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AN EFFICIENT ALGORITHM TO COMPUTE ROW AND COLUMN
COUNTS FOR SPARSE CHOLESKY FACTORIZATION*

JOHN R. GILBERTt, ESMOND G. NG:, AND BARRY W. PEYTON

Abstract. Let an undirected graph G be given, along with a specified depth-first spanning
tree T. Almost-linear-time algorithms are given to solve the following two problems. First, for every
vertex v, compute the number of descendants w of v for which some descendant of w is adjacent
(in G) to v. Second, for every vertex v, compute the number of ancestors of v that are adjacent
(in G) to at least one descendant of v.

These problems arise in Cholesky and QR factorizations of sparse matrices. The authors’ al-
gorithms can be used to determine the number of nonzero entries in each row and column of the
triangular factor of a matrix from the zero/nonzero structure of the matrix. Such a prediction makes
storage allocation for sparse matrix factorizations more efficient. The authors’ algorithms run in
time linear in the size of the input times a slowly growing inverse of Ackermann’s function. The best
previously known algorithms for these problems ran in time linear in the sum of the nonzero counts,
which is usually much larger. Experimental results are given demonstrating the practical efficiency
of the new algorithms.

Key words, sparse Cholesky factorization, sparse QR factorization, symbolic factorization,
graph algorithms, chordal graph completion, disjoint set union, column counts, row counts
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1. Introduction. Direct solution of a sparse symmetric positive definite linear
system requires four steps [7], [15]" reordering, symbolic factorization, sparse Cholesky
factorization, and sparse triangular solutions. Let A be the n x n coefficient matrix
of the linear system after it has been reordered to reduce fill, and let L be the lower
triangular Cholesky factor of A. This paper presents improved algorithms for comput-
ing the number of nonzero entries in each row and column of L prior to the symbolic
factorization step. We refer to these parameters as the row counts and column counts
of L.

In least squares computations, A is rn n, with rn >_ n. It is often necessary to
compute the orthogonal factorization A QR. Our algorithms can be used also to
predict upper bounds on the row counts and column counts of the upper triangular
factor R, since the structure of R is always contained in the structure of the Cholesky
factor of ATA [12].

Throughout the paper we assume familiarity with graphs, trees, and such basic
techniques as depth-first search [24]. We also assume a basic knowledge of the four
steps in solving sparse systems by Cholesky factorization, and with the use of graphs
in these algorithms [15]. More specifically, we assume familiarity with elimination
trees [19], skeleton graphs [18], postorderings, supernodes [1], [2], [16], [20], [21], and
the subscript compression scheme for L [15], [25].
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1.1. Applications. Here we survey some of the sparse matrix settings in which
it is useful to precompute the row counts, the column counts, or the total number of
nonzeros in the Cholesky factor of a sparse matrix.

Either the row or column counts can be used to compute ILl, the total number
of nonzeros in the factor. (We write IXI for the number of nonzeros in a matrix X
or the number of elements in a set X.) Knowing ILl before the numeric factorization
step makes it possible to allocate storage all at once instead of dynamically. In
sparse Cholesky factorization, the time required to compute ILl by existing methods
is dominated by the time required for numerical factorization; but there are at least
two settings in which it is valuable to be able to compute ILl as fast as possible.

First, some methods for large-scale numerical optimization use Cholesky factor-
ization on a Hessian matrix [5], [6]. If the Hessian is indefinite, Cholesky factorization
will abort, but the partial factorization contains enough information to help determine
a good descent direction containing negative curvature information. In this case, the
symbolic factorization time may dominate the time spent on the numeric factoriza-
tion before it aborts. Thus it may be more efficient to skip the symbolic phase and to
build the data structure for L during the numeric factorization. However, for this to
be efficient, we still need to find ILl (and perhaps the column counts) before starting
the factorization.

Second, much research remains to be done on the issue of how best to reorder the
initial matrix to reduce fill, i.e., to reduce ILl. It is sometimes useful to compute ILl
for many different orderings of the same matrix, both in experiments with reordering
algorithms and when trying to optimize an ordering for a specific matrix. Our new
algorithms make this much faster.

