
CS 290H: Preconditioning iterative methods // Homework 1

Assigned October 3, 2004

Due by class time Monday, October 17

1. [20 points]
(a) Find a 2-by-2 matrix A that is symmetric and nonsingular, but for which neither A nor −A

is positive definite. What are the eigenvalues of A? Find a 2-vector y such that yTAy < 0.
(b) For A as above, find a 2-vector b such that the conjugate gradient algorithm, when started

with the zero vector as an initial guess, does not converge to the solution of Ax = b. Show what
happens on the first two iterations of CG, as described on Slide 3 of the September 26 class. How
do you know it won’t converge to the right answer?

2. [40 points] In this problem you’ll actually prove that CG works in at most n steps, assuming
that real numbers are represented exactly. (This is not a realistic assumption in floating-point
arithmetic, or on any computer with a finite amount of hardware, but it gives a solid theoretical
underpinning to CG.) Let A be an n-by-n symmetric, positive definite matrix, and let b be an
n-vector.

We start with the idea of searching through n-dimensional space for the value of x that minimizes
f(x) = 1

2
xT Ax − bT x, which is the x that satisfies Ax = b. We begin by picking a set of n linearly

independent search directions, called d0, d1, . . . , dn−1. (Actually we don’t know them in advance,
but that’s a detail.) At each iteration we proceed along the next direction until we are “lined up”
with the final answer, the value of x at which Ax = b. In n-space, once we are lined up with the
answer from n independent directions, we will be exactly on the answer.

The first magic of CG is that for the right kind of search directions, there is a way to define
“lined up” for which we can actually compute how far to go along each search direction. The key
definition uses A-conjugate vectors. Then “lined up” means that the error ei = xi − x is exactly
crossways to the search direction di−1, not in the sense of being perpendicular (which would mean
eT
i di−1 = 0), but in the sense of being A-conjugate: eT

i Adi−1 = 0.
An informal way to say that is, we proceed along the search direction until we are lined up with

the solution as seen through A-glasses. The reason for lining up through A-glasses rather than bare
eyes is that we can compute where to stop without knowing where the final answer is. We can’t see
and compute with x-space directly, but we can see the space where Ax and b live. And after lining
up each of n independent directions in an n-dimensional space we are guaranteed to be sitting on
top of the right answer, whether the independent directions are the conventional coordinate axes
or the A-conjugate axes we see through our A-glasses.

To go along with this, we need to choose the search directions themselves to be mutually A-
conjugate: we will require each di to be A-conjugate to all the earlier dj ’s, so dT

i Adj = 0 if i 6= j.

(a) Suppose we are given i mutually A-conjugate vectors d0, . . . , di−1. Suppose x0 = 0, and for
each j < i we have xj = xj−1 + αjdj−1. Write down and prove correct an expression for a scalar
αi such that, if we take xi = xi−1 + αidi−1, then the error ei = xi − x is A-conjugate to di−1.

1



Now, how do we get a sequence of A-conjugate directions to search along? In fact, we can
start with any sequence of linearly independent directions, and convert them to A-conjugate di-
rections by projecting out all the earlier search directions from each one, using Gram-Schmidt
orthogonalization, as follows.

(b) Suppose we are given i mutually A-conjugate vectors d0, . . . , di−1, and one more vector ui

that does not lie in their span. Write down and prove correct an expression for scalars βi,j such
that, if we take

di = ui +
i−1∑

j=0

βi,jdj ,

then di is A-conjugate to all the earlier dj.

Finally, the second magic of CG is that there is a way to choose a particular sequence of
directions for which the Gram-Schmidt orthogonalization is really easy. If we choose the right
directions to start with, we only need to project out one earlier direction, not all i of them. This
is why the cost of one CG iteration is only O(n), not O(n2).

(c) Suppose the vectors d0, . . . , di−1, the vectors x0, . . . , xi−1, and the scalars αj and βi,j are
as above. Suppose in addition that at each stage we take ui = b − Axi (which is also known as ri,
the residual). First, prove that if this choice of ui lies in the span of d0, . . . , di−1, the CG iteration
can stop with xi = x. Second, show that this direction ui is already A-conjugate to all of the dj

except di−1, and therefore we can take βi,j = 0 for j < i − 1.

(d) One last detail: Prove that the CG code on the course slide does in fact compute the
residual ri correctly; that is, prove that ri−1 − αiAdi−1 is in fact equal to b − Axi.

3. [40 points] You may do the programming assignments for this course in C or Fortran; I
recommend C. In each case, you will set your code up with an interface so that it can be called
from Matlab as a “mexFunction”. This will let you use Matlab to test and debug your code, and
to plot results. This warmup assignment is just for you to learn how to write a Matlab interface
using sparse matrices.

Write a C or Fortran mexFunction that can be called from Matlab as y = matvec(A,x), which
takes as input a sparse matrix A and a full column vector x, and returns a full column vector y

whose value is the matrix-vector product Ax. Your routine can assume the matrix is real, but
should not assume that it’s square. (You might want to check to make sure the sizes of A and x

are compatible.)
Test your routine from Matlab with several sparse matrices you make up, verifying that it gives

the same answer as Matlab’s y = A*x. (The norm of the difference, norm(A*x - matvec(A,x)),
should be tiny. It may not be exactly zero because floating-point addition is not associative, and
your routine may be doing arithmetic in a different order than Matlab’s.) See the Matlab functions
sprand or sprandn to generate random sparse test matrices. Or download the Matlab interface to
the UF Sparse Matrix Collection, at http://www.cise.ufl.edu/research/sparse.

For documentation on mexFunctions, open up a help window in Matlab, and look in the External
Interfaces/API section, under the Matlab section. The C mexFunction syntax is quite a bit nicer
than the Fortran. All mexFunctions have the routine name mexFunction.

You’ll need to use the following Matlab “mx” and “mex” routines:

2



mxGetM returns the number of rows of a matrix
mxGetN returns the number of columns of a matrix
mxGetJc returns a pointer to the column pointer array (Ap)
mxGetIr returns a pointer to the row indices (Ai)
mxGetPr returns a pointer to the numerical values (Ax)

There is a more complex but very well-written example of mexFunctions for sparse matrices
in Tim Davis’s LDL code, which is at http://www.cise.ufl.edu/research/sparse/ldl and also on the
CS290H reference page on the web. LDL computes a sparse Cholesky factorization; you don’t need
to understand how that works, but you can see from that code how a C program can get access to
a Matlab sparse matrix.

Turn in all your code, and also a Matlab transcript of a session that tests your code and
verifies that the output agrees with Matlab’s. (Say “help diary” to Matlab to see how to record a
transcript.)

3


