
A Novel Parallel Sorting Algorithm for Contemporary Architectures

David R. Cheng Viral B. Shah John R. Gilbert Alan Edelman

May 20, 2007

1 Introduction

Traditionally, the field of scientific computing has been dominated by numerical methods. However, modern
scientific codes often combine numerical methods with combinatorial methods. Sorting, a widely studied
problem in computer science, is an important primitive for combinatorial scientific computing. As high
performance computers become more affordable due to multi-core CPUs and commodity clustering, more
and more scientific codes are written for parallel computers. Scientific programming environments such as
Matlab and Star-P provide sorting as a built-in function. Parallel sorting can also form a basic building
block to implement higher level combinatorial algorithms and computations with irregular communication
patterns and workloads - such as parallel sparse matrix computations [15].

We describe the design and implementation of an algorithm for parallel sorting on contemporary architec-
tures. Distributed memory architectures are widely in use today. The cost of communication is an order of
magnitude larger than the cost of computation on such architectures. Often, it is not enough to tune existing
algorithms. Newer architectures demand a fresh look at the problems being solved and new algorithms to
yield good performance. We propose a parallel sorting algorithm which moves a minimal amount of data
over the network. Our algorithm is close to optimal in both the computation and communication required.
It moves lesser data than widely used sample sorting algorithms, and is computationally a lot more efficient
on distributed and shared memory architectures.

Blelloch et al. [1] compare several parallel sorting algorithms on the CM–2, and report that a sampling
based sort and radix sort are good algorithms to use in practice. We first tried a sampling based sort, but
quickly ran into performance problems. The cost of sampling is often quite high, and sample sort requires a
redistribution phase at the end, so that the output has the desired distribution. The sampling process itself
requires “well chosen” parameters to yield “good” samples. We noticed that we can do away with both these
steps if we can determine exact splitters quickly. Saukas and Song [14] describe a quick parallel selection
algorithm. Our algorithm extends this work to efficiently find p − 1 exact splitters in O(p log n) rounds of
communication.

Our goal was to design a scalable, robust, portable and high performance sorting code which would form
a building block for higher level combinatorial algorithms. We built our code using standards based library
software such as the C++ STL (Standard Template Library) and MPI [6], which allows us to achieve our
goals of scalability, robustness and portability without sacrificing performance. Our code is highly modular,
which lets the user replace any stage of the algorithm with platform or application specific routines for higher
performance, if need be.

2 Algorithm Description

We have p processors to sort n total elements in a vector v. Assume that the input elements are already load
balanced, or evenly distributed over the p processors - this is not a requirement but makes the description and
analysis simpler. We rank the processors 1 . . . p, and define vi to be the elements held locally by processor
i. The distribution of v is a vector d where di = |vi|. We say v is evenly distributed if it is formed by the
concatenation v = v1 . . . vp, and di ≤ dn

p e for all i.

1

Algorithm.
Input: A vector v of n total elements, evenly distributed among p
processors.

Output: An evenly distributed vector w with the same distribution as v,
containing the sorted elements of v.

1. Sort the local elements vi into a vector v′i.

2. Determine the exact splitting of the local data:

(a) Compute the partial sums r0 = 0 and rj =
Pj

k=1 dk for j = 1 . . . p.

(b) Use a parallel select algorithm to find the elements e1, . . . , ep−1 of

global rank r1, . . . , rp−1, respectively.

(c) For each rj, have processor i compute the local index sij so that

rj =
Pp

i=1 sij and the first sij elements of v′i are no larger than ej.

3. Reroute the sorted elements in v′i according to the indices sij:

processor i sends elements in the range sij−1 . . . sij to processor j.

4. Locally merge the p sorted sub-vectors into the output wi.

Figure 1: Parallel sorting with exact splitters

We describe our algorithm in Figure 2. We assume the task is to sort the input in increasing order.
Naturally, the choice is arbitrary and any other comparison function may be used.

2.1 Local sort

The first step may invoke any local sort applicable to the problem at hand. It is beyond the scope of this study
to devise an efficient sequential sorting algorithm, as this problem is very well studied. We simply impose
the restriction that the algorithm used here should be identical to the one used for a baseline comparison on
a non-parallel computer. Define the computation cost for this algorithm on an input of size n to be Ts(n).
Therefore, the amount of computation done by processor i is just Ts(di). Since the local sorting must be
completed on each processor before the next step can proceed, the global cost is maxi Ts(di) = Ts(dn

p e). For
a comparison based sort, this is O(n

p lg n
p).

