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Outline

• Nonlinear Problems

• Neumann Boundary Conditions

• Anisotropic Problems

• Variable Mesh Problems

• Variable Coefficient Problems

• Algebraic Multigrid



3 of 104

Nonlinear Problems

• How should we approach the nonlinear system

   and can we use multigrid to solve such a system?

• A fundamental relation we’ve relied on, the
residual equation

    does not hold,  since, if A(u)  is a nonlinear
operator,

fuA =)(

reAvAfvAuA =�−=−
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The Nonlinear Residual Equation

• We still base our development around the residual
equation, now the nonlinear residual equation:

• How can we use this equation as the basis for a
solution method?

vAfvAuA )(−=)(−)(

rvAuA =)(−)(

fuA =)(



5 of 104

Let’s consider Newton’s Method

• The best known and most important method for
solving nonlinear equations!

• We wish to solve F(x) = 0 .
• Expand F  in a Taylor series about x :

• Dropping higher order terms, if x+s is a solution,

• Hence, we develop an iteration
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F( x + s) = F( x) + sF ′( x) + s2 F ″ ( ξ)
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Newton’s method for systems

• We wish to solve the system A(u) = 0.  In vector
form this is

• Expanding A(v+e) in a Taylor series about v :
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Newton for systems (cont.)
• Where J(v) is the Jacobian system

• If  u=v+e is a solution, 0 = A(v) + J(v) e  and

• Leading to the iteration
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v ← v − J( v) − 1 A( v)



8 of 104

Newton’s method in terms of the
residual equation

• The nonlinear residual equation is

• Expanding A(v+e) in a two-term Taylor series about v :

• Newton’s method is thus:

v ← v + J( v) − 1 r
vAfr )(−=

rvAevA =)(−)+(

rvAevJvA =)(−)(+)(
revJ =)(
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How does multigrid fit in?

• One obvious method is to use multigrid to solve
J(v)e = r at each iteration step. This method is
called Newton-multigrid and can be very effective.

• However, we would like to us multigrid ideas to
treat the nonlinearity directly.

• Hence, we need to specialize the multigrid
components (relaxation, grid transfers,
coarsening) for the nonlinear case.
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What is nonlinear relaxation?
• Several of the common relaxation schemes have

nonlinear counterparts.  For A(u)=f, we describe
the nonlinear Gauss-Seidel iteration:

– For each j=1, 2, …, N
• Set the jth component of the residual to zero and solve for

vj .  That is, solve (A(v))j = fj .

• Equivalently,
– For each j=1, 2, …, N

• Find  s ∈ ℜ  such that

   where      is the canonical jth unit basis vector

=))ε+(( fsvA jjj
εj
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How is nonlinear Gauss-Seidel done?
• Each                      is a nonlinear scalar equation for

vj . We use the scalar Newton’s method to solve!

• Example:                                              may be
discretized so that                      is given by

• Newton iteration for vj is given by
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How do we do coarsening for
nonlinear multigrid?

• Recall the nonlinear residual equation

• In multigrid, we obtain an approximate solution v h
on the fine grid, then solve the residual equation
on the coarse grid.

• The residual equation on        appears as

rvAevA 222222 hhhhhh =)(−)+(

Ω2h

rvAevA =)(−)+(
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Look at the coarse residual equation

• We must evaluate the quantities on       in

• Given v h, a fine-grid approximation, we restrict
the residual to the coarse grid

• For v 2h we restrict v h  by
• Thus,

Ω2h
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We’ve obtained a coarse-grid
equation of the form           .

• Consider the coarse-grid residual equation:

• We solve                      for                             and
obtain

• We then apply the correction:

fuA 222 hhh =)(
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FAS, the Full Approximation
Scheme, two grid form

• Perform nonlinear relaxation  on                     to
obtain an approximation      .

• Restrict the approximation and its residual

• Solve the coarse-grid residual problem

• Extract the coarse-grid error

• Interpolate and apply the correction

eIvv hh
h

hh += 2
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A few observations about FAS

• If A is a linear operator then FAS reduces directly to
the linear two-grid correction scheme.

• A fixed point of FAS is an exact solution to the fine-
grid problem and an exact solution to the fine-grid
problem is a fixed point of the FAS iteration.
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A few observations about FAS,
continued

• The FAS coarse-grid equation can be written as

     where       is the so-called tau correction.

• In general, since             , the solution       to the
FAS coarse-grid equation is not the same as the
solution to the original coarse-grid problem        .