Besides fill, there are several other measures of the quality of a reordering. Some
of them can be computed from the column counts; for example, the total number
of arithmetic operations is the sum of the squares of the column counts, and the
maximum front size is equal to the largest column count. The smallest maximum
front size, over all reorderings of a graph, is one more than the graph’s treewidth [3].
Thus the fast column count algorithm may also be useful in experimental studies of
treewidth.

Two applications related to the supernodal structure of L also require the column
counts. Supernodes are clusters of columns with related nonzero patterns, which can
be exploited to use fast dense matrix computation kernels in sparse factorization; 3
describes them in more detail. First, there is a simple, flexible O(n) scheme for com-
puting supernode partitions [2], [17] that takes the column counts and the elimination
tree as input. This algorithm is more versatile and faster than the O(IAI) algorithm of
Liu, Ng, and Peyton [20], which takes the original matrix and its elimination tree as
input. The latter algorithm computes the so-called fundamental supernode partition.
Given a fast algorithm to compute column counts, the more flexible scheme could be
used efficiently to compute coarser supernode partitions [2], which trade extra fill for
a simpler sparsity structure that can be used to improve efficiency on vector super-
computers or to reduce synchronization overhead on shared-memory multiprocessors.

The second supernodal application of the column counts is to compute the storage
required for indexing information for L in the usual compressed format generated
by the symbolic factorization step [25]. Current software packages [4], [9] do not
precompute the space needed for this compressed symbolic factorization, because it
is too expensive using the currently known algorithms. The storage required for the
other three steps in the solution process is usually computed in advance; we believe
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that the new algorithms introduced here are efficient enough to be used by a software
package to precompute the storage requirement of the symbolic factorization step as
well.

Finally, we know of only one application that specifically requires the row counts
rather than the column counts. The row counts are the numbers of column modifica-
tions (sparse SAXPYs) required to complete each column in sparse Cholesky factor-
ization algorithms. Some parallel implementations [13], [14] need the row counts to
determine when all the modifications have arrived for each column.

1.2. Previous work. Like many combinatorial algorithms in sparse matrix fac-
torization, all the efficient algorithms for row and column counts begin by computing
the elimination tree of the matrix (defined in the next section). The fastest known
elimination tree algorithm is due to Liu [19]. The time complexity for this algorithm
is dominated by disjoint set union operations, which take time O(m a(m, n)), where
A is n n and has 2m off-diagonal nonzeros. Here a(m, n) is a slowly growing inverse
of Ackermann’s function defined by Tarjan [27]; for all values of m and n less than
the number of elementary particles in the observable universe, a(m, n) _< 4. Thus a
function that is O(rna(m, n))is often called "almost linear."

The fastest previously known algorithm for computing row and column counts is
also due to Liu [19]. It first computes the elimination tree of A and then traverses
each "row subtree" of the elimination tree (defined in the next section). The total
size of the row subtrees is the number of nonzeros in the factor, so the running time
of this step is O(ILI). Unless the factor is extremely sparse, the subtree traversals
dominate the time to find the elimination tree. To put this in perspective, suppose A
is the matrix of an n-node finite difference mesh ordered by nested dissection. Then
rn is O(n), and ILl is O(n log n) in two dimensions or O(n4/3) in three dimensions.

The algorithm in this paper also takes A and the elimination tree as input but
runs in almost-linear time O(ma(rn, n)); the time complexity for the new algorithm
is dominated by disjoint set union operations. Thus it computes the row and column
counts in the same asymptotic time needed to find the elimination tree. As we will
see in 4, this asymptotic efficiency is also reflected in practice.

1.3. Outline. Section 2 presents the row and colunn count algorithm from a
graph-theoretic point of view. Here it is convenient to think of the input not as the
graph G(A) of a matrix, but as the graph G(A)U T(A) that has edges both for the
matrix nonzeros and for the elimination tree. (The elimination tree T(A) usually has
edges not contained in G(A).) The elimination tree is a depth-first spanning tree of
the graph G(A) T(A); thus for the purpose of the high-level view in 2, the input
is just an undirected graph with a specified depth-first spanning tree. In this setting,
we suspect that our results may be useful in efficient algorithms involving chordal
graphs, chordal completion, and treewidth.

