. You could sim-
ply have stencils fetch cells as they are needed, but that would in-
troduce a lot of small messages that hurts performance. Using ghost
cells and performing border exchanges alleviates this problem. If bor-
der exchanges are used then you have to consider the optimizations to
perform. Examples of optimizations are trading computation for com-
munication (see the section Wide Halo), avoiding synchronization (see
the section Avoid Synchronization) and overlapping communication
and computation. These optimizations increase overall performance at
the cost of more complexity.

Shared Memory Cost Of Copying vs Contention and Locality On
shared memory machines it is possible to avoid the copying associated
with ghost cells by having all threads read directly from the set of
points from the previous iteration of neighbors. However, this increases
the likelihood of cache contention and false sharing as the processor
cores read and write to the same cache lines. Alternatively the chunks
could be kept separate to avoid false sharing and the threads could
have special code to access the value of neighboring chunks, but this
reduces locality which means less utilization of separate caches.

3

Cost of Computation vs Overhead of Communication As mentioned
above, it is possible to trade extra computation for fewer border ex-
changes by maintaining a wider ghost cell halo and redundantly com-
puting results locally. This leads to some redundant work being done,
but may reduce time to completion if the overhead of send operations
is high. However, the cost of performing the extra computations must
be carefully evaluated against the overhead cost of sending messages.

Performance vs Portability Optimizations such as reducing communi-
cation at the expense of increased computation and avoiding synchro-
nization require you to make careful trade-offs and these trade-offs are
usually based on experimental results. However, these results vary from
machine to machine and often also from library to library meaning a
fast application on one system may be a slow application on another
thus reducing portability.

Size of Chunks As mentioned earlier, the Ghost Cell Pattern is often used
with the Geometric Decomposition pattern. One of the considerations
when using the latter is to select a chunk size small enough to expose
sufficient parallelism. However, this affects the border exchanges as it
causes the area/volume ratio to increase. The area/volume ratio is the
ratio between the surface area of a chunk and its volume. As the size
of a three-dimensional chunk increases its volume grows faster than its
surface area, O(n3) vs O(n2), which decreases the ratio.1 A high ratio
means that more of the time is spent on communication per iteration
so that there is less time left to spend on actual computations.

Implementation

Given an image we want to generate a new image containing the edges of the
first one. This is called edge detection and one way to do it is to repeatedly
apply the laplace operator from figure 1(a) to every pixel of the input image.
The laplace operator intuitively measures how much each point differ from
its neighbors and figure 3 shows it applied to Lena.

1For a two-dimensional problem it would be the ratio between the border size and the
surface area, but the term area/volume ratio is used in general to describe the effect.

4

Figure 3: Edge Detection

The sequential algorithm for doing this on a gray-scale image is as follows:
1 void l a p l a c i a n () {
2 for (int i t e r =0; i t e r <ITERATIONS; ++i t e r) {
3
4 // Loop to compute the l a p l a c i a n
5 for (int y=1; y < (height −1); ++y) {
6 for (int x=1; x < (width −1); ++x) {
7 double p i x e l = 4 ∗ GET_PIXEL(image , x , y)
8 − GET_PIXEL(image , x−1, y)
9 − GET_PIXEL(image , x+1, y)

10 − GET_PIXEL(image , x , y−1)
11 − GET_PIXEL(image , x , y+1);
12 GET_PIXEL(bu f f e r , x , y) = BOUND(p ixe l , 0 . 0 , 1 . 0) ;
13 }
14 }
15
16 // Swap b u f f e r s
17 SWAP(image , bu f f e r) ;
18 }
19 }

The computation proceeds in iterations and for each iteration the lapla-
cian operator is applied to every pixel of the input image (line 5-14). Since
the computations need the surrounding pixels from the previous iteration
we can’t update the image in place and have to use double buffering. This
means that we have two sets of values; one for the current iteration and one
for the previous. On line 17 we swap the buffers. Note that the computation
has been simplified for clarity by not computing the laplacian of the borders.

To parallelize this code using the Single Program Multiple Data (SPMD)
paradigm we need to distribute roughly equal parts of the image to each
process before calling laplacian () and then merge these image parts again
after it has completed. One invocation of the laplacian () would thus compute
the laplacian for only a fraction of the image.

5

Figure 4: Multiprocess edge detection without border exchanges

However, this leads to the problem from figure 1(b) of needing pixels from
the neighbors when computing the border pixels. If we ignore the neighbor
pixels we get the result illustrated in figure 4. This figure shows laplacian
edge detection applied to the image using four processors in a Cartesian grid,
but without any border exchanges. Notice the noise at the inner borders
between the image chunks.

