
CS 290H: Sparse matrix algorithms // Homework 2

Assigned October 17, 2004

Due by class time Thursday, October 28

1. [10 points] Prove that every tree with n vertices has some single vertex whose removal
leaves no connected component with more than 2n/3 vertices. (That is, trees have 1-separators.)

2. [40 points] Let A be any n × n symmetric matrix, let G = G(A) be its graph, let G+ =
G+(A) be its filled graph, and let T = T (A) be its elimination tree. You may use the result of
problem (1) for this problem.

2(a) [10 points] Let j be a vertex of G, G+, and T , so 1 ≤ j ≤ n. Let Dj be the set of vertices
that are descendants of j in T . (Remember that j is its own descendant by definition.) Let Ej be
the set of vertices that are adjacent in G to vertices in Dj , but are not themselves in Dj . Finally,
let Cj = Ej ∪ {j}. Prove that the subgraph of G+ induced by Cj is a clique, that is, every pair of
vertices in Cj is joined by an edge of G+. (This is the same as exercise 6.2 on page 129 of GLN,
with different notation.)

2(b) [10 points] Let j and Dj be as above. Let E+

j be the set of vertices that are adjacent

in G+ to vertices in Dj , but are not themselves in Dj. Finally, let C+

j = E+

j ∪ {j}. Prove that

C+

j = Cj. (This is exercise 6.3 on page 129 of GLN.)

2(c) [10 points] Prove that there is a clique of G+ whose removal leaves no connected com-
ponent with more than 2n/3 vertices.

2(d) [10 points] Let A be any n× n symmetric positive definite matrix. Suppose there exists
a permutation P such that the Cholesky factor of PAP T has t nonzeros. Prove that G(A) has a
separator (a set of vertices whose removal leaves no connected component with more than 2n/3
vertices) with at most 2

√
t vertices.

[Optional, extra credit] Let A be any n×n symmetric positive definite matrix with at most
d nonzeros per row or column. Prove that there exists a nested dissection order (i.e. a choice of
separators for the graph of A and, recursively, for the hierarchy of subgraphs that appear in nested
dissection) for which the number of nonzeros in the Cholesky factor of A is within a factor of d log2 n
of the smallest possible number of nonzeros for any elimination order.

3. [50 points] Write a Matlab mexFunction X = lsolve (L,B) that solves a sequence of
sparse triangular systems with sparse right-hand sides.

Input L is an n×n square Matlab sparse matrix that you can assume is lower triangular. Input
B is an n×m Matlab sparse matrix. The output X should be an n×m Matlab sparse matrix that
is identical to the result of X = L \ B.

1



Unlike homework 1, for this homework you can use Matlab to help get the indices of each column
of X into sorted order. Matlab’s matrix transpose operator works correctly even if its input has
out-of-order row indices, and it produces a matrix with sorted row indices. It works by doing a
lexicographic sort of the nonzeros by rows and columns, which takes time O(nnz(X) + n + m). So,
you can wrap your routine in a Matlab m-file that finishes with X = (X’)’.

There are several possible approaches to this problem. For full credit, you should implement
the following two approaches and compare them to each other and to Matlab. The first approach
alone is worth half credit.

Approach 1: Loop over the columns of B, creating a column of X for each one. Compute
the current column of X in a dense n-vector that starts out equal to the column of B. Loop over
the entries of the dense vector; whenever you encounter a nonzero entry, compute the final value
of that element of X (by dividing by a diagonal element of L) and update the dense vector by
subtracting a suitable multiple of a suitable column of L. At the end of the dense vector, compress
that column into the data structure for X.

Note that Approach 1 takes at least order n time per column, so its run time is at least Ω(nm).

Approach 2: Instead of a simple dense n-vector, use a SPA to compute each column of X.
As in the efficient matrix-multiplication code, use O(n) time to initialize the SPA once at the very
beginning, but don’t use O(n) time for each column.

The trick here is to figure out, when you start each column of X, which columns of L will be
needed as updates—that is, which elements of the current column of X will be nonzero. You can
do this by performing a depth-first search in the directed graph G(LT ), beginning from the vertices
representing the nonzeros in the current column of B. The vertices you reach in the search are
exactly those that will represent the nonzeros in the current column of X. During the search you
can produce a list of those vertices in topological order. (That is, in an order that is consistent with
the partial order defined by the graph G(LT ).) Then you can go through the topologically ordered
list, updating the SPA with the corresponding columns of L. (Convince yourself that the updates
must occur in topological order for the triangular solve to work correctly. They don’t need to occur
in increasing numerical order, though, so you don’t have to sort the nonzeros into numerical order.)

To test your code, generate triangular matrices L and right-hand sides B by

A = grid5(k);

A = sprand(A);

A = A(:, colamd(A));

[L,U,P] = lu(A);

n = k*k;

B = sprand(n, n/10, 3/n);

The routine grid5, from the meshpart toolbox referenced on the course web site, produces the
n × n matrix of the 2-D model problem on the k × k grid, n = k2. Try various n from 100 to as
large as you can get. (The limit will be how much L fills in during the LU factorization; you ought
to be able to get n up to 10,000 or so anyway.) Use Matlab to plot the running times of your two
codes and Matlab’s L \ B.

Turn in all your code, and also the plot with your run times and Matlab’s, and also a Matlab
transcript of the session that creates the plot and verifies that your output matrices agree with
Matlab’s.

Again, I’ll give a little extra credit for beating Matlab on large matrices, and for the fastest
code submitted.

2


