## A

# Multigrid Tutorial 

By
Wilfiam L. Briggs

Presented by
Van Emden $\mathcal{H}$ enson
Center for Applied Scientific Computing
Lawrence Livermore National Laboratory
This work was performed, in part, under the auspices of the United States Department of Energy by University of California Lawrence Livermore $\mathcal{N}$ (ational Laboratory under contract number W-7405-Eng-48.

## Outline

- Model Problems
- Basic Iterative Scfimes
- Convergence; experiments
- Convergence; analysis
- Development of Multigrid
- Coarse-grid correction
- Nested Iteration
- Restriction and Interpolation
- Standard cycles: $\mathcal{M V}, \mathcal{F M} G$
- Performance
- Implementation
- storage and computation costs
- Performance, (cont)
- Convergence
- Higher dimensions
- Experiments
- Some Tfieory
- The spectral picture
- Tfe subspace picture
- The whole picture!
- Complications
- Anisotropic operators and grids
- Discontinuous or anis otropic coefficients
- Nonline ar Problems: FAS


## Suggested Reading

- Brandt, "Multi-levelAdaptive Solutions to Boundary Value Problems," Math Comp., 31, 1977, pp333-390.
- Brandt, "1984 Guide to Multigrid Development, wit $斤$ applications to computational fluid dynamics."
- Briggs, "A Multigrid $\mathcal{T} u$ torial," SIAM publications, 1987.
- Briggs, Henson, and McCormick, "A Multigrid Tutorial, $2^{\text {nd }}$ Edition," S IAM publications, 2000.
- Hackbusch, Multi-Grid Methods and Applications," 1985.
- Hackbusch and Trotten6urg, "Multigrid Metrods, Springer. Verlag, 1982"
- Stüben and Trottenburg, "Multigrid Metfods,"1987.
- Wesseling, "An Introduction to Multigrid Metfods," Wylie, 1992


## Multilevel methods have been developed for...

- Elfiptic PDEs
- Purely alge braic problems, with no physicalgrid; for example, network and geodetic survey problems.
- Image reconstruction and tomograpfy
- Optimization (e.g., the travelling salesman and long transportation problems)
- Statisticalmechanics, Ising spin models.
- Quantum chromodynamics.
- Quadrature and generalized $\mathfrak{F F}$ Is.
- Integralequations.


## Model Problems

- One-dimensional boundary value problem:

$$
\begin{aligned}
-u^{\prime \prime}(x) & +\sigma u(x)=f(x) \quad 0<x<1, \quad \sigma>0 \\
u(0) & =u(1)=0
\end{aligned}
$$

- Grid: $h=\frac{1}{N}, x_{i}=i h, \quad i=0,1, \ldots N$

- Let $v_{i} \approx u\left(x_{i}\right)$ and $f_{i} \approx f\left(x_{i}\right)$ for $i=0,1, \ldots N$

We use Taylor Series to derive an approximation to $u^{\prime \prime}(x)$

- We approximate the second derivative using Taylor series:

$$
\begin{aligned}
& u\left(x_{i+1}\right)=u\left(x_{i}\right)+h u^{\prime}\left(x_{i}\right)+\frac{h^{2}}{2!} u^{\prime \prime}\left(x_{i}\right)+\frac{h^{3}}{3!} u^{\prime \prime \prime}\left(x_{i}\right)+O\left(h^{4}\right) \\
& u\left(x_{i-1}\right)=u\left(x_{i}\right)-h u^{\prime}\left(x_{i}\right)+\frac{h^{2}}{2!} u^{\prime \prime}\left(x_{i}\right)-\frac{h^{3}}{3!} u^{\prime \prime \prime}\left(x_{i}\right)+O\left(h^{4}\right)
\end{aligned}
$$

- Summing and solving,

$$
u^{\prime \prime}\left(x_{i}\right)=\frac{u\left(x_{i+1}\right)-2 u\left(x_{i}\right)+u\left(x_{i-1}\right)}{h^{2}}+O\left(h^{2}\right)
$$

We approximate the equation with a finite difference scheme

- We approximate the $\mathcal{B} V \mathcal{P}$

$$
\begin{aligned}
-u^{\prime \prime}(x) & +\sigma u(x)=f(x) \quad 0<x<1, \quad \sigma>0 \\
u(0) & =u(1)=0
\end{aligned}
$$

with the finite difference scheme:

$$
\begin{aligned}
& \frac{-v_{i-1}+2 v_{i}-v_{i+1}}{h^{2}}+\sigma v_{i}=f_{i} \quad i=1,2, \ldots N-1 \\
& v_{0}=v_{N}=0
\end{aligned}
$$

## The discrete model problem

- Letting $\boldsymbol{v}=\left(v_{1}, v_{2}, \ldots, v_{N-1}\right)^{T}$ and

$$
\boldsymbol{f}=\left(f_{1}, f_{2}, \ldots, f_{N-1}\right)^{T}
$$

we obtain the matrix equation $A \boldsymbol{v}=\boldsymbol{f}$ where $A$ is $(\mathcal{N}-1) \times(\mathfrak{N}-1)$, symmetric, positive definite, and

## Solution Metfods

- Direct
- Gaussian elimination
- Factorization
- Iterative
- gacobi
- Gauss-Seidel
- Conjugate Gradient, etc.
- Note: This simple modelproblem can be solved very efficiently in several ways. Pretend it can't, and that it is very fiard, because it sfares many characteristics with some very fiard problems.
$\mathcal{A}$ two-dimensional boundary value problem
- Consider the problem:

$$
\begin{gathered}
-u_{x x}-u_{y y}+\sigma u=f(x, y), \quad 0<x<1, \quad 0<y<1 \\
u=0, x=0, x=1, y=0, y=1 ; \quad \sigma>0
\end{gathered}
$$

- Where the grid is given:
$h_{x}=\frac{1}{M}, \quad h_{y}=\frac{1}{N}$,
$\left(x_{i}, y_{j}\right)=\left(i h_{x}, j h_{y}\right)$
$0 \leq i \leq M$
$0 \leq j \leq N$


## Discretizing the $2 \mathcal{D}$ problem

- Let $v_{i j} \approx u\left(x_{i}, y_{j}\right)$ and $f_{i j} \approx f\left(x_{i}, y_{j}\right)$. Again, using $2^{\text {nd }}$ order finite differences to approximate $u_{x x}$ and uyy we obtain the approximate equation for the unknown $u\left(x_{i}, y_{j}\right)$, for $i=1,2, \ldots M-1$ and $j=1,2, \ldots, \mathcal{X}-1$ :

$$
\begin{aligned}
& \frac{-v_{i-1, j}+2 v_{i j}-v_{i+1, j}}{h_{x}^{2}}+\frac{-v_{i, j-1}+2 v_{i j}-v_{i, j+1}}{h_{y}^{2}}+\sigma v_{i j}=f_{i j} \\
& v_{i j}=0, \quad i=0, \quad i=M, \quad j=0, \quad j=M
\end{aligned}
$$

- Ordering the unknowns (and also the vector $f$ ) lexicograpfically by y-lines:
$v=\left(v_{1,1}, v_{1,2}, \ldots, v_{1, N-1}, v_{2,1}, v_{2,2}, \ldots v_{2, N-1}, \ldots, v_{N-1,1}, v_{N-1,2}, \ldots, v_{N-1, N-1}\right)^{T}$


## Yields the linear system

- We obtain a block-tridiagonalsystem $\mathfrak{A v}=f$ :

$$
\left(\begin{array}{cccccc}
A_{1} & -I_{y} & & & & \\
-I_{y} & A_{2} & -I_{y} & & & \\
& -I_{y} & A_{3} & -I_{y} & & \\
& & & & & \\
& & & & -I_{y} & A_{N-2} \\
& & & & -I_{y} & A_{N-1}
\end{array}\right)\left(\begin{array}{c}
v_{1} \\
v_{2} \\
v_{3} \\
\\
v_{N-1}
\end{array}\right)=\left(\begin{array}{c}
f_{1} \\
f_{2} \\
f_{3} \\
\\
f_{N-1}
\end{array}\right)
$$

where $I_{y}$ is a diagonal matrix with $\frac{1}{h_{y}^{2}}$ on the diagonal and

$$
A_{i}=\left(\begin{array}{ccccc}
\frac{1}{h_{x}^{2}}+\frac{1}{h_{y}^{2}}+\sigma & -\frac{1}{h_{x}^{2}} & & & \\
-\frac{1}{h_{x}^{2}} & \frac{1}{h_{x}^{2}}+\frac{1}{h_{y}^{2}}+\sigma & -\frac{1}{h_{x}^{2}} & & \\
& -\frac{1}{h_{x}^{2}} & \frac{1}{h_{x}^{2}}+\frac{1}{h_{y}^{2}}+\sigma & -\frac{1}{h_{x}^{2}} & \\
& & & \ddots & \ddots \\
& & & & -\frac{1}{h_{x}^{2}} \frac{1}{h_{x}^{2}}+\frac{1}{h_{y}^{2}}+\sigma
\end{array}\right)
$$

## Iterative Metfods for Linear Systems

- Consider $\mathcal{A} u=f$ where $\mathcal{A}$ is $\mathfrak{N x} \mathcal{N}$ and let vbe an approximation to $u$.
- Two important measures:
- The Error: $e=u-v$, with norms

$$
\|e\|_{\infty}=\max \left|e_{i}\right| \quad\|e\|_{2}=\sqrt{\sum_{i=1}^{N} e_{i}^{2}}
$$