In order to get rid of the noise we must perform border exchanges for each
iteration of the outer loop. The resulting code can look like the following:

1 void l a p l a c i a n () {
2 for (int i t e r =0; i t e r <ITERATIONS; ++i t e r) {
3 // Exchange borders wi th a l l f our ne i ghbor s
4 exchange_west_border () ;
5 exchange_east_border () ;
6 exchange_north_border () ;
7 exchange_south_border () ;
8
9 // Loop to compute the l a p l a c i a n

10 for (int y=1; y < (chunk_height+1); ++y) {
11 for (int x=1; x < (chunk_width+1); ++x) {
12 double p i x e l = 4 ∗ GET_PIXEL(chunk , x , y)
13 − GET_PIXEL(chunk , x−1, y)
14 − GET_PIXEL(chunk , x+1, y)
15 − GET_PIXEL(chunk , x , y−1)
16 − GET_PIXEL(chunk , x , y+1);
17 GET_PIXEL(bu f f e r , x , y) = BOUND(p ixe l , 0 . 0 , 1 . 0) ;
18 }
19 }
20
21 // Swap b u f f e r s
22 SWAP(chunk , bu f f e r) ;
23 }
24 }

6

Since we are operating under the SPMD paradigm this code is executed
on every processor and operates on one chunk of the image instead of all of it.
Our chunks have ghost cell halos extending one row/column in each direction
so we iterate from the second cell (index 1) to the last cell before the right
halo which is located at width+1. Apart from that the biggest difference to
the previous code listing is on line 4-7 inside the outer loop where the process
perform border exchanges with each of its neighbors. As such it switches
between performing computations in the nested loops and communication in
the border exchange section. Note that there is no need for a barrier here
as all the necessary synchronization is implicit in the exchanges. When a
process has received its data it is always safe for it to proceed. The content
of the border exchange functions depends on the programming model we are
using. If we for instance use MPI then the following code is one reasonable
implementation of the exchange_west_border() function:

1 // Exchange western colums wi th western ne ighbor ’ s eas t e rn columns
2 void exchange_west_border () {
3 i f (west_neighbor != −1)
4 MPI_Sendrecv(&GET_PIXEL(chunk , 1 , 1) ,
5 1 , vert ica l_border_t , west_neighbor , TAG,
6 &GET_PIXEL(chunk , 0 , 1) ,
7 1 , vert ica l_border_t , west_neighbor , TAG,
8 ca r t e s i an , &s ta tu s) ;
9 }

On line 2 we specify that we will only perform a border exchange with the
western neighbor if there is one. The MPI_Sendrecv function performs a send
and a receive in a deadlock-free manner and is therefore perhaps the most
obvious candidate to use for the exchange. However, as we shall see later
in the Avoid Synchronization section it is not the most efficient one. The
parameters on line 4-5 specify the data being sent. Since we are exchanging
borders with the western neighbor in this function we send the first column of
the chunk that is not a part of the ghost cell region. This column is located at
coordinate (1,1). vertical_border_t is a custom type describing one column of
data. TAG is a just a name identifying the transmission. Line 6-7 specifies
the same for the column we are receiving from the western neighbor and
placing in the ghost region at coordinate (0,1). The other border exchanges
are defined similarly. Running the new algorithm with border exchanges
gives us noise-free edge detection as we saw in figure 3.

7

Wide Halo

The previous section discussed the use of a halo of ghost cells and disciplined
border exchanges to get correct results at the inner borders between chunks
being computed in different processes. That solution used a border with a
thickness of one since that is sufficient to correctly implement the five-point
laplace operator. However, there are a two situations that either require or
benefit from a wider halo.

The first situation is the case where the stencil we want to apply to the
grid reaches further than the immediate neighboring cells. In that case we
must use a wide halo for correctness and it can be implemented by extending
the previous code to reserve space for more columns and to send more than
one border row/column in each border exchange.

The second, perhaps more interesting, case is the use of a deep halo
to reduce the number of send operations. There are two components to
the cost of sending a message between processes. The first is the time it
takes from the call to send a message is issued to the receiving processor
starts receiving data called the latency of the send. This part depends on
the local overhead involved in preparing the message as well as the network
latency and is the overhead of sending the message. The second part is
the time it actually takes to transmit the data which is dependent on the
network bandwidth and the size of the message. It is not uncommon for
the message overhead/latency to far exceed the actual transmission time for
short messages. Since the network latency is constant for all messages an
effective strategy to maximize overall performance is to reduce the number
of messages by merging them.