In 3 we return to the matrix-computation point of view, and discuss details of
the implementation in the sparse matrix setting. Two points of practical importance
arise here: we modify the algorithm slightly to make only one pass over its input,
and we take advantage of supernodal structure to compute only with a subgraph
called the skeleton graph. We show how to organize the entire computation, including
the skeleton graph reduction, within the framework of the fundamental supernode
algorithm of Liu, Ng, and Peyton [20].

Section 4 contains experimental results. We experiment with both the nodal
and supernodal versions of the algorithm, as well as with several implementations of
the disjoint set union operations (UNION and FIND) that dominate the asymptotic
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running time. The best version is the supernodal algorithm with path-halving and
no union by rank (definitions are in 3.3); it performs well enough that we argue it
should be a standard part of high-performance sparse factorization codes. Finally, 5
contains concluding remarks.

2. The algorithm.

2.1. Definitions and problem statement. Let G (V, E) be a connected
undirected graph with n vertices and m edges, and let T be a specific depth-first
spanning tree for G (e.g., G G(A)UT(A) and T T(A)). We call vertices v and w
adjacent if they are joined by an edge in G; that is, if (v, w) E E. We say that vertex v
is an ancestor of vertex w if v is on the path in T from w to the root of T. Vertex v is
a descendant of w if w is an ancestor of v. Note that a vertex is its own ancestor and
its owndescendant; a proper ancestor or descendant is one that is different from the
vertex itself. We write T[v] for the set of descendants of v and also for the subtree
of T (rooted at v) that those vertices induce.

Since T is a depth-first spanning tree, every edge of G (whether or not it is an
edge of T) joins an ancestor in T to a descendant in T [24].

To simplify notation, we assume that the vertices of G are the integers 1 through n.
We also assume that the vertex numbers are a postorder on T; that is, that for every
vertex v, the vertices of T[v] are numbered consecutively, with v numbered last. Thus
vertex n is the root of T.

The level of vertex v, which we write level(v), is its distance in T from the root.
The least common ancestor of vertices v and w, which we write lca(v, w), is the
ancestor of v and w with the smallest postorder number (or the largest level). Both
a postorder numbering and the vertex levels for an arbitrary tree can be computed in
linear time by depth-first search [26]. Given a set of k pairs {v, w} of vertices, the k
least common ancestors lca(v, w) can be computed in O(kc(k, n)) time, where ( is
the very slowly growing inverse of Ackermann’s function mentioned above [28]. We
describe these algorithms in more detail in 3.

We consider the following two problems.
Problem 1 (row counts). For every node u e V, let row[u] be the set of descendants

v of u for which either v u or there exists an edge (u, w) with w T[v]. The problem
is to compute rc(u) row[u]l for every u.

Problem 2 (column counts). For every node v e V, let col[v] be the set of ancestors
u of v for which either u v or there exists an edge (u, w) with w e T[v]. The problem
is to compute cc(v) --Icol[v]l for every v.

Note that v row[u] if and only if u col[v], and that u is an element of both
row[u] and col[u]. For each u, the subgraph of T induced by row[u], denoted by Tr[u]
and referred to as the row subtree of u, is connected; it is a "pruned subtree" rooted
at u. The subgraph of T induced by col[v] may not be connected.

We conclude by briefly describing the relationship between these problems and
sparse Cholesky factorization. It may seem a bit confusing that we include the elimi-
nation tree edges in the graph G in the graph problem but not in the matrix problem;
however, the answer is the same in either case.

Let an n n symmetric, positive definite matrix A be given, and let G(A) be its
undirected graph (whose vertices are the integers 1 through n). Let G+(A) be the

filled graph of G(A) [22] obtained by adding to G(A) edge (v, w) whenever there is a
path in G(A) from v to w whose intermediate vertices are all smaller than both v and
w. The graph G+(A) is chordal, and (ignoring numerical cancellation) is the graph of
L + LT, where L is the Cholesky factor of A [23].
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FIG. 1. Example of path decomposition.