- The Residual: $r=f-A v \quad$ with

$$
\|r\|_{\infty} \quad\|r\|_{2}
$$

## Re sidual correction

- Since $e=u-v$, and $r=f-A v$, we can write $A u=f$ as

$$
A(v+e)=f
$$

which means that $A e=f-A v$, which is the Residual Equation:

$$
A e=r
$$

- ResidualCorrection:

$$
u=v+e
$$

## Relaxation Scfemes

- Consider the $1 \mathcal{D}$ model problem

$$
-u_{i-1}+2 u_{i}-u_{i+1}=h^{2} f_{i} \quad 1 \leq i \leq N-1 \quad u_{0}=u_{N}=0
$$

- Iacobi Metfod (simultaneous displacement): Solve the $i^{\text {th }}$ equation for $v_{i}$ folding other variables fixed:

$$
v_{i}^{(\text {new })}=\frac{1}{2}\left(v_{i-1}^{(\text {old })}+v_{i+1}^{(\text {old })}+h^{2} f_{i}\right) \quad 1 \leq i \leq N-1
$$

In matrix form, the relaxation is

- Let $A=(D-L-U)$ where $\mathcal{D}$ is diagonal and $\mathcal{L}$ and $\mathbb{Z}$ are the strictly lower and upper parts of $\mathcal{A}$.
- then $A u=f$ becomes

$$
\begin{aligned}
& (D-L-U) u=f \\
& D u=(L+U) u+f \\
& u=D^{-1}(L+U) u+D^{-1} f
\end{aligned}
$$

- Let $R_{J}=D^{-1}(L+U)$, then the iteration is:

$$
v^{(\text {new })}=R_{J} v^{(\text {old })}+D^{-1} f
$$

## The iteration matrix and the error

- From the derivation,

$$
\begin{aligned}
& u=D^{-1}(L+U) u+D^{-1} f \\
& u=R_{J} u+D^{-1} f
\end{aligned}
$$

- the iteration is

$$
v^{(\text {new })}=R_{J} v^{(\text {old })}+D^{-1} f
$$

- subtracting,

$$
u-v^{(n e w)}=R_{J} u+D^{-1} f-\left(R_{J} v^{(o l d)}+D^{-1} f\right)
$$

- or

$$
u-v^{(n e w)}=R_{J} u-R_{J} v^{(o l d)}
$$

- fence

$$
\boldsymbol{e}^{(n e w)}=R_{J} e^{(o l d)}
$$

## Weighted Jacobi Relaxation

- Consider the iteration:

$$
v_{i}^{(\text {new })} \leftarrow(1-\omega) v_{i}^{(\text {old })}+\frac{\omega}{2}\left(v_{i-1}^{(\text {old })}+v_{i+1}^{(\text {old })}+h^{2} f_{i}\right)
$$

- Letting $\mathcal{A}=\mathcal{D}-\mathcal{L} \cdot \mathscr{U l}$, the matrix form is:

$$
\begin{aligned}
v^{(\text {new })}= & {\left[(1-\omega) I+\omega D^{-1}(L+U)\right] v^{(\text {old })}+\omega h^{2} D^{-1} f } \\
& =R_{\omega} v^{(\text {old })}+\omega h^{2} D^{-1} f
\end{aligned}
$$

- Note that

$$
R_{\omega}=\left[(1-\omega) I+\omega R_{J}\right]
$$

- It is easy to see that if $e \equiv u^{(\text {exact })}-u^{(\text {approx })}$, then

$$
e^{(n e w)}=R_{\omega} e^{(o l d)}
$$

## Gauss-Seidel Relaxation (1D)

- Solve equation for $u_{i}$ and update immediately.
- Equivalently: set each component of rtozero.
- Component form: for $i=1,2, \ldots N-1$, set

$$
v_{i} \leftarrow \frac{1}{2}\left(v_{i-1}+v_{i+1}+h^{2} f_{i}\right)
$$

- Matrix form: $\quad A=(D-L-U)$

$$
\begin{aligned}
& (D-L) u=U u+f \\
& u=(D-L)^{-1} U u+(D-L)^{-1} f
\end{aligned}
$$

- Let $R_{G}=(D-L)^{-1} U$
- Then iterate $v^{(\text {new })} \leftarrow R_{G}{ }^{\nu^{(o l d)}}+(D-L)^{-1} f$
- Error propagation: $e^{(\text {new })} \leftarrow R_{G} e^{\text {(old })}$
Red-Black Gauss-Seidel
- Tlpdate the even (red) points

$$
v_{2 i} \leftarrow \frac{1}{2}\left(v_{2 i-1}+v_{2 i+1}+h^{2} f_{2 i}\right)
$$

- Ulpdate the odd (black) points



## $\mathcal{N}$ umerical Experiments

- Solve $A u=0,-u_{i-1}+2 u_{i}-u_{i+1}=0$
- Ulse Fourier modes as initial iterate, with $\mathfrak{X}=64$ :

$$
\overrightarrow{v_{k}}=\left(v_{i}\right)_{k}=\sin \left(\frac{i k \pi}{N}\right) \quad \begin{gathered}
1 \leq i \leq N-1, \quad 1 \leq k \leq N-1 \\
\text { component }
\end{gathered} \text { mode }
$$



## Error reduction stalls

- Weighted $\omega=\frac{2}{3}$ gacobion $1 D$ problem.
- Initialguess: ${ }_{v_{0}=\frac{1}{3}\left(\sin \left(\frac{j \pi}{N}\right)+\sin \left(\frac{6 j \pi}{N}\right)+\sin \left(\frac{32 j \pi}{N}\right)\right)}$
- Error $\|e\|_{\infty}$ plotted against iterationnumber:


Convergence rates differ for different error components

- Error, $\|e\|_{\infty}$, in weighted Iacobion $\mathfrak{A} u=0$ for 100 iterations using initialguesses of $v_{1}, v_{3}$, and $v_{6}$



## Analysis of stationary iterations

- Let $v^{(\text {new })}=R v^{(\text {old })}+g$. The exact solution is unchanged by the iteration, i.e., $u=R u+g$
- Subtracting, we see that

$$
e^{(n e w)}=R e^{(o l d)}
$$

- Letting eo be the initialerror and ei be the error after the $t^{\text {th }}$ iteration, we see that after $n$ iterations we fave

$$
e^{(n)}=R^{n} e^{(0)}
$$

## A quick review of eigenvectors and eigenvalues

- The number $\lambda$ is an eigenvalue of a matrix $\mathcal{B}$, and $w$ its associated eigenvector, if $\mathcal{B} w=\lambda w$.
- The eigenvalues and eigenvectors are characteristics of a given matrix.
- Eigenvectors are linearly independent, and if there is a complete set of $\mathcal{N}$ distinct eigenvectors for an $\mathfrak{N} \mathfrak{x} \mathcal{N}$ matrix, they form a basis; i.e., for any v, there exist unique $c_{k}$ such that:

$$
v=\sum_{k=1}^{N} c_{k} w_{k}
$$

## "Fundamental theorem of iteration"

- Ris convergent (that is, $R^{n} \rightarrow 0$ as $n \rightarrow \infty$ ) if and only if $\rho(R)<1$, where

$$
\rho(R)=\max \left\{\left|\lambda_{1}\right|,\left|\lambda_{2}\right|, \ldots,\left|\lambda_{\mathrm{N}}\right|\right\}
$$

therefore, for any initial vector $v^{(0)}$, we see that $e^{(n)} \rightarrow 0$ as $n \rightarrow \infty$ if and only if $\rho(R)<1$.

- $\rho(R)<1$ assures the convergence of the iteration given by Rand $\rho(R)$ is called the convergence factor for the iteration.


## Convergence Rate

- How many iterations are needed to reduce the initial error by $10^{-d}$ ?

$$
\frac{\left\|e^{(M)}\right\|}{\left\|e^{(0)}\right\|} \leq\left\|R^{M}\right\| \sim(\rho(R))^{M} \sim 10^{-d}
$$

- So, we fave $M=\frac{d}{\log _{10}\left(\frac{1}{\rho(R)}\right)}$
- The convergence rate is given:
rate $=\log _{10}\left(\frac{1}{\rho(R)}\right)=-\log _{10}(\rho(R)) \frac{\text { digits }}{\text { iteration }}$


## Convergence analysis for

 weigfted $\operatorname{Iacobi}$ on $1 \mathcal{D}$ model$$
\begin{aligned}
R_{\omega} & =(1-\omega) I+\omega D^{-1}(L+U) \\
& =I-\omega D^{-1} A
\end{aligned}
$$

$$
R_{\omega}=I-\frac{\omega}{2}\left(\begin{array}{ccccc}
2 & -1 & & & \\
-1 & 2 & -1 & & \\
& -1 & 2 & -1 & \\
& & \ddots & \ddots & \ddots \\
& & & -1 & 2
\end{array}\right)
$$

$$
\lambda\left(R_{\omega}\right)=1-\frac{\omega}{2} \lambda(A)
$$

For the $1 \mathcal{D}$ modelproblem, he eigenvectors of the weighted gacobiteration and the eigenvectors of the matrix $\mathcal{A}$ are the same! The eigenvalues are related as well.