• The tau correction may be viewed as a way to alter
the coarse-grid equations to enhance their
approximation properties.
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Still more observations about
FAS

• FAS may be viewed as an inner and outer iteration:
the outer iteration is the coarse-grid correction,
the inner iteration the relaxation method.

• A true multilevel FAS process is recursive, using
FAS to solve the nonlinear        problem using       .
Hence, FAS is generally employed in a V- or W-
cycling scheme.

Ω2h Ω4h
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And yet more observations about
FAS!

• For linear problems we use FMG to obtain a good
initial guess on the fine grid.  Convergence of
nonlinear iterations depends critically on having a
good initial guess.

• When FMG is used for nonlinear problems the
interpolant              is generally accurate enough to
be in the basin of attraction of the fine-grid
solver.

• Thus, one FMG cycle, whether FAS, Newton, or
Newton-multigrid is used on each level, should
provide a solution accurate to the level of
discretization, unless the nonlinearity is extremely
strong.

uI 2
2

hh
h
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Intergrid transfers for FAS

• Generally speaking, the standard operators (linear
interpolation, full weighting) work effectively in
FAS schemes.

• In the case of strongly nonlinear problems, the
use of higher-order interpolation (e.g., cubic
interpolation) may be beneficial.

• For an FMG scheme, where               is the
interpolation of a coarse-grid solution to become a
fine-grid initial guess, higher-order interpolation
is always advised.

uI 2
2

hh
h
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What is              in FAS?
• As in the linear case, there are two basic possibilities:

•                 is determined by discretizing the nonlinear
operator A(u) in the same fashion as was employed to
obtain             , except that the coarser mesh spacing
is used.

•                  is determined from the Galerkin condition

    where the action of the Galerkin product can be
captured in an implementable formula.

• The first method is usually easier, and more common.

A h( uh)

A 2h( u2h)

A 2h( u2h)

A 2h( u2h)
A 2h( u2h) = Ih

2h A h( uh) I2h
h
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Nonlinear problems: an example

• Consider

    on the unit square [0,1] x [0,1] with homogeneous
Dirichlet boundary conditions and a regular
Cartesian grid.

• Suppose the exact solution is

− ∆u( x, y) + γ u( x, y) eu( x, y) = f ( x, y)

u( x, y) = ( x2 − x3 ) sin ( 3π y)
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Discretization of nonlinear example
• The operator can be written (sloppily) as

• The relaxation is given by
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FAS and Newton’s method on

• FAS

• Newton’s Method

− ∆u( x, y) + γ u( x, y) eu( x, y) = f ( x, y)

1 10 100 1000
convergence factor 0.135 0.124 0.098 0.072

number of FAS cycles 12 11 11 10

1 10 100 1000
convergence factor 4.00E-05 7.00E-05 3.00E-04 2.00E-04

number of Newton iterations 3 3 3 4

γ

γ
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Newton, Newton-MG, and FAS on

• Newton uses exact solve, Newton-MG is inexact Newton with
a fixed number of inner V(2,1)-cycles  the Jacobian problem,
overall stopping criterion

− ∆u( x, y) + γ u( x, y) eu( x, y) = f ( x, y)

Outer Inner
Method iterations iterations Megaflops
Newton 3 1660.6

Newton-MG 3 20 56.4
Newton-MG 4 10 38.5
Newton-MG 5 5 25.1
Newton-MG 10 2 22.3
Newton-MG 19 1 24.6

FAS 11 27.1

<|||| r 01
2 01 −
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Comparing FMG-FAS and FMG-Newton
− ∆u( x, y) + γ u( x, y) eu( x, y) = f ( x, y)

We will do one FMG cycle using a single FAS V(2,1) -
cycle as the “solver” at each new level.  We then
follow that with sufficiently many FAS V(2,1)-cycles
as is necessary to  obtain ||r|| < 10-10.

Next, we will do one FMG cycle using a Newton-
multigrid step at each new level (with a single linear
V(2,1)-cycle as the Jacobian  “solver.”)  We then
follow that with sufficiently many Newton-multigrid
steps as is necessary to  obtain ||r|| < 10-10.
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Comparing FMG-FAS and FMG-Newton
− ∆u( x, y) + γ u( x, y) eu( x, y) = f ( x, y)

Cycle Mflops Mflops Cycle
FMG-FAS 1.10E-02 2.00E-05 3.1 1.06E-02 2.50E-05 2.4 FMG-Newton