The elimination tree of A, denoted T(A), has vertices 1 through n, and the parent
of vertex v is the smallest w > v such that (v, w) is an edge of G+ (A). Lit [19] surveys
the uses and properties of this structure. It is a forest with one tree for each connected
component of G(A); if A is irreducible then T(A) is a tree. The elimination tree may
not be a subgraph of G(A), but it is a subgraph of G+ (A), and in fact it is a depth-first
spanning tree of that graph. If A’ is a matrix whose graph is G(A’) G(A) (2 T(A),
it is straightforward that G+(A’) G+(A) and T(A’) T(A).

Now consider problems (1) and (2) above for G G(A’) and T T(A’). It is
easy to show [19] that the edges of G+ (A) G+ (A’) are exactly those (u, v) for which
v :/: u and v E row[u] (or u col[v]). Thus rc(u) is the number of nonzeros in row u
of the Cholesky factor L of A, and cc(v) is the number of nonzeros in column v of L.

2.2. Row counts. We count the vertices in row[u] by counting the edges in the
pruned subtree Tr[u] of T that row[u] induces. The following lemma lets us partition
those edges into paths.

LEMMA 2.1. Let Pl < P2 < < Pk be some of the vertices of a rooted tree R
(where < is postorder), and suppose all the leaves and the root ofR are among the pi ’s.
Let qi be the least common ancestor ofpi and pi+ for i <_ < k. Then each edge (s, t)
of the tree is on the tree path from pj to qj for exactly one j.

Proof. Suppose t is the parent of s in R. The descendants of s include at least one

leaf, so they include at least one pi. Let pj be the largest pi among the descendants
of s. Then pj <_ s < pj+. (There must be a pj+wthat is, we cannot have j k--
because Pk is the root, which is a proper ancestor of s.) Since s is an ancestor of pj
but not of pj+, the least common ancestor qy of py and py+ is a proper ancestor
of s, and hence an ancestor of t. Therefore (s, t) is on the path from py to qj.

Now consider an : j. If s is not an ancestor of pi, then (s, t) is not on the path
from pi to its ancestor qi. If s is an ancestor of pi, then pi <_ s, and :/: j implies
pi _< pi+l <_ s. Since postorder assigns consecutive numbers to the vertices in a

subtree, this means that s is also an ancestor of pi+, and hence of the least common
ancestor q. Thus (s,t) is not on the path from pi to qi.

Figure 1 shows an example of the path decomposition.
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Recall that T is a depth-first spanning tree of G and hence every edge of G joins
an ancestor in T to a descendant in T. Now consider a vertex u of G. If the lower-
numbered neighbors of u in G are pl < p2 < < Pk-1, and if Pk u, then the
pruned subtree R-- Tr[u] induced by row[u] satisfies the hypotheses of Lemma 2.1.
Thus the number of edges in Tr[u] is the sum of the lengths of the paths in the lemma.
The length of the path from pi to its ancestor q is the difference of their levels. The
number of vertices in row[u] is one more than the number of edges, so

1 +

(Here lca and level are taken in T rather than T[u], but it is clear that for any two
vertices in row[u] the least common ancestor and the difference in levels are the same
in either tree.)

Let ladj[u] be the lower numbered neighbors of u in G. The algorithm to com-
pute rc(u) for all u first sorts each set ladj[u]{u} by postorder, then computes all the
necessary least common ancestors, and finally computes the sum above for each u.
Computing level numbers (and the postorder itself if necessary) takes linear time,
and sorting the sets ladj[u] U {u} into postorder takes linear time by a lexicographic
bucket sort. There is one let-common-ancestor computation for each edge of G, so
the dominant term in the algorithm’s time complexity is O(m (m, n)).

2.3. Column counts. Because u o[v] ir and only if v row[u], the column
count cc(v) is equal to the number of row subtrees T[u] that contain v. We could
compute cc(v) by traversing each row subtree in turn, and counting the number of
times each vertex w traversed [19]. This, however, would take time proportional to

To get a faster algorithm, we define weights wt(v) on the vertices of G in such a
way that the column count for vertex v turns out to be the sum of the weights of the
descendants of v. The key observation is that we can compute these weights as a sum
of contributions from each row subtree, and that the row subtree contributions can
be computed efficiently using the same least common ancestors as in the row count
algorithm.