## Good exercise: Find the

 eigenvalues $\mathcal{F}$ eigenvectors of $\mathcal{A}$- Show that the eigenvectors of $\mathcal{A}$ are Fourier $\begin{aligned} & \text { modes! } \\ & \lambda_{k}(A)\end{aligned}=4 \sin ^{2}\left(\frac{k \pi}{2 N}\right), \quad w_{k, j}=\sin \left(\frac{j k \pi}{N}\right)$






Eigenvectors of $\mathcal{R}_{\omega}$ and $\mathcal{A}$ are the same, the eigenvalues related

$$
\lambda_{k}\left(R_{\omega}\right)=1-2 \omega \sin ^{2}\left(\frac{k \pi}{2 N}\right)
$$

- Expand the initial error in terms of the
eigenvectors:

$$
e^{(0)}=\sum_{k=1}^{N-1} c_{k} w_{k}
$$

- After $\mathfrak{M}$ iterations,

$$
R^{M} e^{(0)}=\sum_{k=1}^{N-1} c_{k} R^{M} w_{k}=\sum_{k=1}^{N-1} c_{k} \lambda_{k}^{M} w_{k}
$$

- The K th mode of the error is reduced by $\lambda_{k}$ at each iteration


## Relaxation suppresses <br> eigenmodes unevenly

- Look carefully at $\lambda_{k}\left(R_{\omega}\right)=1-2 \omega \sin ^{2}\left(\frac{k \pi}{2 N}\right)$

$\mathcal{N}$ Gte that if $0 \leq \omega \leq 1$ then $\left|\lambda_{k}\left(R_{\omega}\right)\right|<1$ for $k=1,2, \ldots, N-1$

For $\quad 0 \leq \omega \leq 1$,

$$
\begin{aligned}
& \lambda_{1}=1-2 \omega \sin ^{2}\left(\frac{\pi}{2 N}\right) \\
&=1-2 \omega \sin ^{2}\left(\frac{\pi h}{2}\right) \\
&=1-O\left(h^{2}\right) \approx 1 \\
& 31 \text { of } 119
\end{aligned}
$$

## Low frequencies are undamped

- Notice that no value of $\omega$ will damp out the long (ie., Low frequency) waves.


What value of $\omega$ gives the best damping of the short waves?

$$
\frac{N}{2} \leq k \leq N
$$

Choose $\omega$ such that

$$
\begin{gathered}
\lambda_{\frac{N}{2}}\left(R_{\omega}\right)=-\lambda_{N}\left(R_{\omega}\right) \\
\Rightarrow \omega=\frac{2}{3}
\end{gathered}
$$

## The Smoothing factor

- The smoothing factor is the largest absolute value among the eigenvalues in the upper falf of the spectrum of the iteration matrix

$$
\text { smoothing factor }=\max \left|\lambda_{k}(R)\right| \text { for } \frac{N}{2} \leq k \leq N
$$

- For $\mathcal{R}_{(0)}$ with $\omega=\frac{2}{3}$, the smoothing factor is $\frac{1}{3}$, since

$$
\left|\lambda_{\frac{N}{2}}\right|=\left|\lambda_{N}\right|=\frac{1}{3} \text { and }\left|\lambda_{k}\right|<\frac{1}{3} \quad \text { for } \frac{N}{2}<k<N .
$$

- $\mathcal{B u t},\left|\lambda_{k}\right| \approx 1-\frac{2}{3} k^{2} \pi^{2} h^{2}$ for long waves $\left(k<\frac{N}{2}\right)$.


## Convergence of $\operatorname{Iacobi}$ on $\mathcal{A u}=0$




- I acobimetriod on $\mathfrak{A u}=0$ witf $\mathfrak{N}=64$. Number of iterations required to reduce to $\|e\|_{\infty}<.01$
-Initialguess : $v_{k j}=\sin \left(\frac{j k \pi}{N}\right)$


## Weighted Iacobi Relaxation $S$ mooths the Error

- Initial error: $v_{k j}=\sin \left(\frac{2 j \pi}{N}\right)+\frac{1}{2} \sin \left(\frac{16 j \pi}{N}\right)+\frac{1}{2} \sin \left(\frac{32 j \pi}{N}\right)$

- Error after 35 iteration sweeps:


> Many relaxation schemes
> have the smoothing property, where oscillatory
> modes of the error are
> eliminated
> effectively, but
> smootr modes are damped
> very slowly.

## Other relaxations scfiemes may be analyzed similarly

- Gauss-Seidelrelaxation applied to the 3-point difference matrix $\mathcal{A}$ (1D model problem):

$$
R_{G}=(D-L)^{-1} U
$$

- Good exercise: Showthat

$$
\lambda_{k}\left(R_{G}\right)=\cos ^{2}\left(\frac{k \pi}{N}\right) \quad w_{k, j}=\left(\lambda_{k}\right)^{j / 2} \sin \left(\frac{j k \pi}{N}\right)
$$




## Convergence of Gauss-Seidel on $\mathfrak{A u}=0$

- Eigenvectors of $\mathcal{R}_{g}$ are not the same as those of $\mathcal{A}$. Gauss-Seidelmixes the modes of $\mathfrak{A}$.


I acobimetrod on $\mathfrak{A u}=0$ wit斤 $\mathfrak{N}=64$. Number of iterations required to reduce to $\|e\|_{\infty}<.01$

Initialguess:(Modes of A)

$$
v_{k j}=\sin \left(\frac{j k \pi}{N}\right)
$$

## $\mathcal{F}$ first observation toward multigrid

- Many relaxation schemes fave the smoothing property, where oscillatory modes of the error are eliminated effectively, but smooth modes are damped very slowly.
- This might seem like a limitation, but by using coarse grids we can use the smoothing property to good advantage.

- Why use coarse grids? ?


## Reason \# 1 for using coarse grids: $\mathcal{N e s t e d ~ I t e r a t i o n ~}$

- Coarse grids can be used to compute an improved initialguess for the fine-grid relaxation. This is advantageous because:
- Relaxation on the coarse-grid is much cheaper (1/2 as many points in $1 \mathcal{D}, 1 / 4$ in $2 \mathcal{D}, 1 / 8$ in $3 \mathcal{D}$ )
- Relaxation on the coarse grid fas a marginally better convergence rate, for example

$$
1-O\left(4 h^{2}\right) \quad \text { instead of } \quad 1-O\left(h^{2}\right)
$$

## $\sum$ Idea! Nested Iteration

- Relax on $\mathcal{A} u=f$ on $\Omega^{4 h}$ to obtain initialguess $v^{2 h}$
- Relax on $\mathcal{A} u=f$ on $\Omega^{2 h}$ to obtain initialguess $v^{h}$
- Relax on $\mathfrak{A u} u=f$ on $\Omega^{h}$ to obtain ...final solution???
- $\mathcal{B u t}$, what is $\mathcal{A} u=f$ on $\Omega^{2 h}, \Omega^{4 h}, \ldots$ ?
- What if the error still fas smooth components when we get to the fine grid $\Omega^{h}$ ?


## Reason \# 2 for using a coarse

 grid: smooth error is (relatively) more oscillatory there!- A smootrfunction:

- Can be represented by linear interpolation from a coarser grid:


On the coarse grid, the smooth error appears to be relatively fighter in frequency: in the example it is the 4-mode, out of a possible 16, on the fine grid, $1 / 4$ the way up the spectrum. On the coarse grid, it is the 4-mode out of a possible 8 , fence it is $1 / 2$ the way up the spectrum.

Relaxation will be more effective on this mode if done on the coarser grid!!

For $K=1,2, \ldots \mathfrak{N} / 2$, the $K^{\text {th }}$ mode is preserved on the coarse grid

$$
w_{k, 2 j}^{h}=\sin \left(\frac{2 j k \pi}{N}\right)=\sin \left(\frac{j k \pi}{N / 2}\right)=w_{k, j}^{2 h}
$$

Also, note that

$$
w_{N / 2}^{h} \rightarrow 0
$$

on the coarse grid



## For $K>\mathcal{N} / 2, w_{k}^{\kappa}$ is invisible on the coarse grid: aliasing!!

- For $K>\mathcal{N} / 2$, the $K^{\text {th }}$ mode on the fine grid is aliased and appears as the ( $\mathcal{N}-K)^{\text {th }}$ mode on the coarse grid:

$$
\begin{aligned}
\left(w_{k}^{h}\right)_{2 j} & =\sin \left(\frac{(2 j) \pi k}{N}\right) \\
& =-\sin \left(\frac{2 \pi j(N-k)}{N}\right) \\
& =-\sin \left(\frac{\pi(N-k) j}{N / 2}\right) \\
& =-\left(w_{N-k}^{2 h}\right)
\end{aligned}
$$




## Second observation toward multigrid:

- Recall the residualcorrection idea: Let v be an approximation to the solution of $\mathcal{A} u=f$, where the residual $r=f-A v$. The the error $e=u-v$ satisfies $\mathfrak{A e}=r$.
- After relaxing on $A u=f$ on the fine grid, the error will be smootf. On the coarse grid, foowever, this error appears more oscillatory, and relaxation will be more effective.
- Therefore we go to a coarse grid and relax on the residual equation $\mathfrak{A l}=r$, with an initialguess of $e=0$.