One way this can be done for border exchanges is by increasing the depth
of the halo by some factor n beyond the cells actually needed for correctness.
By doing this you can limit the border exchanges to every nth iteration and
although you have to transmit a larger halo you can do so less often and
therefore save on messaging overhead. Figure 5 demonstrates how this would
work for a halo width of three.

8

Figure 5: Wide Halo with a Border Exchange every nth iteration

The cost of increasing the halo’s width is that we have to keep it up-
dated locally, which adds to the computational work. Still, communication
is expensive and it is often beneficial to trade less frequent communication
for extra redundant work. Of course this trade-off must be made so that the
cost of the extra work does not exceed the cost of the overhead we removed.
Furthermore, the trade-off depends heavily on the target machine’s com-
munication capabilities which can vary greatly between different machines.
Deep halos therefore reduce the portability of the application.

Building on the edge detection example the we will now expand it to use
deep borders to trade extra computation for less frequent communication.
The following code adds this capability to the laplacian () function:

9

1 void l a p l a c i a n () {
2 for (int i t e r =0; i t e r <ITERATIONS; ++i t e r) {
3 // Exchange borders wi th a l l f our ne i ghbor s
4 i f (border == 0 | | i t e r % border == 0) {
5 exchange_west_border () ;
6 exchange_east_border () ;
7 exchange_north_border () ;
8 exchange_south_border () ;
9 }

10
11 // Loop to compute the l a p l a c i a n
12 for (int y=1; y < (chunk_height + 2∗ border) − 1 ; ++y) {
13 for (int x=1; x < (chunk_width + 2∗ border) − 1 ; ++x) {
14 double p i x e l = 4 ∗ GET_PIXEL(chunk , x , y)
15 − GET_PIXEL(chunk , x−1, y)
16 − GET_PIXEL(chunk , x+1, y)
17 − GET_PIXEL(chunk , x , y−1)
18 − GET_PIXEL(chunk , x , y+1);
19 GET_PIXEL(bu f f e r , x , y) = BOUND(p ixe l , 0 . 0 , 1 . 0) ;
20 }
21 }
22
23 // Swap b u f f e r s
24 SWAP(chunk , bu f f e r) ;
25 }
26 }

Line 4 checks if the current iteration is a multiple of the border size
and only performs border exchanges if it is. Furthermore, on line 12-13 the
loop bounds are updated to include the halo, except from the outermost
row/column, in the computations. This ensures that the values flowing from
the halo into the chunk are also correct for iterations that don’t include a
border exchange. In addition to these changes we have to update the border
exchange functions to exchange the whole halo, but that change is fairly
straightforward and is not shown here. Finally, note that keeping the halo
correctly updated using the above code requires access to the halo corners,
which is discussed further in the following section.

Corners Cells

In some cases it is not sufficient to just exchange the immediate left, right,
up and down borders. Consider for instance the operators shown in figure 6.
These operators can be used for more precise edge detection that converges
faster than when using the five-point laplacian operator. In addition the
nine-point Laplacian operator, like the five-point version, can also be used to

10

(a) 9-Point Laplacian (b) Sobel operator

Figure 6: Stencil operators that use corner cells

Figure 7: Two Dimensional Border Exchange with a nine-point stencil

solve systems of partial differential equations iteratively. Both the nine-point
Laplacian and the Sobel operator require the value of the cells that are not a
part of directly adjacent neighbors, but that comes from diagonal neighbors.
Figure 7 shows how these cells are not exchanged with the schemes discussed
so far.

Another case where we need to communicate cells from diagonal blocks
is when we have wider borders than we need to in order to decrease the
number of sends as explained in the previous section. In this case we need
the corners of the ghost cell halo to (redundantly) update the values in the
rest of the halo between the border exchange iterations.

The most common way to solve this problem is by performing the border
exchanges along each dimensional axis as independent waves where each wave
updates the halos in one direction. Consider the two dimensional border ex-

11

Figure 8: Two Dimensional Border Exchanges in two waves

change shown in figure 8. In the first wave the processes performs horizontal
border exchanges and if the chunks are of size n ∗ n then they exchange n
cells with their left and right neighbors. Therefore, when the second wave
starts the processes have already received the borders from their horizontal
neighbors and can include these in the vertical border exchanges, effectively
folding the corner exchanges into the second wave. This wave will therefore
exchange rows that are n + 2 wide (more if we have a Wide Halo) where
the cells on each side of the border are the corners. For two dimensions this
means that the halo corner will “automatically” be exchanged in the second
wave, which saves us from having to perform four extra exchanges per chunk
to exchange corners with diagonal neighbors.