FAS V 6.80E-04 2.40E-05 5.4 6.70E-04 2.49E-05 4.1 Newton-MG
FAS V 5.00E-05 2.49E-05 7.6 5.10E-05 2.49E-05 5.8 Newton-MG
FAS V 3.90E-06 2.49E-05 9.9 6.30E-06 2.49E-05 7.5 Newton-MG
FAS V 3.20E-07 2.49E-05 12.2 1.70E-06 2.49E-05 9.2 Newton-MG
FAS V 3.00E-08 2.49E-05 14.4 5.30E-07 2.49E-05 10.9 Newton-MG
FAS V 2.90E-09 2.49E-05 16.7 1.70E-07 2.49E-05 12.6 Newton-MG
FAS V 3.00E-10 2.49E-05 18.9 5.40E-08 2.49E-05 14.3 Newton-MG
FAS V 3.20E-11 2.49E-05 21.2 1.70E-08 2.49E-05 16.0 Newton-MG

5.50E-09 2.49E-05 17.7 Newton-MG
1.80E-09 2.49E-05 19.4 Newton-MG
5.60E-10 2.49E-05 21.1 Newton-MG
1.80E-10 2.49E-05 22.8 Newton-MG
5.70E-11 2.49E-05 24.5 Newton-MG

|||| rh |||| rh|||| eh |||| eh
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Outline
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• Neumann Boundary Conditions
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-1 N+2

Neumann Boundary Conditions

• Consider the (1-d) problem

• We discretize this on the interval [0,1] with
grid spacing            for j=1,2, …, N+1 .

• We extend the interval with two ghost points

)(=)(″− xfxu 10 << x

uu =)(′=)(′ 010

hjxj = N
h

+
=

1
1

0       1         2          3    …  j  ...              N-1      N     N+1

0                                        x                                         1
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We use central differences
• We approximate the derivatives with differences,

using the ghost points:

• Giving the system
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Eliminating the ghost points

• Use the boundary conditions to eliminate        ,

• Eliminating the ghost points in the j=0 and j=N+1
equations gives the (N+2)x(N+2) system of equations:
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We write the system in matrix
form

• We can write                     ,  where

• Note that        is (N+2)x(N+2), nonsymmetric, and
the system involves unknowns      and          at the
boundaries.
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We must consider a compatibility
condition

• The problem                           , for                    and
with                                 is not well-posed!

• If u(x) is a solution, so is u(x)+c for any constant c.
• We cannot be certain a solution exists. If one does,

it must satisfy

• This integral compatibility condition is necessary!
If f(x) doesn’t satisfy it, there is no solution!

)(=)(″− xfxu 10 << x
uu =)(′=)(′ 010

− �
�
0

1

u″( x) dx = �
�
0

1

f ( x) dx − [ u′( 1) − u′( 0) ] = �
�
0

1

f ( x) dx

0 = �
�
0

1

f ( x) dx
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The well-posed system
• The compatibility condition is necessary for a

solution to exist.  In general, it is also sufficient,
which can be proven that        is a well-behaved
operator in the space of functions u(x) that have
zero mean.

• Thus we may conclude that if f(x) satisfies the
compatibility condition, this problem is well-posed:

• The last says that of all solutions u(x)+c we choose
the one with zero mean.

∂
∂

−
2

2

x
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1

0
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The discrete problem is not well posed
• Since all row sums of      are zero,

• Putting      into row-echelon form shows that

                                   hence

• By the Fundamental Theorem of Linear Algebra,
has a solution if and only if

• It is easy to show that

• Thus,                  has a solution if and only if

• That is,
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We have two issues to consider

• Solvability. A solution exists iff

• Uniqueness.  If      solves                 so does

• Note that if                   then
    and solvability and uniqueness can be handled together

• This is easily done. Multiply 1st and last equations by
1/2, giving

ASNf Thh ))((⊥
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The new system is symmetric
• We have the symmetric system                    :

• Solvability is guaranteed by ensuring that       is
orthogonal to the constant vector     :

1
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The well-posed discrete system
• The (N+3)x(N+2) system is:

or, more simply

=
−+−

f
h

uuu
j

jjj +−

2

11 2
10 +≤≤ Nj

u0 − u1

h2
=

f 0

2
− uN + uN + 1

h2
=

f N + 1

2

A
h

uh = f
h

� h
i

N

i

+

=

1

0
u = 0

u hh =, 01

(choose the zero mean solution)



39 of 104

Multigrid for the Neumann Problem
• We must have the interval endpoints on all grids

• Relaxation is performed at all points, including endpoints:

• We add a global Gram-Schmidt step after relaxation on
each level to enforce the zero-mean condition
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Interpolation must include the
endpoints

• We use linear interpolation:

I2
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Restriction also treats the
endpoints

• For restriction, we use                       , yielding the
values
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The coarse-grid operator

• We compute the coarse-grid operator using the
Galerkin condition IAIA 2
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Coarse-grid solvability

• Assuming      satisfies                   , the solvability
condition, we can show that theoretically the coarse-
grid problem                                      is also solvable.

