
CS 219: Sparse matrix algorithms: Homework 5

Assigned May 8, 2013

Due by class time Wednesday, May 15

Problem 1. The object of this problem is to measure experimentally the convergence rate
of CG on the (three-dimensional) model problem with various versions of incomplete factorization
preconditioning and with various orderings. You can generate the n-by-n matrix of the 3D model
problem by

A = grid3d(k);

where n = k3. (The routine grid3d.m is in the meshpart subdirectory of the Matlab codes linked
from the course web site.) Generate a right-hand side b as a random n-vector.

For each choice of k that you make, experiment with the following four permutations of the
matrix A:

• The natural ordering, as generated by grid3d.

• The bandwidth-limiting heuristic “reverse Cuthill-McKee,” as implemented by Matlab’s symrcm.

• The approximate minimum degree heuristic, as implemented by Matlab’s amd.

• A “red-black” ordering, in which the vertices of the mesh are colored alternately red and black
(with two adjacent nodes always having different colors), and then the matrix is permuted
to put all the red nodes before all the black nodes. You should write a Matlab routine to
produce this permutation. Your Matlab routine can be almost a 1-liner if you always take k
to be odd, which is all right for this homework.

For each of these orderings, you should explore the following preconditioning methods:

• No preconditioning.

• Precondition A with IC0 (via Matlab’s cholinc routine).

• Precondition A with MIC (via Matlab’s cholinc routine, with different parameters). Matlab’s
code doesn’t produce an MIC0 ordering (I think), but it does produce a drop-tolerance version.
You should experiment with a range of drop tolerances; part of the object of this part of
the problem is to explore the drop-tolerance tradeoff between reducing the number of CG
iterations (because the preconditioner is better) and increasing the number of operations per
iteration (because the preconditioner is denser).

Use conjugate gradient, via Matlab’s pcg routine, to solve the system Ax = b to a tolerance
of 10−8. Do this for as large a range of values of k as you can (all odd, if you wish). In each
case, you should record the number of CG iterations to convergence; the number of nonzeros in the
incomplete factor; and an estimate of the number of flops per CG iteration (which depends on the

1



number of nonzeros in the preconditioner). Use log-log plots (generated by Matlab) to estimate
how the number of iterations and the number of flops scale as functions of n.

Compare your results to some of the entries in the table of complexities from the May 8 class.
Also, summarize your conclusions about the interacting effects of ordering permutations and drop-
tolerance fill. Do different orderings perform better at different levels of drop tolerance?

Problem 2. You may use Matlab for this problem or do it by hand. I’m not sure which is
easier.

Let A be the 9-by-9 matrix of the two-dimensional model problem on a 3-by-3 grid, with all
diagonal elements equal to 4. This matrix is generated, for example, by A = grid5(3) in Matlab.

2(a) Show A factored as A = UUT , where U is a matrix that has (i) 9 rows, (ii) no more than
2 nonzeros per column, and (iii) if a column has two nonzeros a and b, then a = −b. Note that U
is not square.

2(b) Show the graph of the matrix A, with weights (all 1) on the edges for the nonzero values.
Show a maximum-weight spanning tree for that graph. (There are a lot of choices since the weights
are all the same.) Show the matrix B that is the support-graph preconditioner corresponding to
the spanning tree you chose.

2(c) Show B factored as B = V V T , where V is a matrix that satisfies the same three conditions
as U above.

2(d) Find a matrix W with U = VW . Note that W is probably not square either.

2(e) What are the 2-norm, the 1-norm, the ∞-norm and the Frobenius norm of W? What is
‖W TW‖1? What is the condition number of A? What is the condition number of B−1A? (Answers
computed by Matlab are ok.)

2


