CS 290H: Sparse matrix algorithms // Homework 5

Assigned April 30, 2004

Due by class time Monday, May 12

1. [10 points] The object of this problem is to measure experimentally the convergence rate
of CG on the (three-dimensional) model problem with various versions of incomplete factorization
preconditioning and with various orderings. You can generate the n-by-n matrix of the 3D model
problem by

A = grid3d(k);

where n = k®. (The routine grid3d.m is in the meshpart subdirectory of the Matlab codes linked
from the course web site.) Generate a right-hand side b as a random n-vector.

For each choice of k£ that you make, experiment with the following four permutations of the
matrix A:

e The natural ordering, as generated by grid3d.
e The bandwidth-limiting heuristic “reverse Cuthill-McKee,” as implemented by Matlab’s symrcm.
e The approximate minimum degree heuristic, as implemented by Matlab’s symamd.

e A “red-black” ordering, in which the vertices of the mesh are colored alternately red and black
(with two adjacent nodes always having different colors), and then the matrix is permuted
to put all the red nodes before all the black nodes. You should write a Matlab routine to
produce this permutation. It will be easier if you always take k to be odd, which is all right
for this homework.

For each of these orderings, you should explore the following preconditioning methods:

e No preconditioning.
e Precondition A with ICO (via Matlab’s cholinc routine).

e Precondition A with MIC (via Matlab’s cholinc routine, with different parameters). Matlab’s
code doesn’t produce an MICO ordering (I think), but it does produce a drop-tolerance version.
You should experiment with a range of drop tolerances; part of the object of this part of
the problem is to explore the drop-tolerance tradeoff between reducing the number of CG
iterations (because the preconditioner is better) and increasing the number of operations per
iteration (because the preconditioner is denser).

e Optional: Also experiment with preconditioning based on your ILU code from Homework 3.



Use conjugate gradient, via Matlab’s pcg routine, to solve the system Az = b to a tolerance of
1078, Do this for as large a range of values of k as you can (all odd, if you wish). In each case,
you should record both the number of CG iterations to convergence and an estimate of the number
of flops per CG iteration (which depends on the number of nonzeros in the preconditioner). Use
log-log plots (generated by Matlab) to estimate the number of iterations and the number of flops
as functions of n.

Compare your results to some of the entries in the table of complexities from the April 30
class. Also, summarize your conclusions about the interacting effects of ordering permutations and
drop-tolerance fill. Do different orderings perform better and different levels of drop tolerance?