• To be certain numerical round-off does not perturb
solvability, we incorporate a Gram-Schmidt like step
each time a new right-hand side        is generated for
the coarse grid:

f
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Neumann Problem: an example
• Consider the problem                                 ,

    which has                            as a solution for any c
(c=-1/12 gives the zero mean solution).

−=)(″− xxu 12
10 << x uu =)(′=)(′ 010

c
xx

xu +−=)(
32

32

grid size average number
N  conv. factor of cycles
31 6.30E-11 0.079 9.70E-05 9
63 1.90E-11 0.089 2.40E-05 10

127 2.60E-11 0.093 5.90E-06 10
255 3.70E-11 0.096 1.50E-06 10
511 5.70E-11 0.100 3.70E-07 10
1027 8.60E-11 0.104 9.20E-08 10
2047 2.10E-11 0.112 2.30E-08 10
4095 5.20E-11 0.122 5.70E-09 10

|||| rh |||| eh
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Outline

• Nonlinear Problems

• Neumann Boundary Conditions

• Anisotropic Problems

• Variable Mesh Problems

• Variable Coefficient Problems

• Algebraic Multigrid

✔
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Anisotropic Problems

• All problems considered thus far have had        as
the off-diagonal entries.

• We consider two situations when the matrix has
two different constant on the off-diagonals.
These situations arise when
–  the (2-d) differential equation has constant, but

different, coefficients for the derivatives in the
coordinate directions

– the discretization has constant, but different, mash
spacing in the different coordinate directions

−
1

h2
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We consider two types of anisotropy
• Different coefficients on the derivatives

    discretized on a uniform grid with spacing h .

• Constant, but different, mesh spacings:

=α−− fuu yyxx
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Both problems lead to the same
stencil
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Why standard multigrid fails
• Note that                              has weak connections in the

y-direction.  MG convergence factors degrade as α gets
small.  Poor performance at α = 0.1 .

• Consider α � 0 .
• This is a collection of disconnected 1-d problems!
• Point relaxation will smooth oscillatory errors in the x-

direction (strong connections), but with no connections
in the y-direction the errors in that direction will
generally be random, and no point relaxation will have
the smoothing property in the y-direction.
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We analyze weighted Jacobi
• The eigenvalues of the weighted Jacobi iteration

matrix for this problem are
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Two strategies for anisotropy

• Semicoarsening Because we expect MG-like
convergence for the 1-d problems along lines of
constant y, we should coarsen the grid in the x-
direction, but not in the y-direction.

• Line relaxation Because the the equations are
strongly coupled in the x-direction it may be
advantageous to solve simultaneously for entire lines
of unknowns in the x-direction (along lines of
constant y)
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Semicoarsening with point
relaxation

• Point relaxation on                              smooths in the x-
direction. Coarsen by removing every other y-line.

• We do not coarsen along the remaining y-lines.

• Semicoarsening is not as “fast” as full coarsening. The
number of points on        is about half the number of
points on       , instead of the usual one-fourth.
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Interpolation with semicoarsening

• We interpolate in the 1-dimensional way along each
line of constant y.

• The coarse-grid correction equations are
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Line relaxation with full
coarsening

• The other approach to this problem is to do full
coarsening, but to relax entire lines (constant y)
of variables simultaneously.

• Write      in block form as

   where
                         and

A h

A h =

�
�
�
�
�
�
� D − cI

− cI D − cI
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Line relaxation

• One sweep of line relaxation consists of solving a
tridiagonal system for each line of constant y.

• The kth such system has the form                   where
is the kth subvector of      with entries                      and
the kth right-hand side subvector is

• Because D is tridiagonal, the kth system can be solved
very efficiently.
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• The eigenvalues of the weighted block Jacobi
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Semicoarsening with line relaxation

• We might not know the direction of weak coupling
or it might vary.

• Suppose we want a method that can handle either

                                         or

• We could use semicoarsening in the x-direction to
handle        and line relaxation in the y-direction to
take care of        .
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Semicoarsening with line relaxation

• The original grid • Original grid
viewed as a
stack of
“pencils.” Line
relaxation is
used to solve
problem along
each pencil.