2.2 Exact splitting

This step is nontrivial, and the main result of this paper follows from the observation that exact splitting
over locally sorted data can be done efficiently.

The method used for simultaneous selection was given by Saukas and Song in [14], with two main
differences: local ranking is done by binary search rather than partition, and we perform O(lg n) rounds of
communication rather than terminating the selection process earlier. For completeness, the single selection
algorithm is described next.

2.2.1 Single selection

First, we consider the simpler problem of selecting just one target, an element of global rank1 r. The
algorithm for this task is motivated by the sequential methods for the same problem, most notably the one
given in [2].

Although it may be clearer to define the selection algorithm recursively, the practical implementation and
extension into simultaneous selection proceed more naturally from an iterative description. Define an active

1To handle the case of non-unique input elements, any element may actually have a range of global ranks. To be more
precise, we want to find the element whose set of ranks contains r.

2

range to be the contiguous sequence of elements in v′i that may still have rank r, and let ai represent its
size. Note that the total number of active elements is

∑p
i=1 ai. Initially, the active range on each processor

is the entire vector v′i and ai is just the input distribution di. In each iteration of the algorithm, a “pivot”
is found that partitions the active range in two. Either the pivot is determined to be the target element, or
the next iteration continues on one of the partitions.

Each processor i performs the following steps:

1. Let mi be the median of the active range of v′i. Broadcast it to all processors.

2. Weigh median mi by aiPp
k=1 ak

. Find the weighted median of medians mm. By definition, the weights

of the {mi|mi < mm} sum to at most 1
2 , as do the weights of the {mi|mi > mm}.

3. Find mm with binary search over the active range of v′i to determine the first and last positions fi and
li it can be inserted into the sorted vector v′i. Broadcast these two values.

4. Compute f =
∑p

i=1 fi and l =
∑p

i=1 li. The element mm has ranks [f, l] in v.

5. If r ∈ [f, l], then mm is the target element and we exit. Otherwise the active range is truncated as
follows:

Increase the bottom index to li + 1 if l < r; or decrease the top index to fi − 1 if r < f .

Loop on the truncated active range.

We can think of the weighted median of medians as a pivot, because it is used to split the input for the
next iteration. It is a well-known result that the weighted median of medians can be computed in linear time
[5, 13]. One possible way is to partition the values with the (unweighted) median, accumulate the weights
on each side of the median, and recurse on the side that has too much weight. Therefore, the amount of
computation in each round is O(p) +O(lg ai) +O(1) = O(p+ lg n

p) per processor.
Furthermore, as shown in [14], splitting the data by the weighted median of medians will eliminate at least

1
4 of the elements. Because the step begins with n elements under consideration, there are O(lg n) iterations.
The total single-processor computation for selection is then O(p lg n+ lg n

p lg n) = O(p lg n+ lg2 n).
The amount of communication is straightforward to compute: two broadcasts per iteration, for O(p lg n)

total bytes being transferred over O(lg n) rounds.

2.2.2 Simultaneous selection

The problem is now to select multiple targets, each with a different global rank. In the context of the sorting
problem, we want the p−1 elements of global rank d1, d1 +d2, . . . ,

∑p−1
i=1 di. One simple way to do this would

call the single selection problem for each desired rank. Unfortunately, doing so would increase the number of
communication rounds by a factor of O(p). We can avoid this inflation by solving multiple selection problems
independently, but combining their communication. Stated another way, instead of finding p− 1 paths one
after another from root to leaf of the binary search tree, we take a breadth-first search with breadth at most
p− 1 (see Figure ??).

To implement simultaneous selection, we augment the single selection algorithm with a set A of active
ranges. Each of these active ranges will produce at least one target. An iteration of the algorithm proceeds
as in single selection, but finds multiple pivots: a weighted median of medians for each active range. If an
active range produces a pivot that is one of the target elements, we eliminate that active range from A (as
in the leftmost branch of Figure 2). Otherwise, we examine each of the two partitions induced by the pivot,
and add it to A if it may yield a target. Note that as in iterations 1 and 3 in Figure 2, it is possible for both
partitions to be added.

