
CS 219: Sparse matrix algorithms: Homework 4

Assigned April 23, 2018

Due by class time Monday, April 30

Problem 1a. Find a 2-by-2 matrix A that is symmetric and nonsingular, but for which neither
A nor −A is positive definite. What are the eigenvalues of A? Find a 2-vector y such that yTAy < 0.

Problem 1b. For A as above, find a 2-vector b such that the conjugate gradient algorithm,
when started with the zero vector as an initial guess, does not converge to the solution of Ax = b.
Show in detail what happens on the first two iterations of CG. How do you know it won’t converge
to the right answer?

Problem 2. In this problem you’ll actually prove that CG works in at most n steps, assuming
that real numbers are represented exactly. (This is not a realistic assumption in floating-point
arithmetic, or on any computer with a finite amount of hardware, but it gives a solid theoretical
underpinning to CG.) Let A be an n-by-n symmetric, positive definite matrix, and let b be an
n-vector.

We start with the idea of searching through n-dimensional space for the value of x that minimizes
f(x) = 1

2x
TAx− bTx, which is the x that satisfies Ax = b. We begin by picking a set of n linearly

independent search directions, called d0, d1, . . . , dn−1. (Actually we don’t know them in advance,
but that’s a detail.) At each iteration we proceed along the next direction until we are “lined up”
with the final answer, the value of x at which Ax = b. In n-space, once we are lined up with the
answer from n independent directions, we will be exactly on the answer.

The first magic of CG is that for the right kind of search directions, there is a way to define
“lined up” for which we can actually compute how far to go along each search direction. The key
definition uses A-conjugate vectors. Then “lined up” means that the error ei = xi − x is exactly
crossways to the search direction di−1, not in the sense of being perpendicular (which would mean
eTi di−1 = 0), but in the sense of being A-conjugate: eTi Adi−1 = 0.

An informal way to say that is, we proceed along the search direction until we are lined up with
the solution as seen through A-glasses. The reason for lining up through A-glasses rather than bare
eyes is that we can compute where to stop without knowing where the final answer is. We can’t see
and compute with x-space directly, but we can see the space where Ax and b live. And after lining
up each of n independent directions in an n-dimensional space we are guaranteed to be sitting on
top of the right answer, whether the independent directions are the conventional coordinate axes
or the A-conjugate axes we see through our A-glasses.

To go along with this, we need to choose the search directions themselves to be mutually A-
conjugate: we will require each di to be A-conjugate to all the earlier dj ’s, so dTi Adj = 0 if i 6= j.

2(a) Suppose we are given i mutually A-conjugate vectors d0, . . . , di−1. Suppose x0 = 0, and
for each j < i we have xj = xj−1 +αjdj−1. Write down and prove correct an expression for a scalar
αi such that, if we take xi = xi−1 + αidi−1, then the error ei = xi − x is A-conjugate to di−1.
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Now, how do we get a sequence of A-conjugate directions to search along? In fact, we can
start with any sequence of linearly independent directions, and convert them to A-conjugate di-
rections by projecting out all the earlier search directions from each one, using Gram-Schmidt
orthogonalization, as follows.

2(b) Suppose we are given i mutually A-conjugate vectors d0, . . . , di−1, and one more vector
ui that does not lie in their span. Write down and prove correct an expression for scalars βi,j such
that, if we take

di = ui +
i−1∑
j=0

βi,jdj ,

then di is A-conjugate to all the earlier dj .

Finally, the second magic of CG is that there is a way to choose a particular sequence of
directions for which the Gram-Schmidt orthogonalization is really easy. If we choose the right
directions to start with, we only need to project out one earlier direction, not all i of them. This
is why the cost of one CG iteration is only O(n), not O(n2).

2(c) Suppose the vectors d0, . . . , di−1, the vectors x0, . . . , xi−1, and the scalars αj and βi,j are
as above. Suppose in addition that at each stage we take ui = b−Axi (which is also known as ri,
the residual). First, prove that if this choice of ui lies in the span of d0, . . . , di−1, the CG iteration
can stop with xi = x. Second, show that this direction ui is already A-conjugate to all of the dj
except di−1, and therefore we can take βi,j = 0 for j < i− 1.

2(d) One last detail: Prove that the CG code on the course slide does in fact compute the
residual ri correctly; that is, prove that ri−1 − αiAdi−1 is in fact equal to b−Axi.
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