• Coarsening is
done by deleting
every other
pencil
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An anisotropic example
• Consider                              with u=0 on the boundaries

of the unit square, and stencil given by

•  Suppose                                                 so the exact
solution is given by

• Observe that if α is small, the x-direction dominates
while if α is large, the y-direction dominates

=α−− fuu yyxx
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f ( x, y) = 2 ( y − y2) + 2α ( x − x2)
u( x, y) = ( y − y2) ( x − x2)
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What is smooth error?

• Consider α=0.001 and suppose point Gauss-Seidel
is applied to a random initial guess.  The error
after 50 sweeps appears as:
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We experiment with 3 methods

• Standard V(2,1)-cycling, with point Gauss-Seidel
relaxation, full coarsening, and linear interpolation

• Semicoarsening in the x-direction. Coarse and fine
grids have the same number of points in the y-
direction. 1-d full weighting and linear
interpolation are used in the x-direction, there is
no y-coupling in the intergrid transfers

• Semicoarsening in the x-direction combined with
line relaxation in the y-direction. 1-d full weighting
and interpolation.



62 of 104

With semicoarsening, the
operator must change

• To account for unequal mesh spacing, the residual
and relaxation operators must use a modified
stencil

• Note that as grids become coarser,       grows
while      remains constant.
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How do the 3 methods work for
various values of αααα ?

• Asymptotic convergence factors:

• Note: semicoarsening in x works well for α < .001
but degrades noticeably even at α = .1

scheme 1000 100 10 1 0.1 0.01 0.001 1E-04
V(2,1)-cycles 0.95 0.94 0.58 0.13 0.58 0.90 0.95 0.95

emicoarsening in x 0.94 0.99 0.98 0.93 0.71 0.28 0.07 0.07
semiC / line relax 0.04 0.08 0.08 0.08 0.07 0.07 0.08 0.08

α

y-direction strong x-direction strong
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A semicoarsening subtlety
• Suppose α is small, so that semicoarsening in x is

used. As we progress to coarser grids,          gets
small but        remains constant.

• If, on some coarse grid,           becomes comparable
to            , the problem effectively becomes
recoupled in the y-direction.  Continued
semicoarsening can produce artificial anisotropy,
strong in the y-direction.

• When this occurs, it is best to stop semicoarsening
and continue with full coarsening on any further
coarse grids.

hx
− 2

hy
− 2

hx
− 2

α hy
− 2
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Outline

• Nonlinear Problems

• Neumann Boundary Conditions

• Anisotropic Problems

• Variable Mesh Problems

• Variable Coefficient Problems

• Algebraic Multigrid

✔

✔

✔
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Variable Mesh Problems

• Non-uniform grids are commonly used to
accommodate irregularities in problem domains

• Consider how we might approach the 1-d problem

   posed on this grid:

− u″( x) = f ( x) 0 < x < 1

u( 0) = u( 1 ) = 0

x0 xj − 1 xj xj + 1 xN

x = 0 x = 1
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We need some notation for the
mesh spacing

• Let N be a positive integer.  We define the
spacing interval between     and         :xj xj + 1

hj + 1/2 ≡ xj + 1 − xj j = 0, 1, ... , N − 1

x0 xj − 1 xj xj + 1 xN

hj + 1/2
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We define the discrete
differential operator

• Using second order finite differences (and
plugging through a mess of algebra!) we obtain this
discrete representation for the problem:

• where

− αj
h uj − 1

h + ( αj
h + βj

h ) uj
h − βj

h uj + 1
h = f j

h 1 ≤ j ≤ N − 1

u0
h = uN

h = 0

αj
h =

2
hj − 1/2 ( hj − 1/2 + hj + 1/2 )

βj
h =

2
hj + 1/2 ( hj − 1/2 + hj + 1/2 )
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We modify standard multigrid to
accommodate variable spacing

• We choose every second fine-grid point as a
coarse-grid point

• We use linear interpolation, modified for the
spacing.  If                     , then  for

xh
0

x0
2h

xN
h

x 2
2
N

h
/

x2 j
h

x j
2h

v2 j
h = vj

2h v2 j + 1
h =

h2 j + 3/2 vj
2h + h2 j + 1/2 vj + 1

2h

h2 j + 1/2 + h2 j + 3/2

vh = I2h
h v2h 1 ≤ j ≤ N/2 − 1
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We use the variational properties
to derive restriction and     .