In slightly more detail, we handle the augmentation by looping over A in each step. The local medians
are bundled together for a single broadcast at the end of Step 1, as are the local ranks in Step 3. For Step
5, we use the fact that each active range in A has a corresponding set of the target ranks: those targets that

3

1

2

3

4

5

Iteration
[1 2 3|]

[1 2|]

[1|2]

[1] [|2]

[3|]

[|3]

[3|]

Figure 2: Example execution of selecting three elements. Each node corresponds to a contiguous range of
v′i, and gets split into its two children by the pivot. The root is the entire v′i, and the bold traces which
ranges are active at each iteration. The array at a node represents the target ranks that may be found by
the search path, and the vertical bar in the array indicates the relative position of the pivot’s rank.

lie between the bottom and top indices of the active range. If we keep the subset of target ranks sorted, a
binary search over it with the pivot rank2 will split the target set as well. The left target subset is associated
with the left partition of the active range, and the right sides follow similarly. The left or right partition of
the active range gets added to A for the next iteration only if the corresponding target subset is non-empty.

The computation time necessary for simultaneous selection follows by inflating each step of the single
selection by a factor of p (because |A| ≤ p). The exception is the last step, where we also need to binary
search over O(p) targets. This amount to O(p+p2 +p lg n

p +p+p lg p) = O(p2 +p lg n
p) per iteration. Again,

there are O(lg n) iterations for total computation time of O(p2 lg n+ p lg2 n).
This step runs in O(p) space, the scratch area needed to hold received data and pass state between

iterations.
The communication time is similarly inflated: two broadcasts per round, each having one processor send

O(p) data to all the others. The aggregate amount of data being sent is O(p2 lg n) over O(lg n) rounds.

2.2.3 Producing indices

Each processor computes a local matrix S of size p × (p + 1). Recall that S splits the local data v′i into
p segments, with sk0 = 0 and skp = dk for k = 1 . . . p. The remaining p − 1 columns come as output of
the selection. For simplicity of notation, we briefly describe the output procedure in the context of single
selection; it extends naturally for simultaneous selection. When we find that a particular mm has global
ranks [f, l) 3 rk, we also have the local ranks fi and li. There are rk − f excess elements with value mm

that should be routed to processor k. In order to get a stable sorting algorithm, we assign ski from i = 1 to
p, taking as many elements as possible without overstepping the excess. More precisely,

ski = min

fi + (rk − f)−
i−1∑
j=1

(skj − fj), li


The computation requirements for this step are O(p2) to populate the matrix S; the space used is also

O(p2).

2.3 Element routing

The minimum amount of communication in a parallel sorting algorithm involves moving elements from the
locations they start out to where they eventually belong (in the sorted order). An optimal parallel sorting

2Actually, we binary search for the first position f may be inserted, and for the last position l may be inserted. If the two
positions are not the same, we have found at least one target.

4

0 1 2 3 4 5 6 7 8 9 10
0
1
2
3
4

Height

Figure 3: An example of tree merging when the number of processors is not a power of 2.

algorithm will communicate every element from its current location to a location in remote memory at most
once. Our algorithm is optimal in this sense. For instance, if the input is already sorted, no data movement
occurs. However, if the input is in reverse sorted order, almost all elements may need to be communicated
to their destinations. This amount of data communicated in this element routing step is θ(n).

2.4 Merging

Now each processor has p sorted sub-vectors, and we want to merge them into a single sorted sequence. The
simple approach we take for this problem is to conceptually build a binary tree on top of the vectors. To
handle the case of p that are not powers of 2, we say a node of height i has at most 2i leaf descendants,
whose ranks are in [k · 2i, (k + 1) · 2i) for some k (Figure 3). It is clear that the tree has height ≤ dlg pe.

For reasons of cache efficiency, we merge pairs of sub-vectors out-of-place from this tree. Cache oblivious
algorithms may yield better performance across a variety of architectures. We refer the reader to the literature
on cache-oblivious data structures and algorithms [3, 8].

Notice that a merge will move a particular element exactly once (from one buffer to its sorted position in
the other buffer). Furthermore, there is at most one comparison for each element move. Finally, every time
an element gets moved, it goes into a sorted sub-vector at a higher level in the tree. Therefore each element
moves at most dlg pe times, for a total computation time of didlg pe. Again, we take the time of the slowest
processor, for computation time of dn

p edlg pe.