## Idea! Coarse-grid correction

- Relax on $\mathcal{A} u=f$ on $\Omega^{h}$ to obtain an approximation $v^{h}$
- Compute $r=f-A v^{h}$.
- Relax on $\operatorname{Ae}=r$ on $\Omega^{2 h}$ to obtain an approximation to the error, $e^{2 h}$.
- Correct the approximation $v^{h} \leftarrow v^{h}+e^{2 h}$.
- Clearly, we need methods for the mappings
$\Omega^{h} \boldsymbol{\square} \Omega^{2 h}$
and
$\Omega^{2 h} \boldsymbol{\Omega}{ }^{h}$


## $1 \mathcal{D}$ Interpolation (Prolongation)

- Mapping from the coarse grid to the fine grid:

$$
I_{2 h}^{h}: \Omega^{2 h} \rightarrow \Omega^{h}
$$

- Let $v^{h}, v^{2 h}$ be defined on $\Omega^{h}, \Omega^{2 h}$. Then

$$
I_{2 h}^{h} v^{2 h}=v^{h}
$$

where

$$
\left.\begin{array}{l}
v_{2 i}^{h}=v_{i}^{2 h} \\
v_{2 i+1}^{h}=\frac{1}{2}\left(v_{i}^{2 h}+v_{i+1}^{2 h}\right)
\end{array}\right\} \text { for } \quad 0 \leq i \leq \frac{N}{2}-1
$$

## $1 \mathcal{D}$ Interpolation (Prolongation)

- Values at points on the coarse grid mapuncranged to the fine grid
- Values at fine-grid points $\mathfrak{N O T}$ on the coarse grid are the averages of their coarse-grid ne ighbors



## The prolongation operator (1D)

- We may regard $I_{2 h}^{h}$ as a linear operator from $\mathfrak{R}^{\mathfrak{N} / 2-1} \longrightarrow \mathfrak{R}^{2-1}$
- egg., for $\mathcal{N}=8$,

$$
\left(\begin{array}{ccc}
1 / 2 & & \\
1 & & \\
1 / 2 & 1 / 2 & \\
& 1 & \\
& 1 / 2 & 1 / 2 \\
& & 1 \\
& & 1 / 2
\end{array}\right)_{7 \times 3}\left(\begin{array}{l}
v_{1}^{2 h} \\
v_{2}^{2 h} \\
v_{3}^{2 h}
\end{array}\right)_{3 \times 1}=\left(\begin{array}{l}
v_{1}^{h} \\
v_{2}^{h} \\
v_{3}^{h} \\
v_{4}^{h} \\
v_{3}^{h} \\
v_{6}^{h} \\
v_{7}^{h}
\end{array}\right)_{7 \times 1}
$$

- $I_{2 h}^{h}$ haas full rank, and thus null space $\{\phi\}$


## How well does $v^{2 \hbar}$ approximate u?

- Imagine that a coarse-grid approximation $v^{2 r}$ has been found. How well does it approximate the exact solution u? Thinku $\rightarrow$ error!!

- If $u$ is smooth, a coarse-grid interpolant of $v^{2 h}$ may do very well.


## $\mathcal{H}$ w well does $v^{2 \pi}$ approximate u?

- Imagine that a coarse-grid approximation $v^{2 \pi}$ fias been found. How well does it approximate the exact solution u? Thinku $\rightarrow$ error!!

- If $u$ is oscillatory, a coarse-grid interpolant of $v^{2 r}$ may not work well.


## Moral of this story:

- If $u$ is smooth, a coarse-grid interpolant of $v^{2 \pi}$ may do very well.
- If uis oscillatory, a coarse-grid interpolant of $v^{2 \pi}$ may not work well.
- Therefore, nested iteration is most effective when the error is smooth!


## $1 \mathcal{D}$ Restriction by injection

- Mapping from the fine grid to the coarse grid:

$$
I_{h}^{2 h}: \Omega^{h} \rightarrow \Omega^{2 h}
$$

- Let $v^{h}, v^{2 h}$ Ge defined on $\Omega^{h}, \Omega^{2 h}$. Then

$$
I_{h}^{2 h} v^{h}=v^{2 h}
$$

where $v_{i}^{2 h}=v_{2 i}^{h}$.


## $1 \mathcal{D}$ Restriction by full-weigfting

- Let $v^{h}, v^{2 h}$ bedefined on $\Omega^{h}, \Omega^{2 h}$. Then

$$
I_{h}^{2 h} v^{h}=v^{2 h}
$$

where

$$
v_{i}^{2 h}=\frac{1}{4}\left(v_{2 i-1}^{h}+2 v_{2 i}^{h}+v_{2 i+1}^{h}\right)
$$



## The restriction operator $\mathcal{R}(1 \mathcal{D})$

- We may regard $I_{h}^{2 h}$ as a linear operator from $\mathbb{R}^{N-1} \longrightarrow \mathbb{R}^{N / 2-1}$
- e.g., for $\mathcal{N}=8$,

$$
\left(\begin{array}{lllllll}
1 / 4 & 1 / 2 & 1 / 4 & & & & \\
& & 1 / 4 & 1 / 2 & 1 / 4 & & \\
& & & & 1 / 4 & 1 / 2 & 1 / 4
\end{array}\right)\left(\begin{array}{c}
v_{3}^{h} \\
v_{4}^{h} \\
v_{5}^{h} \\
v_{6}^{h} \\
v_{7}^{h}
\end{array}\right)=\left(\begin{array}{c}
v_{1}^{2 h} \\
v_{2}^{2 h} \\
v_{3}^{2 h}
\end{array}\right)
$$

- $I_{h}^{2 h}$ has rank $\sim \frac{N}{2}$, and thus $\operatorname{dim}(\mathcal{N} S(\mathcal{R})) \sim \frac{N}{2}$


## Prolongation and restriction are often nicely related

- For the $1 \mathcal{D}$ examples, line ar interpolation and fullweighting are related by:

$$
I_{2 h}^{h}=\frac{1}{2}\left(\begin{array}{lll}
1 & & \\
2 & & \\
1 & 1 & \\
& 2 & \\
& 1 & 1 \\
& & 2 \\
& & 1
\end{array}\right) \quad I_{h}^{2 h}=\frac{1}{4}\left(\begin{array}{lllllll}
1 & 2 & 1 & & & & \\
& & 1 & 2 & 1 & & \\
& & & & 1 & & \\
& & & & 1 & 2 & 1
\end{array}\right)
$$

- A commonly used, and highly useful, requirement is that

$$
I_{2 h}^{h}=c\left(I_{h}^{2 h}\right)^{T} \text { for } c \text { in } \mathfrak{R}
$$

## 2D Prolongation

$v_{2 i, 2 j}^{h}=v_{i j}^{2 h}$
$v_{2 i+1,2 j}^{h}=\frac{1}{2}\left(v_{i j}^{2 h}+v_{i+1, j}^{h}\right)$
$v_{2 i, 2 j+1}^{h}=\frac{1}{2}\left(v_{i j}^{2 h}+v_{i, j+1}^{h}\right)$

$$
\square\left[\begin{array}{ccc}
\frac{1}{4} & \frac{1}{2} & \frac{1}{4} \\
\frac{1}{2} & 1 & \frac{1}{2} \\
\frac{1}{4} & \frac{1}{2} & \frac{1}{4}
\end{array}\right.
$$

$v_{2 i+1,2 j+1}^{h}=\frac{1}{4}\left(v_{i j}^{2 h}+v_{i+1, j}^{h}+v_{i, j+1}^{h}+v_{i+1, j+1}^{h}\right)$
We denote the operator by using a "give to" stencil, ] [. Centered over a c-point, it shows what fraction of the c-point's value is
contributed to neigfboring $f$-points, .


## 2D Restriction (full-weighting)

$$
\left[\begin{array}{ccc}
\frac{1}{16} & \frac{1}{8} & \frac{1}{16} \\
\frac{1}{8} & \frac{1}{4} & \frac{1}{8} \\
\frac{1}{16} & \frac{1}{8} & \frac{1}{16}
\end{array}\right]
$$

We denote the operator by using a "give to" stencil, [ ]. Centered over a c-point, it shows what fractions of the neighboring (O)f-points' value is contributed to the value at the c-point.


## Now, let's put all these ideas together

- Nested Iteration (effective on smootf error modes)
- Relaxation (effective on oscillatory error modes)
- Residual equation (i.e., residual correction)
- Prolongation and Restriction


## Coarse Grid Correction Scfeme

$$
v^{h} \leftarrow C G\left(v^{h}, f^{h}, \alpha_{1}, \alpha_{2}\right)
$$

- 1) Relax $\alpha_{1}$ times on $A^{h} u^{h}=f^{h}$ on $\Omega^{h}$ with arbitrary initialguess $v^{h}$.
- 2) Compute $r^{h}=f^{h}-A^{h} v^{h}$.
- 3) Compute $r^{2 h}=I_{h}^{2 h} r^{h}$
- 4) Solve $A^{2 h} e^{2 h}=r^{2 h}$ on $\Omega^{2 h}$.
- 5) Correct fine-grid solution $v^{h} \leftarrow v^{h}+I_{2 h}^{h} e^{2 h}$.
- 6) Relax $\alpha_{2}$ times on $A^{h} u^{h}=f^{h}$ on $\Omega^{h}$ witf initial guess $v^{h}$.


## Coarse-grid Correction

Relax on $A^{h} u^{h}=f_{h}^{h}$
Compute $r^{h}=f^{h}-A^{h} v^{h}$

Restrict


Solve $A^{2 h} e^{2 h}=r^{2 h}$
$e^{2 h}=\left(A^{2 h}\right)^{-1} r^{2 h}$

## What is $A^{2 h}$ ?

- For this scheme to work, we must fiave $A^{2 h}$, a coarse-grid operator. For the moment, we will simply assume that $A^{2 h}$ is "the coarse-grid version" of the fine-grid operator $A^{h}$.
- We will return to the question of constructing $A^{2 h}$ later.