Here are the details. For each vertex u, define X to be the characteristic function
of row[u], so that X(v) 1 if v e row[u] and X(v) 0 otherwise. Define wt by

(1) wtu (v) Xu (v) Xu (Y).
children y of v

These weights may be positive, negative, or zero. This definition implies that

(2)
xeT[v]

In a sense, wt= is a "first difference" down the tree of the characteristic function of
row[u]. Finally, define

(3)  t(v)
uV

Now we prove three lemmas relating the column counts to the weights, the weights
to the sets row[u], and finally the row[u], once more, to the least common ancestors.
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LEMMA 2.2. For every vertex v,

xeT[v]

Proof. Because v e row[u] if and only if u e col[v], we have

Ico [ ]l
uEV

Equation (2) states that this is equal to

 tu(X).
uEV xT[v]

The result follows by reversing the order of summation and using (3).
Lemma 2.2 implies that we can compute the column counts easily and efficiently

from the weights by traversing the tree in postorder and summing the weights of the
subtrees. It remains to describe how to compute the weights.

LEMMA 2.3. Let u and v be vertices. Suppose that d of the children of v are
vertices of row[u]. Then

1-d ifvErow[u],
wt(v) -1 if v is the parent of u,

0 otherwise.

Proof. This is immediate from (1) and the definition of X.
Lemma 2.3 implies that the only vertices v for which wtu(v) is nonzero are the

leaves of the pruned row subtree Tr[u], the internal vertices of Tr[u] that have more
than one child in T [u], and the parent of u. The following lemma allows us to compute
wtu(v) for each v from the same pi’s and qi’s we used in the row count algorithm.

LEMMA 2.4. Let Pl < P2 < < Pk be some of the vertices of a rooted tree R
(where < is postorder), and suppose all the leaves and the root ofR are among the pi ’s.
Let q be the least common ancestor of pi and p+, for 1 <_ < k. Then for each
vertex v of R, the number of children of v in R is

I{i q v}l I{i p v}l + 1.

Proof. Let Q I{i" q v}l, let p I{i’p v}l, and let d be the number of
children of v in R. Consider the set of directed paths from p to q in R, for 1 _< < k.
For any collection of directed paths, each path that includes vertex v either begins
at v or enters v along edges from other vertices. Similarly, each path that includes
vertex v either ends at v or leaves v along edges to other vertices. Consequently:

The number of paths that either begin at v or enter v along edges
from other vertices must be equal to the number of paths that either
end at v or leave v along edges to other vertices.

(This is essentially Kirchoff’s law for a flow of unit size from pi to q for each i.)
Lemma 2.1 says that every edge of R is on exactly one of these paths. Therefore one
path enters v from each of the d children of v; exactly one path leaves v, to its parent,
unless v is the root; one path begins at v for each such that p v (except for k
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Sort the vertices and their lists of neighbors by a postorder of T;
Compute level(u) as the distance from u to n (the root), for all u;
Compute lca(p, p’) for every p and its successor p’ in ladj[u] U {u}, for all u;
rc(u) *-- 1, for all u;
wt(u) - 1, for all u;
for u .-- 1 to n do

if u : n then
wt(parent(u)) +- wt(parent(u)) 1;

end if
for p E ladj[u] (in order) do

p’ - the successor of p in ladj[u] U {u};
q - lca(p,p’);

end for
end for
cc(v) .- wt(v), for all v;
for v .-- 1 to n- 1 do

Cc(parent(v) - cc(parent(v) + cc(v);
end for

FIG. 2. Algorithm to compute row and column counts.

if v is the root); and one path ends at v for each i such that qi v. A trivial path
with pi q v both starts and ends at v, but does not enter or leave v. Thus the
relation above is

P+d=Q+I

if v is not the root of R, or

(P-1)+d=Q+O

if v is the root. In either case, we have d Q- P + 1 as desired. D
Now consider a vertex u of G. If the vertices of ladj[u] are pl < P2 < < Pk-1,

and if pk u, then the pruned subtree R Tr[u] induced by row[u] satisfies the
hypotheses of Lemma 2.4. Therefore, using Lemma 2.3, if v is a vertex of row[u] then
wt(v) I{i: pi v}l- I{i: qi v}l. Thus we could compute wry(v) for all v by
initializing each weight to zero, setting the weight of the parent of u to -1, and then
adding one to the weight of each pi and subtracting one from the weight of each qi.