2.5 Theoretical performance

Let the total computation time T ∗s (n, p) = 1
pTs(n) for 1 ≤ p ≤ P . This is the linear speedup in p over any

sequential sorting algorithm with running time Ts(n). We examine the time complexities of each step of the
algorithm, which results in the total computation time:

T ∗s (n, p) +O(p2 lg n+ p lg2 n) + (dn
p e if p not a power of 2) (1)

The total space usage aside from the input is O(p2 + n
p). We will provide proofs of the bounds on

theoretical computation and communication in the full version of our paper.
We want to compare this algorithm against an arbitrary parallel sorting algorithm with the following

properties:

1. Total computation time T ∗s (n, p) = 1
pTs(n) for 1 ≤ p ≤ P , linear speedup in p over any sequential

sorting algorithm with running time Ts(n).

2. Minimal amount of cross-processor communication T ∗c (v), the number of elements that begin and end
on different processors.

We will not go on to claim that such an algorithm is truly an optimal parallel algorithm, because we do
not require Ts(n) to be optimal. However, optimality of Ts(n) does imply optimality of T ∗s (n, p) for p ≤ P .
Briefly, if there were a faster T ′s(n, p) for some p, then we could simulate it on a single processor for total
time pT ′s(n, p) < pT ∗s (n, p) = Ts(n), which is a contradiction.

5

2.6 Computation

We can examine the total computation time by adding together the time for each step, and comparing
against the theoretical T ∗s (n, p):

Ts(dn
p e) +O(p2 lg n+ p lg2 n) + dn

p edlg pe

≤ 1
p
Ts(n+ p) +O(p2 lg n+ p lg2 n) + dn

p edlg pe

= T ∗s (n+ p, p) +O(p2 lg n+ p lg2 n) + dn
p edlg pe

The inequality follows from the fact that T ∗s (n) = Ω(n).
It is interesting to note the case where a comparison sort is necessary. Then we use a sequential sort with

Ts(n) ≤ cdn
p e lgdn

p e for some c ≥ 1. We can then combine this cost with the time required for merging (Step
4):

cdn
p e lgdn

p e+ dn
p edlg pe

≤ cdn
p e lg(n+ p) + dn

p e(dlg pe − c lg p)

≤ cdn
p e lg n+ cdn

p e lg(1 + p
n) + dn

p e(dlg pe − c lg p)

≤ cn lg n
p

+ lg n+ 2c+ (dn
p e if p not a power of 2)

With comparison sorting, the total computation time becomes:

T ∗s (n, p) +O(p2 lg n+ p lg2 n) + (dn
p e if p not a power of 2) (2)

Furthermore, T ∗s (n, p) is optimal to within the constant factor c.

2.7 Communication

We have already established that the exact splitting algorithm will provide the final locations of the elements.
The amount of communication done in the routing phase is then the optimal amount. Therefore, total cost
is:

T ∗c (v) in 1 round +O(p2 lg n) in lg n rounds

2.7.1 Space

The total space usage aside from the input is:

O

(
p2 +

n

p

)

2.8 Requirements

Given these bounds, it is clear that this algorithm is only practical for p2 ≤ n
p ⇒ p3 ≤ n. Returning to

the formulation given earlier, we have p = bn1/3c. This requirement is a common property of other parallel
sorting algorithms, particularly sample sort (i.e. [1, 16, 12], as noted in [11]).

2.9 Analysis in the BSP Model

A bulk-synchronous parallel computer, described in [17], models a system with three parameters: p, the
number of processors; L, the minimum amount of time between subsequent rounds of communication; and

6

g, a measure of bandwidth in time per message size. Following the naming conventions of [10], define π to
be the ratio of computation cost of the BSP algorithm to the computation cost of a sequential algorithm.
Similarly, define µ to be the ratio of communication cost of the BSP algorithm to the number of memory
movements in a sequential algorithm. We say an algorithm is c-optimal in computation if π = c + o(1) as
n→∞, and similarly for µ and communication.

We may naturally compute the ratio π to be Equation 2 over T ∗s (n, p) = cn lg n
p . Thus,

π = 1 +
p3

cn
+
p2 lg n
cn

+
1

c lg n
= 1 + o(1) as n→∞

Furthermore, there exist movement-optimal sorting algorithms (i.e. [7]), so we compute µ against gn
p . It is

straightforward to verify that the BSP cost of exact splitting is O(lg nmax{L, gp2 lg n}), giving us

µ = 1 +
pL lg n
gn

+
p3 lg2 n

n
= 1 + o(1) as n→∞

Therefore the algorithm is 1-optimal in both computation and communication.
Exact splitting dominates the cost beyond the local sort and the routing steps. The total running time

is therefore O(n lg n
p + gn

p + lg nmax{L, gp2 lg n}). This bound is an improvement on that given by [11], for
small L and p2 lg2 n. The tradeoff is that we have decreased one round of communicating much data, to use
many rounds of communicating little data. Our experimental results indicate that this choice is reasonable.