How do we "solve" the coarse. grid residual equation? Recursion!

$$
\begin{aligned}
& \bigcirc u^{h} \leftarrow G^{v}\left(A^{h}, f^{h}\right) \\
& f^{2 h} \leftarrow I_{h}^{2 h}\left(f^{h}-A^{h} u^{h}\right) \\
& \bigcirc u^{2 h} \leftarrow G^{y}\left(A^{2 h}, f^{2 h}\right) \\
& f^{4 h} \leftarrow \overbrace{2 h}^{4 h}\left(f^{2 h}-A^{2 h} u^{2 h}\right) \\
& u^{4 h} \leftarrow G^{v}\left(A^{4 h}, f^{4 h}\right) \bigcirc \quad \bigcirc u^{4 h} \leftarrow u^{4 h}+e^{4 h} \\
& f^{8 h} \leftarrow \leftarrow_{4 h}^{8 h}\left(f^{4 h}-A^{4 h} u^{4 h}\right) \quad e^{4 h} \leftarrow \overbrace{8 h}^{4 h} u^{8 h} \\
& u^{8 h \leftarrow G^{v}\left(A^{8 h}, f^{8 h}\right) \bigcirc} \begin{aligned}
& \ddots \ddots \\
& \ddots \\
& e^{H}=\left(A^{H}\right)^{-1} f^{H}
\end{aligned}
\end{aligned}
$$

## $\mathcal{V}$ - cycle (recursive form)

$$
v^{h} \leftarrow M V^{h}\left(v^{h}, f^{h}\right)
$$

1) $\operatorname{Relax} \alpha_{1}$ times on $A^{h} u^{h}=f^{h}$ initial $v^{h}$ arbitrary
2) If $\Omega^{h}$ is the coarsest grid, go to 4)

$$
\mathfrak{E l s e} \text { : }
$$

$$
f^{2 h} \leftarrow I_{2 h}^{h}\left(f^{h}-A^{h} v^{h}\right)
$$

$$
v^{2 h} \leftarrow 0
$$

$$
v^{2 h} \leftarrow M V^{2 h}\left(v^{2 h}, f^{2 h}\right)
$$

3) Correct $\quad v^{h} \leftarrow v^{h}+I_{2 h}^{h} v^{2 h}$
4) Relax $\alpha_{2}$ times on $A^{h} u^{h}=f^{h}$ initial guess $v^{h}$

## Storage Costs: $v^{h}$ and $f^{h}$ must be stored on each level

- In 1-d, each coarse grid has about half the number of points as the finer grid.

- In 2-d, each coarse grid has about one. fourth the number of points as the finer grid.
- Ind-dimensions, each coarse grid has
 about $2^{-d}$ the number of points as the finer grid.
- Total storage cost: $2 N^{d}\left(1+2^{-d}+2^{-2 d}+2^{-3 d}+\cdots+2^{-M d}\right)<\frac{2 N^{d}}{1-2^{-d}}$ Less than 2, 4/3,8/7 the cost of storage on the fine grid for 1, 2, and 3-d problems, respectively.


## Computation Costs

- Let 1 Work Unit (WU) be the cost of one relaxation swe ep on the fine-grid.
- Ignore the cost of restriction and interpolation (typically about $20 \%$ of the totalcost).
- Consider a V-cycle with 1 pre-Coarse-Grid correction relaxation swe ep and 1 post-Coarse. Grid correction relaxation swe ep.
- Cost of V-cycle (in WUU):

$$
2\left(1+2^{-d}+2^{-2 d}+2^{-3 d}+\cdots+2^{-M d}\right)<\frac{2}{1-2^{-d}}
$$

- Cost is about 4,8/3,16/7 WU per V-cycle in 1,2, and 3 dimensions.


## Convergence Analysis

- First, a fieuristic argument:
- The convergence factor for the oscillatory modes of the error (e.g., the smoothing factor) is small and independent of the grid spacing $f$.

$$
\text { smoothing factor }=\max \left|\lambda_{k}(R)\right| \text { for } \frac{N}{2} \leq k \leq N
$$

- The multigrid cycling schemes focus the relaxation on the oscillatory components on each level.


The overall convergence factor for multigrid methods is small and independent of ri!

## Convergence analysis, a little more precisely...

- Continuous problem: $A u=f, u_{i}=u\left(x_{i}\right)$
- Discrete problem: $A^{h} u^{h}=f^{h}, \quad v^{h} \approx u^{h}$
- Globalerror: $E_{i}=u\left(x_{i}\right)-u_{i}^{h}$

$$
\|E\| \leq K h^{p} \quad(p=2 \text { for model problem })
$$

- Algebraic error: $e_{i}=u_{i}^{h}-v_{i}^{h}$
- Suppose a tolerance $\varepsilon$ is specified such that $v^{h}$ must satisfy $\left\|u-v^{h}\right\| \leq \varepsilon$
- Thentris is guaranteed if

$$
\left\|u-u^{h}\right\|+\left\|u^{h}-v^{h}\right\|=\|E\|+\|e\| \leq \varepsilon
$$

## We can satisfy the requirement

 by imposing two conditions1) $\|E\| \leq \frac{\varepsilon}{2}$. We use this requirement to determine a grid spacing $h^{*}$ from

$$
h^{*} \leq\left(\frac{\varepsilon}{2 K}\right)^{1 / p}
$$

2) $\|e\| \leq \frac{\varepsilon}{2}$, which determines the number of iterations required.

- If we iterate until $\|e\| \leq \frac{\varepsilon}{2}=K\left(h^{*}\right)^{p}$ on $\Omega^{h^{*}}$ then we have converged to the level of truncation.


## Converging to the level of truncation

- Ulse a MV scheme with convergence rate $\gamma<1$ independent of $r$ (fixed $\alpha_{1}$ and $\alpha_{2}$ ).
- Assume a d-dimensional problem on an $\mathfrak{N x \mathcal { N } x . . \chi \mathcal { N } ~}$ grid with $h=N^{-1}$.
- The $\mathcal{V}$-cycle must reduce the error from $\|e\| \sim O(1)$ to

$$
\|e\| \sim O\left(h^{p}\right) \sim O\left(N^{-p}\right)
$$

- We candetermine $\theta$, the number of $\mathcal{V}$-cycles required to accomplisf this.

Work needed to converge to the level of truncation

- Since $\theta$ V-cycles at convergence rate $\gamma$ are required, we see that

$$
\gamma^{\theta} \sim O\left(N^{-p}\right)
$$

implying that $\theta \sim O(\log N)$.

- Since one V-cycle costs $O$ (1) $\mathcal{W} \mathcal{U}$ and one $\mathcal{W U L}$ is $O\left(\mathfrak{N}{ }^{d}\right)$, we see that the cost of converging to the levelof truncation using the MV method is

$$
O\left(N^{d} \log N\right)
$$

- which is comparable to fast directmethods (FFTI Gased).


## A numerical example

- Consider the two-dimensional model problem (with $\sigma=0)$, given $6 y$
$-u_{x x}-u_{y y}=2\left[\left(1-6 x^{2}\right) y^{2}\left(1-y^{2}\right)+\left(1-6 y^{2}\right) x^{2}\left(1-x^{2}\right)\right]$
inside the unit square, with $u=0$ on the boundary.
- The solution to tifis problem is

$$
u(x, y)=\left(x^{2}-x^{4}\right)\left(y^{4}-y^{2}\right)
$$

- We examine the effectiveness of $\mathfrak{M V}$ cycling to solve this problem on $\mathcal{N} \times \mathcal{N}$ grids $[(\mathcal{N}-1) \times(\mathcal{N}-1)$ interior] for $\mathcal{N}=16,32,64,128$.



## Numerical Results, $\mathfrak{M V}$ cycling

Shown are the results of 16 V -cycles. We display, at the end of eacticycle, the residual norm, the error norm, and the ratio of these norms to their values at the end of the previous cycle.
$\mathcal{N}=16,32,64,128$

## Look again at nested ite ration

- Idea: It's cheaper to solve a problem (i.e., takes fewer iterations) if the initialguess is good.
- How to get agood initialguess:
- Interpolate coarse solution to fine grid.
- "Solve" the problem on the coarse grid first.
- Tlse interpolated coarse solution as initialguess on fine grid.
- Now, let's use the V-cycle as the solver oneach grid level! This defines the Full Multigrid (FMM) cycle.


## The $\mathcal{F u l l}$ Multigrid ( $\mathcal{F M G}$ ) cycle $\stackrel{v^{h} \leftarrow F M G\left(f^{h}\right)}{\underline{n}}$

- Initialize $f^{h}, f^{2 h}, f^{4 h}, \ldots, f^{H}$
- Solve on coarsest grid
- interpolate initialguess
- perform V-cycle

$$
\begin{gathered}
v^{H}=\left(A^{H}\right)^{-1} f^{H} \\
\bullet \\
\bullet
\end{gathered}
$$

- interpolate initialguess
- perform $V$-cycle

$$
\begin{aligned}
& v^{2 h} \leftarrow I_{4 h}^{2 h} v^{4 h} \\
& v^{2 h} \leftarrow M V^{2 h}\left(v^{2 h}, f^{2 h}\right)
\end{aligned}
$$

$$
\begin{aligned}
& v^{h} \leftarrow I_{2 h}^{h} v^{2 h} \\
& v^{h} \leftarrow M V^{h}\left(v^{h}, f^{h}\right)
\end{aligned}
$$

## $\mathcal{F u l l}$ Multigrid (FMG)

- Restriction $\rightarrow$
- High-order Interpolation $\longrightarrow$



## FMMG-cycle (recursive form) $\underline{v^{h} \leftarrow F M G\left(f^{h}\right)}$

1) Initialize $f^{h}, f^{2 h}, f^{4 h}, \ldots, f^{H}$
2) If $\Omega^{h}$ is the coarsest grid, then solve exactly

Else:

$$
v^{2 h} \leftarrow F M G\left(f^{2 h}\right)
$$

3) Set initialguess $\quad v^{h} \leftarrow I_{2 h}^{h} v^{2 h}$
4) $\quad v^{h} \leftarrow M V\left(v^{h}, f^{h}\right), \quad \eta$ times

## Cost of an $\mathcal{F M}$ g cycle

- One V-cycle is performed per level, at a cost of $\left[\frac{1}{1-2^{-d}}\right]$ WU per grid (where the WUl is for the size grid invo(ve d).
- The size of the $\mathcal{W}$ Ulfor coarse-grid $j$ is $2^{-j d}$ times the size of the $\mathcal{W}$ Ul on the fine grid (grid 0 ).
- Hence, cost of the $\mathcal{F M G}(1,1)$ cycle is less than

$$
\left(\frac{2}{1-2^{-d}}\right)\left(1+2^{-d}+2^{-2 d}+\ldots\right)=\frac{2}{\left(1-2^{-d}\right)^{2}}
$$

- $d=1: 8 \mathfrak{W} \mathcal{U} ; \quad d=2: 7 / 2$ W̛U $\quad d=3: 5 / 2$ W̛u

How to tell if truncation error is reached with Full Multigrid (FMM)

- If truncation error is reached, $\|$ e\| $\sim O\left(h^{2}\right)$ for eachgrid levelf. The norms of the errors at the "solution" points in the cycle should form a Cauchy sequence and



## Cost to achieve convergence to truncation by the $\mathcal{F M V}$ method

- Consider using the $\mathcal{F M V}$ method, which solves the problem on $\Omega^{2 h}$ to the level of truncation before going to $\Omega^{h}$, ie.,

$$
\left\|e^{2 h}\right\|=\left\|u^{2 h}-v^{2 h}\right\| \sim K(2 h)^{p}
$$

- We ask that $\left\|e^{h}\right\| \sim K h^{p}=2^{-p}\left\|e^{2 h}\right\|$ which implies that the algebraic error must be reduced by 2 on $\Omega^{h}$. Hence, $\theta_{1} \mathcal{V}$-cycles are needed, where

$$
\gamma^{\theta_{1}} \sim 2^{-p}
$$

thus $\theta_{1} \sim O(1)$ and computational cost of the $\mathcal{F M V}$ method $O\left(N^{d}\right)$.

