CS 290H: Sparse matrix algorithms // Homework 0

Due by class time Thursday, September 30

You may do the programming assignments for this course in C or Fortran; I recommend C. In
each case, you will set your code up with an interface so that it can be called from Matlab as a
“mexFunction”. This will let you use Matlab to debug your code, and it will let me use Matlab
to test it. This warmup assignment is just for you to learn how to write a Matlab interface using
sparse matrices.

Problem 1: Write a Matlab mexFunction, sparseprint (A), which prints the contents of a
sparse matrix A as a list of nonzero entries like “A(7,8) = 13.4”.

Your routine can assume the matrix is real, but should not assume that it’s square. Test it
from Matlab with several matrices you make up. See the Matlab functions sprand or sprandn to
generate random sparse test matrices. Or download the Matlab interface to the UF Sparse Matrix
Collection, at http://www.cise.ufl.edu/research/sparse.

For documentation on mexFunctions, open up a help window in Matlab, and look in the FExternal
Interfaces/API section, under the Matlab section. The C mexFunction syntax is quite a bit nicer
than the Fortran. All mexFunctions have the routine name mexFunction.

You'll need to use the following Matlab “mx” and “mex” routines:

mxGetM returns the number of rows of a matrix

mxGetN returns the number of columns of a matrix
mxGetJc returns a pointer to the column pointer array (Ap)
mxGetIr returns a pointer to the row indices (Ai)

mxGetPr returns a pointer to the numerical values (Ax)

There is a more complex but very well-written example of mexFunctions for sparse matrices
in Tim Davis’s LDL code, which is at http://www.cise.ufl.edu/research /sparse/ldl and also on the
CS290H web page. LDL computes a sparse Cholesky factorization; you don’t need to understand
how that works (yet), but you can see from that code how a C program can get access to a Matlab
sparse matrix.

I recommend the following strategy for writing mexFunctions. Suppose the name of the mex-
Function is foobar. Put all Matlab-related work in a file called foobarmex.c (or foobarmex.f for
Fortran). The routine name in this file is mexFunction. All calls to mx* and mex* routines should
be placed here. This routine then calls a routine in the file foobar.c or foobar.f that does the
actual work. There should be no references to mx* or mex* routines in the foobar.c file, with the
exception of calls to Matlab functions that have ANSI C counterparts (such as malloc, free, and
printf).

Why bother? Because this makes the foobar. c file a stand-alone routine that can then be used
in a stand-alone C program (or Fortran, as the case may be), without using Matlab. OK, for such
a simple routine as sparseprint, this structure is overkill. But it’s a useful habit anyway. Tim’s
LDL program follows this structure.