3 Experimental results

The communication cost of our sorting algorithm is near optimal if p is small. Furthermore, the sequential
computation speedup is near linear if p � n. Notice that the speedup is given with respect to a sequential
algorithm, rather than to itself with small p. The intention is that efficient sequential sorting algorithms
and implementations can be developed without any consideration for parallelization, and then be simply
dropped in for good parallel performance.

We now turn to empirical results, which suggest that the exact splitting uses little computation and
communication time.

3.1 Experimental setup

We implemented our parallel sorting algorithm in C++ using MPI [6] for communication. The motivation is
for our code to be used as a library with a simple interface; it is therefore templated, and comparison based.

We use std::sort and std::stable sort from the C++ Standard Template Library (STL) library for
sequential sorting.The C++ STL has one of the fastest general purpose sorting routines available [4].

We use MPI (Message Passing Interface) for communication. It is the most portable and widely used
method for communication in parallel computing. Since vendor optimized MPI implementations are available
on most platforms nowadays, we expect reasonable performance on distributed as well as shared memory
architectures. We use the MPI libraries provided by the SGI MPT on the Altix, and OpenMPI [9] on clusters.

Our choice of the C++ STL sequential sorting routines and MPI allows our code to be robust, scalable and
portable without sacrificing performance. We tested our implementation on an SGI Altix and a commodity
cluster. The SGI Altix had 256 Itanium 2 processors and 4TB of RAM in a single system image. The
beowulf cluster had 32 Xeon processors and 3 GB of memory per node connected via gigabit ethernet.

We run every test instance twice, timing only the second invocation. As a result, setup time such as page
table initializations etc. are not counted in our timings.

Figure 3.1 shows the scaling of our algorithm as the same number of elements are sorted on different
numbers of processors. We do not provide comparison to sequential performance because the datasets do not
fit on any single processor. The largest problem we solved is sorting 100 billion elements with 254 processors

7

Figure 4: Scalability tests are performed for a fixed problem size, while changing the number of processors.
Good scaling is observed on shared memory architectures (left) as well as on clusters (right).

Figure 5: Scalability tests are performed for a fixed problem size while changing the number of processors.
Good scaling is observed on large problems on shared memory architectures (left) as well as on clusters
(right).

8

Figure 6: The 45 degree line represents perfect scaling. As the problem size gets larger, better scaling is
observed. However, for small to moderate sized problems, the scaling is poor - as expected on beowulf
clusters.

in under 4 minutes. Figure 5 shows the scaling of our algorithm with the problem size, the number of
processors being fixed. In all the cases, we observe very good scaling on very large problem sizes on a shared
memory Altix as well as on a cluster.

For clusters, we also present sequential speedup in Figure 6. For small problems, we do not observe
good scaling with small problem sizes. As the problems get larger, we observe better scaling as expected.
For the largest problem size (1 billion), it is not possible to run the code on small numbers of processors.
We extrapolate the performance for small numbers of processors, and present actual performance for 16
processors and higher.

We also experimented with cache oblivious strategies. We tried using funnel sort [4] for sequential sorting,
but found it to be slower than the STL sorting algorithms. On the other hand, a funnel merge did yield
slightly better performance than the out-of-place tree merge we use in our code. We compare the performance
of the two merging algorithms on the Altix in Figure 7

3.2 Comparison with Sample sorting

Several prior works [1, 12, 16] conclude that sample sort is the most efficient parallel sorting algorithm for
large n and p. Such algorithms are characterized by having each processor distribute its dn

p e elements into
p buckets, where the bucket boundaries are determined by some form of sampling. Once the buckets are
formed, a single round of all-to-all communication follows, with each processor i receiving the contents of
the ith bucket from everybody else. Finally, each processor performs some local computation to place all its
received elements in sorted order.

One of the problems we encountered with sample sorting was the cost of picking samples, and picking
splitters from those samples. Since we are interested in sorting extremely large amounts of data, the sampling
step and picking splitters turns out to be very expensive.