## A numerical example

- Consider again the two-dimensionalmodel problem (with $\sigma=0$ ), given $6 y$
$-u_{x x}-u_{y y}=2\left[\left(1-6 x^{2}\right) y^{2}\left(1-y^{2}\right)+\left(1-6 y^{2}\right) x^{2}\left(1-x^{2}\right)\right]$
inside the unit square, witf $u=0$ on the boundary.
- We examine the effectiveness of $\mathcal{F M} G$ cycling to solve this problem on $\mathfrak{N} \mathfrak{N} \mathfrak{N}$ grids $[(\mathfrak{N}-1)$ x ( $\mathcal{N}-1)$ interior ] for $\mathcal{N}=16,32,64,128$.


## FMG results

- Shown are results for tiree $\mathcal{F M}$ g cycles, and a comparis on to $\mathfrak{M V}$ cycle results.

| $N$ | FMIG(1,0) |  | $\mathrm{F}^{2} \mathrm{MC}(1,1)$ |  | FMG(2,1) |  | $\begin{gathered} \mathrm{FMG}(1,1) \\ \mathrm{WU} \end{gathered}$ | $\begin{aligned} & \mathrm{V}(2,1) \\ & \text { cycles } \end{aligned}$ | $\begin{gathered} \mathrm{V}(2,1) \\ W U \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\\|e\\|_{h}$ | ratio | $\\|\mathrm{ej}\\|_{5}$ | ratio | $\\|\mathbf{e}\\|_{h}$ | ratio |  |  |  |
| 2 | $5.86 \mathrm{e}-\mathrm{0} 3$ |  | 5.86e-03 |  | $5.86 \mathrm{e}-03$ |  |  |  |  |
| 4 | $5.37 e-03$ | 0.917 | $2.490-03$ | 0.424 | $2.03 \mathrm{e}-03$ | 0.347 | $7 / 2$ | 3 | 12 |
| 8 | $2.78 \mathrm{e}-03$ | 0.518 | 9.12e-04 | 0.367 | 6.68e-04 | 0.328 | 7/2 | 4 | 16 |
| 16 | $1.19 \mathrm{e}-03$ | 0.427 | $2.52 \mathrm{e}-04$ | 0.277 | $1.72 \mathrm{e}-04$ | 0.257 | 7/2 | 4 | 16 |
| 32 | $4.70 \mathrm{e}-04$ | 0.395 | 6.00e-05 | 0.238 | $4.00 \mathrm{e}-05$ | 0.233 | $7 / 2$ | 5 | 20 |
| 64 | 1.77e--04 | 0.377 | 1.36e-05 | 0.227 | $9.36 \mathrm{e}-06$ | 0.234 | $7 / 2$ | 5 | 20 |
| 128 | $6.49 e-05$ | 0.366 | $3.120-06$ | 0.229 | $2.26 \mathrm{e}-06$ | 0.241 | $7 / 2$ | 6 | 24 |
| 256 | 2.33e-05 | 0.359 | 7.45e-07 | 0.235 | $5.56 \mathrm{e}-07$ | 0.246 | $7 / 2$ | 7 | 28 |
| 512 | 8.26e-06 | 0.354 | $1.77 \mathrm{e}-07$ | 0.241 | 1.38e-07 | 0.248 | $7 / 2$ | 7 | 28 |
| 1024 | $2.90 \mathrm{e}-06$ | 0.352 | 4.350-08 | 0.245 | $3.41 \mathrm{e}-08$ | 0.249 | $7 / 2$ | 8 | 32 |
| 2048 | 1.02e-06 | 0.351 | 1.08e-08 | 0.247 | $8.59 \mathrm{e}-09$ | 0.250 | $7 / 2$ | 9 | 36 |

## What is $A^{2 h}$ ?

- Recall the coarse-grid correction scheme:
- 1) Relax on $A^{h} u^{h}=f^{h}$ on $\Omega^{h}$ to get $v^{h}$ ?
- 2) Compute $f^{2 h}=I_{h}^{2 h}\left(f^{h}-A^{h} v^{h}\right)$.
- 4) Solve $A^{2 h} e^{2 h}=r^{2 h}$ on $\Omega^{2 h}$.
- 5) Correct fine-grid solution $v^{h} \leftarrow v^{h}+I_{2 h}^{h} e^{2 h}$.
- Assume that $e^{h} \in \operatorname{Range}\left(I_{2 h}^{h}\right)$. Then the residual equation can be written

$$
r^{h}=A^{h} e^{h}=A^{h} I_{2 h}^{h} u^{2 h} \text { for some } u^{2 h} \in \Omega^{2 h}
$$

- Howdoes $A^{h}$ actupon Range $\left(I_{2 h}^{h}\right)$ ?

How does $A^{h}$ act on Range $\left(I_{2 h}^{h}\right)$ ?

$\Leftarrow u^{2 h}$

< $+2 u^{2} u^{2 h}$
$\Longleftrightarrow A^{h} I_{2 h}^{h} u^{2 h}$

- Therefore, the odd rows of $A^{h} I_{2 h}^{h}$ are zero (in $1 \mathcal{D}$ on (y) and $r_{2 i+1}=0$. We therefore keep the even rows of $A^{h} I_{2 h}^{h}$ for the residual equations on $\Omega^{2 h}$. These rows can be picked out by applying restriction!

$$
I_{h}^{2 h} A^{h} I_{2 h}^{h} u^{2 h}=I_{h}^{2 h} r^{h}
$$

## Building $A^{2 h}$.

- The residual equation on the coarse grid is:

$$
I_{h}^{2 h} A^{h} I_{2 h}^{h} u^{2 h}=I_{h}^{2 h} r^{h}
$$

- Therefore, we identify the coarse-grid operator $A^{2 h}$ as

$$
A^{2 h}=I_{h}^{2 h} A^{h} I_{2 h}^{h}
$$

- Next, we determine frow to compute the entries of the coarse-grid matrix.


## Computing the $i^{t h}$ row of $A^{2 h}$.

- Compute $A^{2 h} \hat{e}_{i}^{2 h}$ where $\hat{e}_{i}^{2 h}=(0,0, \ldots, 0,1,0, \ldots, 0)^{T}$


| 0 |  | 1 |  | 0 | $\hat{e}_{i}^{2 h}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | $\frac{1}{2}$ | 1 | $\frac{1}{2}$ | 0 | $I_{2 h}^{h} \hat{e}_{i}^{2 h}$ |
| $-\frac{1}{2 h^{2}}$ | 0 | $\frac{1}{h^{2}}$ | 0 | $-\frac{1}{2 h^{2}}$ | $A^{h} I_{2 h}^{h} \hat{e}_{i}^{2 h}$ |
| $-\frac{1}{4 h^{2}}$ |  | $\frac{1}{2 h^{2}}$ |  | $-\frac{1}{4 h^{2}}$ | $I_{h}^{2 h} A^{h} I_{2 h}^{h} \hat{e}_{i}^{2 h}$ |
| 85 of 119 |  |  |  |  |  |

The $i^{\text {th }}$ row of $A^{2 h}$ looks a lot like a row of $A^{h}$ !

- The $i^{\text {th }}$ row of $A^{2 h}$ is $\frac{1}{(2 h)^{2}}\left[\begin{array}{lll}-1 & 2 & -1\end{array}\right]$, which is the $\Omega^{2 h}{ }_{\text {version of }} A^{h}$.
- Therefore, II relaxation on $\Omega^{h}$ leaves only error in the range of interpolation, then solving
determines the error exactly!
- Ingeneral, this will not be the case, but this argument certainly le ads to a plausible representation for $A^{2 h}$.


## The variational properties

- The definition for $A^{2 h}$ that resulted from the foregoing line of reasoning is usefulfor both theoretical and practical reasons. Together with the commonly used relationship between restriction and prolongation we fave the following "variational properties":

$$
\begin{aligned}
A^{2 h} & =I_{h}^{2 h} A^{h} I_{2 h}^{h} \\
I_{2 h}^{h} & =c\left(I_{h}^{2 h}\right)^{T}
\end{aligned}
$$

(Galerkin Condition)
for c in $\mathfrak{R}$

## Properties of the Grid Transfer Operators: Restriction

- Full Weighting: $I_{h}^{2 h}: \Omega^{h} \rightarrow \Omega^{2 h}$ or $I_{h}^{2 h}: \mathfrak{R}_{\mathfrak{N}-1} \rightarrow \mathfrak{R}^{\mathfrak{N} / 2-1}$
- For $\mathcal{X}=8$,

$$
I_{h}^{2 h}=\frac{1}{4}\left[\begin{array}{lllllll}
1 & 2 & 1 & & & & \\
& & 1 & 2 & 1 & & \\
& & & & 1 & 2 & 1
\end{array}\right]_{3 \times 7}
$$

- $I_{h}^{2 h}$ fas rank $\frac{N}{2}-1$ and a null space $N\left(I_{h}^{2 h}\right)$ with
dimension $\frac{N}{2}$.