• This produces a stencil on        that is similar, but
not identical, to the fine-grid stencil.  If the
resulting system is scaled by                          , then
the Galerkin product is the same as the fine-grid
stencil.

• For 2-d problems this approach can be generalized
readily to logically rectangular grids.  However, for
irregular grids that are not logically rectangular,
AMG is a better choice.

A 2h

A 2h = Ih
2h A h I2h

h Ih
2h =

1
2

( I2h
h )

T

Ω2h

( hj − 1/2 + hj + 1/2 )
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Outline

• Nonlinear Problems

• Neumann Boundary Conditions

• Anisotropic Problems

• Variable Mesh Problems

• Variable Coefficient Problems

• Algebraic Multigrid

✔

✔

✔

✔
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Variable coefficient problems
• A common difficulty is the variable coefficient

problem, given in 1-d by

   where a(x)  is a positive function on [0,1]
• We seek to develop a conservative, or self-adjoint,

method for discretizing this problem.
• Assume we have available to us the values of a(x)

at the midpoints of the grid

− ( a( x) u′( x) ) ′ = f ( x) 0 < x < 1

u( 0 ) = u( 1 ) = 0

aj + 1/2 ≡ a( xj + 1/2 )

xh
j xh

j + 1
xh

j − 1xh
0 xh

N
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We discretize using central
differences

• We can use second-order differences to
approximate the derivatives.  To use a grid spacing
of h we evaluate a(x)u’(x)  at points midway
between the gridpoints:

( a( x) u′( x) ) ′ ≈
( au′) |xj + 1/2 − ( a u′) |xj − 1/2

h
+ O( h2 )

xj

xh
j xh

j + 1
xh

j − 1xh
0 xh

N

Points used to evaluate (au’ ) ’  at xj
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We discretize using central
differences

• To evaluate                   we must sample a(x) at the
point           and use second order differences:

   where

( au′) |xj + 1/2
xj + 1/2

( a u′ ) |xj + 1/2 ≈ aj + 1/2
uj + 1 − uj

h
( a u′ ) |xj − 1/2 ≈ aj − 1/2

uj − uj − 1

h

aj + 1/2 ≡ a( xj + 1/2 )

xh
j xh

j + 1
xh

j − 1xh
0 xh

N

Points used to evaluate (au’ ) ’  at xj
Points used to
evaluate u’ at

xj + 1/2
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The basic stencil is given

• We combine the differences for u’ and for (au’ ) ’
to obtain the operator

   and the problem becomes, for

− aj + 1/2

uj + 1 − uj − 1

h
+ aj − 1/2

uj − uj − 1

h
h

− ( a( xj) u′ ( xj) ) ′ ( xj) ≈

1

h2
( − aj − 1/2 uj − 1 + ( aj − 1/2 + aj + 1/2 ) uj − aj + 1/2 uj + 1 ) = f j

1 ≤ j ≤ N − 1

u0 = uN = 0
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Coarsening the variable
coefficient problem

• A reasonable approach is to use a standard
multigrid algorithm with linear interpolation, full
weighting, and  the stencil

   where

• The same stencil can be obtained via the Galerkin
relation

A 2h =
1

( 2h) 2
( − aj − 1/2

2h aj − 1/2
2h + aj + 1/2

2h − aj + 1/2
2h )

aj + 1/2
2h =

a2 j + 1/2
h + a2 j + 3/2

h

2
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Standard multigrid degrades if
a(x) is highly variable

• It can be shown that the variable coefficient
discretization is equivalent to using standard multigrid
with simple averaging on the Poisson problem on a certain
variable-mesh spacing.

• But simple averaging won’t accurately represent smooth
components if         is close to       but far from           .

-(a(x)u’)’ = f

-u’’(x) = f

x2j + 1
h x2 j

h x2 j + 2
h

x2j + 1
hx2 j

h x2 j + 2
h

xj
2h xj + 1

2h
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One remedy is to apply operator
interpolation

• Assume that relaxation does not change smooth
error, so the residual is approximately zero.
Applying at           yields

• Solving for

− a2 j + 1/2
h e2 j

h + ( a2 j + 1/2
h + a2 j + 3/2

h ) e2 j + 1
h − a2 j + 3/2

h e2 j + 2
h

h 2
= 0

x2j + 1
h

e2j + 1
h

e2j + 1
h =

a2 j + 1/2
h ej

2h + a2 j + 3/2
h ej + 1

2h

a2j + 1/2
h + a2j + 3/2

h
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Thus, the operator induced
interpolation is