The other drawback of sample sort is that the final distribution of elements may be uneven. Much of the
work in sample sorting is directed towards reducing the amount of imbalance, providing schemes that have

9

Figure 7: The performance of cache-oblivious merging is compared with simple tree based merging. Cache
oblivious outperforms tree merging on very large problem sizes with a large number of processors by up to
15%. The savings are much smaller as a fraction of total sorting time.

theoretical bounds on the largest amount of data a processor can collect in the routing. The problem with
one processor receiving too much data is that the computation time in the subsequent steps is dominated by
this one overloaded processor. Furthermore, some applications require an exact output distribution; this is
often the case when sorting is just one part of a multi–step process. In such cases, an additional redistribution
step would be necessary, where elements across the boundaries are communicated.

We compare the performance of our algorithm with two different implementations of sampling based
sorts in Figure 8. “Psort with median splitters” is our parallel sorting algorithm which uses medians on
each processor to pick exact splitters. “Psort with sampled splitters” is the same algorithm, but it uses
random sampling to pick splitters instead of medians. “Sample sort” is the traditional sampling based
sorting algorithm, and usually has the following steps:

1. Pick splitters by sampling or oversampling.

2. Partition local data to prepare for the communication phase.

3. Route elements to their destinations.

4. Sort local data.

5. Redistribute to adjust processor boundaries.

The steps in Sample sort differ from the Psort algorithms in two ways. Psort sorts local data first, whereas
Sample sort sorts local data as the last step in the algorithm. Sample sort may need to do an extra round
of communication to adjust processor boundaries if the resulting distribution is different from the required
one.

Our algorithm works much faster than the traditional sample sort although both show good scalability.
We do not experiment with a wide range of sampling methods - picking p2 splitters for p processors. Since
our input is uniformly distributed, we do get good splitters. The main performance differences are explained
by:

1. Partitioning local data in Sample sort before the element routing step is much slower than merging
streams of data received from other processors in Psort. This is because merging is much more cache-
friendly than partitioning.

10

Figure 8: Several parallel sorting algorithms are compared. A parallel sort with exact splitters determined
through parallel selection outperforms both implementations of sample sort.

2. Sample sort also has to perform an extra round of communication to re-balance the data distribution,
which adds extra penalty to performance. If the sampled splitters do not approximate the distribution
well, the load imbalance may be large and this extra round of communication may incur a larger
penalty.

4 Conclusion

We present a high performance, highly scalable parallel sorting algorithm which compares favorably against
the traditional sample sort algorithm. Our code is uses only the C++ Standard Template Library and MPI,
making it robust and portable.

There may be room for further improvement in our implementation. The cost of merging can be reduced
by interleaving the p-way merge step with the element rerouting, merging sub-arrays as they are received.
Alternatively, using a data structure such as a funnel (i.e. [3, 8]) may allow better cache efficiency to reduce
the merging time. Another potential area of improvement is the exact splitting. Instead of traversing search
tree to completion, a threshold can be set; when the active range becomes small enough, a single processor
gathers all the remaining active elements and completes the computation sequentially. This method, used
by Saukas and Song in [14], helps reduce the number of communication rounds in the tail end of the step.
Finally, this parallel sorting algorithm will directly benefit from future improvements to sequential sorting
and all–to–all communication schemes.

To the best of our knowledge, we have presented a new deterministic algorithm for parallel sorting
that makes a strong case for exact splitting on modern high performance computers. Leaving aside some
intricacies of determining the exact splitters, the algorithm is conceptually simple to understand, analyze,
and implement. Our implementation powers the Star-P sort and we hope our efforts will guide other
implementations.

11

References

[1] G. E. Blelloch, C. E. Leiserson, B. M. Maggs, C. G. Plaxton, S. J. Smith, and M. Zagha. A comparison of
sorting algorithms for the connection machine CM-2. In Proceedings of the third annual ACM symposium
on Parallel algorithms and architectures, pages 3–16. ACM Press, 1991.

[2] M. Blum, R. W. Floyd, V. Pratt, R. L. Rivest, and R. E. Tarjan. Time bounds for selection. Journal
of Computer and System Sciences, 7:448–460, August 1973.

[3] G. S. Brodal and R. Fagerberg. Funnel heap - a cache oblivious priority queue. In Proceedings of the
13th International Symposium on Algorithms and Computation, pages 219–228. Springer-Verlag, 2002.