Avoid Synchronization

When implementing a solution to an iterative grid problem using ghost cells
some synchronization is required to ensure that the border exchanges com-
plete before the next computation phase starts. That is, a certain amount
of synchronization is inherent in the chosen solution. However, when im-
plementing the solution it is desirable to avoid additional synchronization
constraints that are not strictly necessary in order to get good performance.
The implementation should perform as much synchronization as is necessary,
but no more. This may sound obvious, but when using an API such as MPI
many communication operations also serve as synchronization point, which

12

can slow down the implementation.
For example, the semantics of MPI_Send (and MPI_Sendrecv) is that it

may block until the receiver starts to receive the message. The implementa-
tion is allowed to try to buffer the message and return before the matching
receive is issued, but for portable programs one can not depend on this and
must assume MPI_Send is a synchronization point. In addition even imple-
mentations that perform message buffering can run out of buffer space at
which point they must revert to synchronous send operations.

Using synchronous send operations when performing border exchanges
with n neighbors adds the constraint to the application that the sends have
to be performed in the order in which they appeared in the code, even if no
such ordering is required by the solution. Since most parallel machines don’t
have a direct communication path between every processor pair this means
that the environment can’t take advantage of the fact that the path to some
of the neighbors might be free while the path to the receiver of the current
send is busy [2].

The solution is to remove the unnecessary synchronization inherent in the
synchronous sends and instead use asynchronous send operations. By doing
this the environment is free to send those messages whose receiver lies at the
end of a path that is not heavily loaded first and thus avoid bottlenecks in
the communication network.

The border exchange function on page 7 performs deadlock-free commu-
nication with the western neighbor. This code is correct, but imposes an
artificial ordering on the border exchanges that is not necessary. The fol-
lowing pseudo-code addresses this problem by replacing the synchronous
MPI_Sendrecv with calls to the asynchronous and non-blocking functions
MPI_Isend and MPI_Irecv [2]:

1 Do i =1, n_neighbors
2 MPI_Irecv (edge , len , MPI_REAL, nbr (i) , tag ,
3 comm, reques t (i) , i e r r) ;
4 Enddo
5
6 Do i =1, n_neighbors
7 MPI_Isend (edge , len , MPI_REAL, nbr (i) , tag ,
8 comm, reques t (n_neighbors+i) , i e r r) ;
9 Enddo

10
11 MPI_Waitall (2∗ n_neighbors , request , s t a tu s e s , i e r r) ;

The code starts by scheduling the receives of the borders from all the
neighbors of the process. Since the receives are non-blocking the function
calls returns immediately. Note that with non-blocking receives the user has

13

to supply the buffer to put the message in, which in this code is the edge
argument. With MPI_Irecv this buffer will be filled with the message at some
point in the future. One can query MPI for the status of the receive using
MPI_Test or MPI_TestAny or ask MPI to block until the receive completes
using MPI_Wait, MPI_Waitany or MPI_Waitall.

After posting all the receives the code schedules the matching sends to
each neighbor using MPI_Isend. Like with MPI_Irecv MPI_Isend returns im-
mediately and does not need to wait for the matching receive to be initiated.
This means that the environment is free to send the messages in any order,
which allows it to take advantage of lightly loaded network paths. Then, on
line 11, a call to MPI_Waitall tells MPI to wait for the completion of all the
message transmissions before continuing.

By restructuring our send operations in this way we have reduced the
amount of synchronization to only what is actually required by the solution.
That is, one synchronization point to ensure all the sends are completed
before beginning the next computation phase as opposed to one synchro-
nization point for every send.

Known Uses

The Ghost Cell pattern is most commonly used in distributed memory sys-
tems where processors can’t access each others memory, but is also applicable
to NUMA (Non-Uniform Memory Access) systems to increase locality. It is
widely used in image processing as well as in structured grid computations
such as weather and atmospheric simulations and fluid dynamics where phys-
ical effects are simulated by repeatedly solving systems of differential equa-
tions. In particular these simulations have one equation per point in 3D
space and each equation depends on a set of neighboring points.

PETSc is a very popular and widely used framework for solving sci-
entific problems modeled by partial differential equations that uses border
exchanges to communicate ghost nodes [3]. It is widely used for scientific
computations in areas ranging from nano-simulations, imaging and surgery
to fusion, geosciences and wave propagation.