• And, as usual, the restriction and coarse-grid
operators are defined by the Galerkin relations

v2j + 1
h =

a2 j + 1/2
h vj

2h + a2 j + 3/2
h vj + 1

2h

a2j + 1/2
h + a2j + 3/2

h

v2 j
h = vj

2h

A 2h = Ih
2h A h I2h

h Ih
2h = c( I2h

h ) T
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A Variable coefficient example
• We use V(2,1) cycle, full weighting, linear interpolation.
• We use                                anda( x) = ρ sin( k π x ) a( x) = ρ rand ( k π x)

k=3 k=25 k=50 k=100 k=200 k=400
0 0.085 0.085 0.085 0.085 0.085 0.085 0.085

0.25 0.084 0.098 0.098 0.094 0.093 0.083 0.083
0.5 0.093 0.185 0.194 0.196 0.195 0.187 0.173

0.75 0.119 0.374 0.387 0.391 0.39 0.388 0.394
0.85 0.142 0.497 0.511 0.514 0.514 0.526 0.472
0.95 0.191 0.681 0.69 0.694 0.699 0.745 0.672

a( x) = ρ rand ( k π x)
a( x) = ρ sin( k π x )

ρ
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Outline

• Nonlinear Problems

• Neumann Boundary Conditions

• Anisotropic Problems

• Variable Mesh Problems

• Variable Coefficient Problems

• Algebraic Multigrid

✔

✔

✔

✔

✔



Algebraic multigrid:
 for unstructured-grids

� Automatically defines coarse “grid”

� AMG has two distinct phases:
— setup phase: define MG components
— solution phase: perform MG cycles

� AMG approach is opposite of geometric MG
— fix relaxation (point Gauss-Seidel)
— choose coarse “grids” and prolongation, P, so

that error not reduced by relaxation is in
range(P)

— define other MG components so that coarse-
grid correction eliminates error in range(P)
(i.e., use Galerkin principle)

 (in contrast, geometric MG fixes coarse grids,
then defines suitable operators and smoothers)
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�  Solve Phase
— Standard multigrid operations, e.g., V-cycle, W-cycle,
FMG, FAS, etc

AMG has two phases:
• Setup Phase

– Select Coarse “grids,”

– Define interpolation,

– Define restriction and coarse-grid operators
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�  Note: Only the selection of coarse grids does not
parallelize well using existing techniques!

83 of 112



AMG fundamental concept:
Smooth error = “small” residuals

• Consider the iterative method error recurrence

• Error that is slow to converge satisfies

• More precisely, it can be shown that smooth error
satisfies

eAQIe kk −+ 11 )−(=

≈)−( eeAQI −1 ≈� eAQ−1 0

≈� r 0

er AD − 1 « )(1
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AMG uses strong connection to
determine MG components

• It is easy to show from (1) that smooth error
satisfies

• Define i is strongly connected to j by

• For M-matrices, we have from (2)

• implying that smooth error varies slowly in the
direction of strong connections
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Some useful definitions
• The set of strong connections of a variable      ,

that is, the variables upon whose values the value
of      depends, is defined as

• The set of points strongly connected to a variable
is denoted:                                 .

•  The set of coarse-grid variables is denoted C.
• The set of fine-grid variables is denoted F.
• The set of coarse-grid variables used to

interpolate the value of the fine-grid variable
is denoted       .

Si
�
�
�

−θ>−:�
�
�

= aaj jiijji xam
≠

ui

S Ti }∈:{= Sjj i

Ci
ui

ui

ui

86 of 112



Choosing the Coarse Grid
• Two Criteria

– (C1) For each          , each point                should either be
in     or should be strongly connected to at least one point
in

– (C2)      should be a maximal subset with the property
that no two     -points are strongly connected to each
other.

• Satisfying both (C1) and (C2) is sometimes
impossible.  We use (C2) as a guide while enforcing
(C1).

i ∈ F
C

C
C

Ci

Sj ∈ i

87 of 112



Selecting the coarse-grid points

C-point selected
(point with
largest “value”)
Neighbors of
C-point
become F-
points
Next C-point
selected (after
updating “values”)

F-points
selected, etc.
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Examples: Laplacian Operator
5-pt FD, 9-pt FE (quads), and 9-pt FE

(stretched quads)
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9-pt FE 
(stretched quads)
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Prolongation is based on smooth
error, strong connections (from

M-matrices)

Prolongation :

Smooth error is given by:
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Prolongation is based on smooth
error, strong connections (from

M-matrices)