[4] G. S. Brodal, R. Fagerberg, and K. Vinther. Engineering a cache-oblivious sorting algorithm. In L. Arge,
G. F. Italiano, and R. Sedgewick, editors, Proceedings of the Sixth Workshop on Algorithm Engineering
and Experiments and the First Workshop on Analytic Algorithmics and Combinatorics, pages 4–17.
SIAM, 2004.

[5] T. T. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to algorithms. MIT Press, 1990.

[6] J. J. Dongarra, S. W. Otto, M. Snir, and D. Walker. A message passing standard for MPP and
workstations. Communications of the ACM, 39(7):84–90, 1996.

[7] G. Franceschini and V. Geffert. An in-place sorting with O(n log n) comparisons and O(n) moves.
Journal of the ACM, 52(4):515–537, 2005.

[8] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious algorithms. In Proceedings
of the 40th Annual Symposium on Foundations of Computer Science, page 285, Los Alamitos, CA, USA,
1999. IEEE Computer Society.

[9] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. Dongarra, J. M. Squyres, V. Sahay, P. Kambadur,
B. Barrett, A. Lumsdaine, R. H. Castain, D. J. Daniel, R. L. Graham, and T. S. Woodall. Open MPI:
Goals, concept, and design of a next generation MPI implementation. In D. Kranzlmüller, P. Kacsuk,
and J. Dongarra, editors, PVM/MPI, volume 3241 of Lecture Notes in Computer Science, pages 97–104.
Springer, 2004.

[10] A. V. Gerbessiotis and C. J. Siniolakis. Deterministic sorting and randomized median finding on the
bsp model. In SPAA, pages 223–232, 1996.

[11] M. T. Goodrich. Communication-efficient parallel sorting. In STOC, pages 247–256, 1996.

[12] D. R. Helman, J. JáJá, and D. A. Bader. A new deterministic parallel sorting algorithm with an
experimental evaluation. J. Exp. Algorithmics, 3:4, 1998.

[13] A. Reiser. A linear selection algorithm for sets of elements with weights. Information Processing Letters,
7(3):159–162, 1978.

[14] E. L. G. Saukas and S. W. Song. A note on parallel selection on coarse grained multicomputers.
Algorithmica, 24(3/4):371–380, 1999.

[15] V. Shah and J. R. Gilbert. Sparse matrices in Matlab*P: Design and implementation. In L. Bougé
and V. K. Prasanna, editors, HiPC, volume 3296 of Lecture Notes in Computer Science, pages 144–155.
Springer, 2004.

[16] H. Shi and J. Schaeffer. Parallel sorting by regular sampling. Journal of Parallel and Distributed
Computing, 14(4):361–372, 1992.

[17] L. G. Valiant. A bridging model for parallel computation. Commun. ACM, 33(8):103–111, 1990.

12

http://doi.acm.org/10.1145/113379.113380
http://doi.acm.org/10.1145/113379.113380
http://portal.acm.org/citation.cfm?id=646345.689897
http://doi.acm.org/10.1145/1227161.1227164
http://mitpress.mit.edu/algorithms/
http://doi.acm.org/10.1145/233977.234000
http://doi.acm.org/10.1145/233977.234000
http://doi.acm.org/10.1145/1082036.1082037
http://doi.ieeecomputersociety.org/10.1109/SFFCS.1999.814600
http://www.open-mpi.org/papers/euro-pvmmpi-2004-overview/euro-pvmmpi-2004-overview.pdf
http://www.open-mpi.org/papers/euro-pvmmpi-2004-overview/euro-pvmmpi-2004-overview.pdf
http://doi.acm.org/10.1145/237502.237561
http://doi.acm.org/10.1145/237502.237561
http://dx.doi.org/10.1137/S0097539795294141
http://doi.acm.org/10.1145/297096.297128
http://doi.acm.org/10.1145/297096.297128
http://dx.doi.org/10.1007/PL00008268
http://www.springerlink.com/content/f47tmemb51frv14x/
http://dx.doi.org/10.1016/0743-7315(92)90075-X
http://doi.acm.org/10.1145/79173.79181

	Introduction
	Algorithm Description
	Local sort
	Exact splitting
	Single selection
	Simultaneous selection
	Producing indices

	Element routing
	Merging
	Theoretical performance
	Computation
	Communication
	Space

	Requirements
	Analysis in the BSP Model

	Experimental results
	Experimental setup
	Comparison with Sample sorting

	Conclusion