## Spectral properties of $I_{h}^{2 h}$.

- How does $I_{h}^{2 h}$ act on the eigenvectors of $A^{h}$ ?
- Consider $w_{k, j}^{h}=\sin \left(\frac{j k \pi}{N}\right), 1 \leq \kappa \leq \mathcal{N}-1,0 \leq j \leq \mathcal{N}$
- Good Exercise: showtrat

$$
\begin{aligned}
\left(I_{h}^{2 h} w_{k}^{h}\right)_{j} & =\cos ^{2}\left(\frac{k \pi}{2 N}\right) w_{k, j}^{2 h} \\
& \equiv c_{k} w_{k, j}^{2 h}
\end{aligned}
$$

for $1 \leq K \leq \mathcal{N} / 2$.

Spectral properties of $I_{h}^{2 h}$ (cont.).

- ie., $I_{h}^{2 h}\left[K^{\text {th }}\right.$ mode on $\left.\Omega^{h}\right]=c_{\kappa} / K^{\text {th mode on }} \Omega^{2 h}$ )


$$
\Omega^{h}: \mathcal{N}=8, \quad \kappa=2
$$

$\Omega^{2 h}: \mathcal{X}=4, k=2$

Spectral properties of $I_{h}^{2 h}$ (cont.).

- Let $k^{\prime}=N-k$ for $1 \leq k<\frac{N}{2}$, so that $\frac{N}{2}<k^{\prime}<N$
- Then (another good exercise!)

$$
\begin{aligned}
\left(I_{h}^{2 h} w_{k}^{h}\right)_{j} & =-\sin ^{2}\left(\frac{k \pi}{2 N}\right) w_{k, j}^{2 h} \\
& \equiv s_{k} w_{k, j}^{2 h}
\end{aligned}
$$

Spectral properties of $I_{h}^{2 h}$ (cont.).

- ie., $I_{h}^{2 h}\left[(\mathcal{N}-\mathcal{K})^{t h}\right.$ mode on $\left.\Omega^{h}\right]=-s_{k} / K^{\text {th }}$ mode on $\left.\Omega^{2 h}\right]$


Spectral properties of $I_{h}^{2 h}$ (cont.).

- Summarizing: $\left.\begin{array}{l}I_{h}^{2 h} w_{k}^{h}=c_{k} w_{k}^{2 h} \\ \\ I_{h}^{2 h} w_{k}^{h}=-s_{k} w_{k}^{2 h}\end{array}\right\}\left\{\begin{array}{l}1<k<\frac{N}{2} \\ k^{\prime}=N-k\end{array}\right.$

$$
I_{h}^{2 h} w_{N / 2}^{h}=0
$$

- Complementarymodes:

$$
\begin{aligned}
& W_{k}=\operatorname{span}\left\{w_{k}^{h}, w_{k^{\prime}}^{h}\right\} \\
& I_{h}^{2 h} W_{k} \rightarrow w_{k}^{2 h}
\end{aligned}
$$

## $\mathcal{N u l l}$ space of $I_{h}^{2 h}$.

- Observe that $N\left(I_{h}^{2 h}\right)=\operatorname{span}\left(A^{h} \widehat{e}_{i}^{h}\right)$ where $i$ is odd and $\hat{e}_{i}^{h}$ is the $i^{\text {th }}$ unit vector.
- Let $\eta_{i} \equiv A^{h} \widehat{e}_{i}^{h}$.

- While the $\eta_{i}$ look oscillatory, they contain all of the Fourier modes of $A^{h}$, i.e.,

$$
\eta_{i}=\sum_{k=1}^{N-1} a_{k} w_{k} \quad a_{k} \neq 0
$$

- All the Fourier modes of $A^{h}$ are needed to represent the null space of restriction!


## Properties of the Grid Transfer Operators: Interpolation

- Interpolation: $I_{2 h}^{h}: \Omega^{2 h} \rightarrow \Omega^{h}$ or

$$
\begin{aligned}
& I_{2 h}^{h}: \mathfrak{N}_{2 h / 2-1}^{h} \rightarrow \mathfrak{R}^{N} \mathfrak{N}-1 \\
& {\left[\begin{array}{lll}
1 & & \\
2 & & \\
1 & 1 & \\
2 & \\
& 1 & 1 \\
& & 1 \\
& & 1
\end{array}\right] }
\end{aligned}
$$

- $I_{2 h}^{h}$ has full rank and null space $\{\phi\}$.


## spectral properties of $I_{2 h}^{h}$.

- How does $I_{2 h}^{h}$ act on the eigenvectors of $A^{2 h}$ ?
- Consider $\left(w_{k}^{2 h}\right)_{j}=\sin \left(\frac{j k \pi}{N / 2}\right), \quad \begin{aligned} & 1 \leq \kappa \leq \mathcal{N} / 2 \cdot 1, \\ & \\ & 0 \leq j \leq \mathcal{N} / 2\end{aligned}$
- Good Exercise: sfrowthat the modes of $A^{2 h}$ are $\mathcal{N O}$ T preserved by $I_{2 h}^{h}$, but that the space $W_{k}$ is preserved:

$$
\begin{aligned}
I_{2 h}^{h} w_{k}^{2 h} & =\cos ^{2}\left(\frac{k \pi}{2 N}\right) w_{k}^{h}-\sin ^{2}\left(\frac{k \pi}{2 N}\right) w_{k^{\prime}}^{h} \\
& =c_{k} w_{k}^{h}-s_{k} w_{k^{\prime}}^{h}
\end{aligned}
$$

Spectral properties of $I_{2 h}^{h}$ (cont.).

$$
I_{2 h}^{h}=c_{k} w_{k}^{h}-s_{k} w_{k}^{h}
$$

- Interpolation of smooth $\pi_{h} \Omega^{2 h}$ modes excites oscillatory modes on $\Omega^{n}$.
- Note that if $k<\frac{N}{2}$,

$$
\begin{aligned}
I_{2 h}^{h} w_{k}^{2 h} & =\left(1-O\left(\frac{k^{2}}{N^{2}}\right)\right) w_{k}^{h}+O\left(\frac{k^{2}}{N^{2}}\right) w_{k^{\prime}}^{h} \\
& \approx w_{k}^{h}
\end{aligned}
$$

- $I_{2 h}^{h}$ is second-order interpolation.


## The Range of $I_{2 h}^{h}$.

- The range of $I_{2 h}^{h}$ is the span of the columns of $I_{2 h}^{h}$
- Let $\xi_{i}$ bethe $i^{t h}$ column of $I_{2 h}^{h}$.


$$
\xi_{i}^{h}=\sum_{k=1}^{N-1} b_{k} w_{k}^{h}, \quad b_{k} \neq 0
$$

- All the Fourier modes of $A^{h}$ are needed to represent Range ( $I_{2 h}^{h}$ )


## Use all the facts to analyze the

 coarse-grid correction scheme1) Relax $\alpha$ times on $\Omega^{h}: v^{h} \leftarrow R^{\alpha_{1}} v^{h}$
2) Compute and restrict residual $f^{2 h} \leftarrow I_{h}^{2 h}\left(f^{h}-A^{h} v^{h}\right)$
3) Solve residual equation $v^{2 h}=\left(A^{2 h}\right)^{-1} f^{2 h}$
4) Correct fine-grid solution $v^{h} \leftarrow v^{h}+I_{2 h}^{h} v^{2 h}$.

- The entire process appears as

$$
v^{h} \leftarrow R^{\alpha} v^{h}+I_{2 h}^{h}\left(A^{2 h}\right)^{-1} I_{h}^{2 h}\left(f^{h}-A^{h} R^{\alpha} v^{h}\right)
$$

- The exact solution satisfies

$$
u^{h} \leftarrow R^{\alpha} u^{h}+I_{2 h}^{h}\left(A^{2 h}\right)^{-1} I_{h}^{2 h}\left(f^{h}-A^{h} R^{\alpha} u^{h}\right)
$$

## Error propagation of the coarse. grid correction scheme

- Subtracting the previous two expressions, we get

$$
\begin{aligned}
& e^{h} \leftarrow\left[I-I_{2 h}^{h}\left(A^{2 h}\right)^{-1} I_{h}^{2 h} A^{h}\right] R^{\alpha} e^{h} \\
& e^{h} \leftarrow C G e^{h}
\end{aligned}
$$

- How does CG act on the modes of $A^{h}$ ? Assume consists of the modes $w_{k}^{h}$ and $w_{k^{\prime}}^{h}$ for $1 \leq k \leq N / 2$ and $k^{\prime}=N-k$.
- We know how $R^{\alpha}, A^{h}, I_{h}^{2 h},\left(A^{2 h}\right)^{-1}, I_{2 h}^{h}$ act on $w_{k}^{h}$ and $w_{k}^{h}$.