Another use is in cellular automata2 where new generations of cells are
repeatedly created based on the previous generation and certain rules of
interaction. The rules governing the updates of each cell are based on the
states of a certain set of neighboring cells from the previous generation (a

2A famous example of cellular automata is Conway‘s Game of Life

14

stencil). These computations can therefore use the Ghost Cell pattern to
perform the communication between each generation [4].

Related Patterns

Geometric Decomposition [1] Computations that have been structured
using the Geometric Decomposition pattern are often applied in iter-
ations. In those cases the Ghost Cell pattern is almost always used to
handle the communication between each iteration.

Structured Grids [1] Structured Grid computations are usually stencil
computations performed in iterations. When these computations are
parallelized the Ghost Cell pattern is a good fit to perform the com-
munication required to provide the values for the stencils.

Sparse Linear Algebra [1] Iterative methods for systems of linear equa-
tions such as Jacobi and Gauss-Seidel require global communication
in general. However, when applied to certain sparse linear algebra
problems where the equations have few terms, such as systems of par-
tial differential equations, the communication switches from global to
local. Examples of such differential equations are the laplacian and
poisson equations. In these situations the Ghost Cell pattern is a good
candidate for performing the necessary communication between each
iteration.

Iterative Refinement [1] The iterative refinement pattern perform suc-
cessive refinements until some exit condition is met. If these computa-
tions are based on a stencil of neighbors then the Ghost Cell pattern is
a good candidate for the communication of these neighboring values.

Unstructured Grids [1] Unstructured Grid computation, as the name im-
plies, are less regular than Structured Grids, but often require regular
communication similar to the ones described in the Ghost Cell pattern.
However, issues specific to Unstructured Grids are not covered by this
pattern.

Collective Communication Patterns [5] Like the Ghost Cell pattern the
patterns in the Collective Communication pattern language deal with
structured communication between several processors. However, the
Collective Communication patterns deal with global structured com-
munication while the Ghost Cell pattern deal with local structured
communication and they are therefore different.

15

Wavefront [6] The Wavefront pattern can be used to parallelize dynamic
programming problems. In this pattern one has a set of values in N
dimensions that must be computed where each value, due to mem-
oization, depends on the values of the left and upper neighbors from
the same iteration. The computations thus take the form of a diagonal
sweep that resembles a wavefront. Although this pattern share some of
the characteristics of the Ghost Cell pattern it is different because the
neighboring values are taken from the same iteration, not the previous
one. Another difference is that the communication is one-way while in
border exchanges they are two-way.

References

[1] Tim Mattson and Kurt Keutzer. Our Pattern Language. Retrieved
November 26, 2009.
http://parlab.eecs.berkeley.edu/wiki/patterns/patterns

[2] William Gropp & Ewing Lusk. Tuning MPI programs for peak perfor-
mance (1997). Argonne National Laboratory.
http://www.mcs.anl.gov/research/projects/mpi/tutorials/perf/

[3] PETSc – Portable, Extensible Toolkit for Scientific Computation. Re-
trieved November 26, 2009.
http://www.mcs.anl.gov/petsc/petsc-as/index.html

[4] Barry Wilkinson and Michael Allen. Parallel Programming, Techniques
and Applications Using Networked Workstations and Parallel Computers
(Pearson Prentice Hall, 2005).

[5] Nicholas Chen, et. al. Collective Communication Patterns (2009).
http://parlab.eecs.berkeley.edu/wiki/_media/patterns/
paraplop_g1_4.pdf

[6] Eun-Gyu Kim and Marc Snir. Wavefront Pattern.
http://www.cs.illinois.edu/~snir/PPP/patterns/wavefront.pdf

16

http://parlab.eecs.berkeley.edu/wiki/patterns/patterns
http://www.mcs.anl.gov/research/projects/mpi/tutorials/perf/
http://www.mcs.anl.gov/petsc/petsc-as/index.html
http://parlab.eecs.berkeley.edu/wiki/_media/patterns/paraplop_g1_4.pdf
http://parlab.eecs.berkeley.edu/wiki/_media/patterns/paraplop_g1_4.pdf
http://www.cs.illinois.edu/~snir/PPP/patterns/wavefront.pdf

	Problem
	Context
	Solution
	Forces
	Implementation
	Wide Halo
	Corners Cells
	Avoid Synchronization

	Known Uses
	Related Patterns