The definition of smooth error,

Sets:
Strongly connected   -pts.
Strongly connected   -pts.
Weakly connected points.
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Finally, the prolongation
weights are defined

• In the smooth-error relation, use              for weak
connections.  For the strong F-points use :

 yielding the prolongation weights:
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AMG setup costs:
a bad rap

• Many geometric MG methods need to compute
prolongation and coarse-grid operators

• The only additional expense in the AMG setup phase is
the coarse grid selection algorithm

• AMG setup phase is only 10-25% more
expensive than in geometric MG and may be
considerably less than that!
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AMG Performance:
Sometimes a Success Story

• AMG performs extremely well on the model
problem (Poisson’s equation, regular grid)- optimal
convergence factor (e.g., 0.14) and scalability with
increasing problem size.

• AMG appears to be both scalable and efficient on
diffusion problems on unstructured grids (e.g., 0.1-
0.3).

• AMG handles anisotropic diffusion coefficients on
irregular grids reasonably well.

• AMG handles anisotropic operators on structured
and unstructured grids relatively well (e.g., 0.35).
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So, what could go wrong?
Strong F-F connections: weights are dependent on

each other
• For point     the value      is interpolated from      ,     ,

and is needed to make the interpolation weights for
approximating     .

• For point     the value      is interpolated from     ,      ,
and is needed to make the interpolation weights for
approximating     .

• It’s an implicit system!
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Is there a fix?
• A Gauss-Seidel like iterative approach to weight

definition is implemented.  Usually two passes
suffice.  But does it work?

theta Standard Iterative
0.25 0.47 0.14

0.5 0.24 0.14

0.25 0.83 0.82
0.5 0.53 0.23

Convergence factors for
Laplacian, stretched quadrilaterals

∆=∆ yx 01

∆=∆ yx 001

�  Frequently, it does:
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AMG for systems
• How can we do AMG on systems?

• Naïve approach: “Block” approach (block Gauss-Seidel,
using scalar AMG to “solve” at each cycle)
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�  Great Idea! Except that it doesn’t work! (relaxation
does not evenly smooth errors in both unknowns)
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AMG for systems: a solution
• To solve the system problem, allow interaction

between the unknowns at all levels:

                                      and

• This is called the “unknown” approach.
• Results: 2-D elasticity, uniform quadrilateral

mesh:
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mesh spacing 0.125 0.0625 0.03135 0.015625
Convergence factor 0.22 0.35 0.42 0.44
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How’s it perform (vol I)?
Regular grids, plain, old, vanilla problems

• The Laplace Operator:

• Anisotropic Laplacian:

 Convergence Time Setup

Stencil per cycle Complexity per Cycle Times

5-pt 0.054 2.21 0.29 1.63
5-pt skew 0.067 2.12 0.27 1.52
9-pt (-1,8) 0.078 1.30 0.26 1.83
9-pt (-1,-4,20) 0.109 1.30 0.26 1.83

−ε− UU yyxx
Epsilon 0.001 0.01 0.1 0.5 1 2 10 100 1000

Convergence/cycle 0.084 0.093 0.058 0.069 0.056 0.079 0.087 0.093 0.083
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How’s it perform (vol II)?
Structured Meshes, Rectangular Domains

• 5-point Laplacian on regular rectangular grids
Convergence factor (y-axis) plotted against number of nodes (x-axis)
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How’s it perform (vol III)?
Unstructured Meshes, Rectangular Domains

• Laplacian on random unstructured grids (regular
triangulations, 15-20% nodes randomly collapsed into neighboring nodes)

Convergence factor (y-axis) plotted against number of nodes (x-axis)
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How’s it perform (vol IV)?
Isotropic diffusion, Structured/Unstructured Grids

                                      on structured, unstructured
grids

 Problems used: “a” means parameter c=10, “b” means c=1000
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How’s it perform (vol V)?
Laplacian operator, unstructured Grids

Convergence factor

0.1002
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Gridpoints
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Outline

• Nonlinear Problems

• Neumann Boundary Conditions

• Anisotropic Problems

• Variable Mesh Problems

• Variable Coefficient Problems

• Algebraic Multigrid

✔

✔

✔

✔

✔

✔
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Multigrid Rules!

• We conclude with a few observations:

– We have barely scratched the surface of the myriad ways
that multigrid has been, and can be, employed.

– With diligence and care, multigrid can be made to handle many
types of complications in a robust, efficient manner.

– Further extensions to multigrid methodology are being sought
by many people working on many different problems.