## Error propagation of $\mathcal{C G}$

- For now, assume no relaxation $\alpha=0$. Then

$$
W_{k}=\operatorname{span}\left\{w_{k}^{h}, w_{k^{\prime}}^{h}\right\}
$$

is invariant under CG.

$$
\begin{aligned}
& C G w_{k}^{h}=s_{k} w_{k}^{h}+s_{k} w_{k^{\prime}}^{h} \\
& C G w_{k^{\prime}}^{h}=c_{k} w_{k}^{h}+c_{k} w_{k^{\prime}}^{h}
\end{aligned}
$$

where

$$
c_{k}=\cos ^{2}\left(\frac{k \pi}{2 N}\right) \quad s_{k}=\sin ^{2}\left(\frac{k \pi}{2 N}\right)
$$

## CG error propagation for $\mathcal{K} \ll \mathcal{N}$

- Consider the case $\mathbb{K} \ll \mathcal{N}$ (extremely smootriand oscillatory modes):

$$
\begin{aligned}
& w_{k} \rightarrow O\left(\frac{k^{2}}{N^{2}}\right) w_{k}+O\left(\frac{k^{2}}{N^{2}}\right) w_{k^{\prime}} \\
& w_{k} \rightarrow\left(1-O\left(\frac{k^{2}}{N^{2}}\right)\right) w_{k}+\left(1-O\left(\frac{k^{2}}{N^{2}}\right)\right) w_{k^{\prime}}
\end{aligned}
$$

- Hence, CGeliminates the smooth modes but does not damp the oscillatory modes of the error!


## $\mathcal{N}$ ow consider $\mathcal{C} G$ witt relaxation

- Next, include $\alpha$ relaxation sweeps. Assume that the relaxation $R$ preserves the modes of $A^{h}$ (although this is often unnecessary). Let $\lambda_{k}$ denote the eigenvalue of $R$ associated with $w_{k}$. For $K \ll \mathcal{N} / 2$,

$$
\begin{aligned}
& w_{k} \rightarrow \lambda_{k}^{\alpha} \Omega s_{k}+\lambda_{k}^{\alpha} \Omega s_{k} w_{k^{\prime}} \text { small! } \\
& w_{k^{\prime}} \rightarrow \lambda_{k^{\prime}}^{\alpha} c_{k} w_{k}+\lambda_{k^{\prime}}^{\alpha} c_{k} w_{k^{\prime}} \quad \text { small! }
\end{aligned}
$$

The crucial observation:

- Between relaxation and the coarse. grid correction, both smooth and oscillatory components of the error are effectively damped.
- This is essentially the "spectral" picture of how multigrid works. We examine now another viewpoint, the "algebraic" picture of multigrid.


## Recall the variational properties

- All the analysis that follows assumes that the variational properties hold:

$$
\begin{aligned}
& A^{2 h}=I_{h}^{2 h} A^{h} I_{2 h}^{h} \\
& I_{2 h}^{h}=c\left(I_{h}^{2 h}\right)^{T}
\end{aligned}
$$

(Galerkin Condition)
for c in $\mathfrak{N}$

## Algebraic interpretation of coarse-grid correction

- Consider the subspaces that make up $\Omega^{h}$ and $\Omega^{2 h}$


Subspace decomposition of $\Omega^{h}$.

- Since $A^{h}$ has full rank, we can say, equivalently,

$$
R\left(I_{2 h}^{h}\right) \perp_{A^{h}} N\left(I_{h}^{2 h} A^{h}\right)
$$

(where $x \perp_{A^{h}} y$ means that $\left\langle A^{h} x, y\right\rangle=0$ ).

- Therefore, any $e^{h}$ can be written as $e^{h}=s^{h}+t^{h}$ where $s^{h} \in R\left(I_{2 h}^{h}\right)$ and $t^{h} \in N\left(I_{h}^{2 h} A^{h}\right)$.
- Hence, $\Omega^{h}=R\left(I_{2 h}^{h}\right) \oplus N\left(I_{h}^{2 h} A^{h}\right)$


## Characteristics of the subspaces

- Since $s^{h}=I_{2 h}^{h} q^{2 h}$ for some $q^{2 h} \in \Omega^{2 h}$, we associate $s^{h}$ with the smooth components of $e^{h}$. $\mathcal{B} u t, s^{h}$ generally frs bf Fourier modes in it (recall the basis vectors for $I_{2 h}^{h}$ ).

- Similarly, we associate $t^{h}$ with oscillatory components of $e^{h}$, although $t^{h}$ generally fins all Fourier modes in it as well. Recall that $N\left(I_{h}^{2 h}\right)$ is spanned by $\eta_{i}=A^{h} \hat{e}_{i}$ therefore $N\left(I_{h}^{2 h} A^{h}\right)$ is spanned by the unit vectors $\hat{e}_{i}^{h}=(0,0, \ldots, 0,1,0, \ldots, 0)^{T}$ for odd $i$, which "look" oscillatory.


## Alge braic analysis of coarse-grid correction

- Recall that (without relaxation)

$$
C G=I-I_{2 h}^{h}\left(A^{2 h}\right)^{-1} I_{h}^{2 h} A^{h}
$$

- First note that if $s^{h} \in R\left(I_{2 h}^{h}\right)$ then $C G s^{h}=0$. This follows since $s^{h}=I_{2 h}^{\hbar} q^{2 h}$ for some $q^{2 h} \in \Omega^{2 h}$ and therefore

$$
C G S^{h}=[I-I_{2 h}^{h}\left(A^{2 h}\right)^{-1} \underbrace{I_{h}^{2 h} A^{h}}_{A^{2 h}} I_{2 h}^{h} q^{2 h}=0
$$

- It follows that $N(C G)=R\left(I_{2 h}^{h}\right)$, that is, the null space of coarse-grid correction is the range of interpolation.


## More algebraic analysis of

## coarse-grid correction

- Next, note that if $t^{h} \in N\left(I_{h}^{2 h} A^{h}\right)$ then

$$
C G t^{h}=[I-I_{2 h}^{h}\left(A^{2 h}\right)^{-1} \underbrace{\left.I_{h}^{2 h} A^{h}\right] t^{h}}_{0}
$$

- Therefore $C G t^{h}=t^{h}$.
- CG is the identity on $N\left(I_{h}^{2 h} A^{h}\right)$


## How does the algebraic picture fit with the spectral view?

- We may view $\Omega^{h}{ }^{\text {in two ways: }}$

$$
\Omega^{h}=\left\{\begin{array}{c}
\text { Low frequency modes } \\
1 \leq \mathrm{k} \leq \mathrm{N} / 2
\end{array}\right\} \quad \oplus \quad\left\{\begin{array}{c}
\text { High frequency modes } \\
\mathrm{N} / 2<\mathrm{k}<\mathrm{N}
\end{array}\right\}
$$

that is,

$$
\Omega^{h}=L \oplus H
$$

or as

$$
\Omega^{h}=R\left(I_{2 h}^{h}\right) \quad \oplus N\left(I_{h}^{2 h} A^{h}\right)
$$

## Actually, each view is just part of the picture

- The operations we have examined work on different spaces!
- While $N\left(I_{h}^{2 h} A^{h}\right)$ is mostly oscillatory, it isn't $H$. and while $R\left(I_{2 h}^{h}\right)$ is mostly smooth, it isn't $L$.
- Relaxation eliminates error from $H$.
- Coarse -grid correction eliminates error from $R\left(I_{2 h}^{h}\right)$

How it actually works (cartoon)


Relaxation eliminates $\mathcal{H}$, but increases the error in $R\left(I_{2 h}^{h}\right)$.



## Difficulties:

## anisotropic operators and grids

- Consider the operator: $-\alpha \frac{\partial^{2} u}{\partial x^{2}}-\beta \frac{\partial^{2} u}{\partial y^{2}}=f(x, y)$
- If $\alpha<\beta$ thenthe GS-smoothing factors in the $x$ - and $y$-directions are shown at right.
Note that GS relaxation does not damp oscillatory components in the $x$ -
 direction.
- The same phenomenon occurs for grids with much larger spacing in one direction thanthe other:


116 of 119

## Difficulties: discontinuous or anisotropic coefficients

- Consider the operator : $-\nabla \bullet(D(x, y) \nabla u)$ where

$$
D(x, y)=\left(\begin{array}{ll}
d_{11}(x, y) & d_{12}(x, y) \\
d_{21}(x, y) & d_{22}(x, y)
\end{array}\right)
$$

- Again, GS-smoothing factors in the $x$ - and $y$-directions can be fighly variable, and very often, GS relaxation does not damp oscillatory components in the one or both directions.
- Solutions: line-relaxation (where whole gridlines of values are found simultane ous(y), and /or semicoarsening (coarsening only in the strongly coupled direction).


## For nonline ar problems, use

 $\mathcal{F A S}$ (Full Approximation Scheme)- Suppose we wish to solve: $A(u)=f$ where the operator is non-linear. Then the line ar residual equation $A e=r$ does not apply.
- Instead, we write the non-line ar residualequation:

$$
A(u+e)-A(u)=r
$$

- This is transferred to the coarse grid as:

$$
A^{2 h}\left(u^{2 h}+e^{2 h}\right)=I_{h}^{2 h}\left(f^{h}-A^{h}\left(u^{h}\right)\right)
$$

- We solve for $w^{2 h} \equiv u^{2 h}+e^{2 h}$ and transfer the error (only!) to the fine grid:

$$
u^{h} \leftarrow u^{h}+I_{2 h}^{h}\left(w^{2 h}-I_{h}^{2 h} u^{h}\right)
$$

## Multigrid: increasingly, the right tool!

- Multigrid frs been proven on a wide variety of problems, especially elliptic iDEs, but has also found application among parabolic \& hyperbolic PDEs, integral equations, evolution problems, geodesic problems, etc.
- With the right setup, multigrid is frequently an optimal (ie., $O(\mathcal{V})$ solver.
- Multigrid is of great interest because it is one of the very few scalable algorithms, and can be parallelized readily and efficiently!

