
CS 290H: Sparse matrix algorithms // Homework 2

Assigned April 9, 2008

Due by class time Wednesday, April 16

1. [20 points] Consider the 9-vertex grid graph, numbered by rows, with the edges directed to
point from lower to higher numbered vertices. Perform dfs(3,4), that is, carry out a depth-first
search from vertices 3 and then 4. Show the postorder label assigned to each vertex.

2. [30 points] (See Davis problem 6.14.) In the left-looking LU factorization algorithm
presented in class on April 9, one can speed up the structure-prediction step by so-called symmetric

pruning, which reduces the number of edges in the depth-first-search graph. This speeds up the
symbolic step without changing the numerical step. Thus it doesn’t change the asymptotic O(f)
running time, but in practice it typically makes the whole factorization about four times as fast.
Pruning can be done in either the no-pivoting (A = LU) or partial-pivoting (PA = LU) version of
the factorization. For this problem, you can just consider the no-pivoting version.

(2a.) [10 points] Prove that if both ljr and urj are nonzero for some r < j, then when
predicting the structure of any column k > j, the depth-first search in G(LT ) will still give the
correct result if the search ignores nonzeros (edges) of the form lsr with s > j. (See the “Symmetric
Pruning” slide in the April 9 lecture notes for a diagram.)

(2b.) [10 points] The slide “Left-looking sparse LU without pivoting (pruned)” in the lecture
notes outlines a method that uses an auxiliary directed graph S to represent the pruned version of
LT . Describe how to represent and manipulate S, in sufficient detail to show that pruning can be
done within O(f) worst-case time. For full credit, show also that you don’t need to store an entire
separate data structure for S, but rather can represent S by storing L in standard CSC form plus
O(n) extra pointers.

(2c.) [10 points] Prove (as the slide says) that if the original matrix A is symmetric, then the
pruned graph S is isomorphic to the elimination tree of A.

3. [50 points] (See Davis problem 2.20.) Nobody knows any way to predict the exact number
of nonzeros in the product C = AB that is asymptotically faster than actually computing C. (This
is very different from Cholesky factorization, where it’s much faster to compute the number of
nonzeros in the Cholesky factor than to compute the factor itself.) Therefore, any sparse matrix
multiplication routine has to include some kind of trial-and-error way of allocating memory for its
results. The purpose of this problem is to experiment with different ways of doing this.

You will need a sparse matrix multiplication routine to start with. I suggest that you use
cs multiply from the Davis book, and modify it to do your experiments. However, if you prefer,
you may write your own routine using the outline from the April 2 class. Either way, you should
use a Matlab mex-file interface for testing. The Matlab interface to the Davis code is described in
section 10.3.

1



Experiment with the three (or four) methods below on the following two classes of n-by-n
matrices, for values of n ranging from about 100 to as large as you can: first, uniform random
matrices created by Matlab’s sprand(n,n,8/n); second, power-law matrices created by the Matlab
routine rmat(k) (see the course web page). Note that the dimension of an rmat(k) matrix is
actually n = 2k. Use Matlab’s tic and toc to get wall-clock times for the various methods. Make
a plot in Matlab that shows f (number of flops) on the x axis, and running time on the y axis,
with a point for each matrix. Plot the running time of Matlab’s C = A*B; on the same figure (say
“help hold”) to Matlab. Can you beat Matlab’s running time?

Turn in all your code, and also the plot with your run times and Matlab’s, and also a Matlab
transcript of the session that creates the plot and verifies that your output matrices agree with
Matlab’s.

First method: Guess and expand. This is the method both cs multiply and the Mat-
lab built-in matrix multiplication use. Guess an initial number of nonzeros to allocate for C

(cs multiply uses nnz(A)+nnz(B)), and then if you run out of space, allocate a larger space and
copy the part of C you’ve computed so far into it. cs multiply approximately doubles its guess
each time.

Second method: Compute twice. This is the method suggested in Davis problem 2.20. Do
the whole computation of C = AB twice. The first time through, don’t allocate any space for C;
after computing each column of C in the SPA, discard it, but keep a count of the total number of
nonzeros. The second time, allocate exactly the right amount of space for C.

Third method: Cheat. Let the user pass in an upper bound on the number of nonzeros in C,
and just fail if you exceed it. This isn’t a good idea in practice, but you should time this method
(using a big enough bound) just to see how much time the memory allocation is costing.

Fourth method: Probabilistic estimate (extra credit or project possibility). If you’re
interested in digging deeper into this, you can read Edith Cohen’s paper “Structure prediction
and computation of sparse matrix products,” J. Combinatorial Optimization 2:307–332, 1998, also
at http://www.springerlink.com/content/p328542122022748/, which gives a fast probabilistic
way of getting a good estimate of nnz(A*B). The idea is to look at a graph whose vertices represent
(separately) the rows and columns of A and B, and estimate the number of column vertices of B

that have paths to each row vertex of A. Cohen gives a probabilistic estimate that uses repeated
“rounds,” each of which looks a lot like multiplying A and B by a dense vector. The more rounds,
the better the estimate.

2