In fact we do not need to compute wtu(v) separately for each u; we can compute
wt(v) -u Wtu(V) all at once. The algorithm begins, like the row count algorithm,
by sorting each set ladj[u] {u} in postorder and computing all the necessary least
common ancestors. It initializes wt(u) to one for each u. Then, for each u, it subtracts
one from the weight of the parent of u, adds one to wt(p) for each p ladj[u],
and subtracts one from wt(q) for the least common ancestor q of each pair p and
p’ of consecutive members (in postorder) of ladj[u] t2 {u}. Finally, the algorithm
computes cc(v) for all v by summing the weights of each subtree in postorder. Figure 2
sketches the algorithm to compute both row and column counts. The only step
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that takes more than linear time is the least common ancestor computation, and the
dominant term in the algorithm’s time complexity is O(rna(rn, n)).

3. Implementation. The discussion in the previous section was in a general
graph-theoretic setting. However, to obtain the most efficient implementation of the
new algorithm for our applications, we need to switch back to a sparse matrix setting.

Consider a symmetric matrix A and its graph G(A). Assume that the elimination
tree T(A), the postordering, and the values level(u) (with respect to T(A)) have been
computed, as required in Fig. 2. Two other requirements must be met to obtain a
practical and efficient implementation of the new algorithm.

First, we must reorganize the computation to avoid sorting the adjacency lists by
postorder and precomputing all the least common ancestors. Indeed, direct implemen-
tation of the’ algorithm in Fig. 2 would require that G(A) be processed three times,
and we doubt that any multiple-pass implementation will come close to realizing the
practical efficiency of the single-pass implementation presented in this section.

Second, we must discard some edges of G(A) that do not affect the result. Recall
from Liu [18] that the skeleton graph G-(A) is obtained from G(A) by removing every
edge (u, v) for which v < u and the vertex v is not a leaf of Tr[u]. The skeleton graph
is the smallest subgraph of G(A) whose filled graph is identical with that of G(A).
Consequently, the new algorithm produces the same results when applied to G-(A)
as when applied to G(A). Indeed, if G G-(A)UT(A) rather than G G(A)UT(A)
in Lemmas 2.1 and 2.4, then every vertex pl,p2,... ,Pk- is a leaf in the tree R. This
reduces the number of edges searched and least common ancestors computed by the
new algorithm to the minimum possible. Since G-(A) often has far fewer edges than
G(A) in practice, an implementation that processes G-(A) rather than G(A) promises
to be substantially faster; we see in 4 that this is indeed the case.

The skeleton graph G-(A) is closely related to fundamental supernodes of A, and
can be computed efficiently in linear time by a simple modification of the algorithm
of Liu, Ng, and Peyton [20] to find fundamental supernodes. Indeed, that algorithm
is a good framework for implementing our new algorithm, whether the skeleton graph
is exploited or not. We can combine the two algorithms to obtain an efficient single-
pass implementation. As this implementation processes the edges of G(A), it discards
edges not in the skeleton graph, and uses only the skeleton edges to compute the data
for the row and column counts. If rn- is the number of edges in G-(A), then this
scheme runs in O(m + rn- a(rn-, n)) time.

Section 3.1 below reviews the material we need from Liu, Ng, and Peyton [20].
Section 3.2 presents a detailed version of the new combined implementation. Sec-
tion 3.3 briefly describes our implementation of the disjoint set union algorithm for
computing the least common ancestors, upon which the time complexity of our algo-
rithm depends.

3.1. A fast algorithm for finding supernodes. Liu, Ng, and Peyton [20]
introduced an O(IAI) algorithm to compti/e a fundamental supernode partition. Their
algorithm assumes that the elimination tree T(A) has been computed and that the
vertices are numbered by a postordering of T(A). Let the higher adjacency set of v,
denoted by hadj[v], be the set of neighbors of v in G(A) that are numbered higher
than v, and let had2[v] be the higher adjacency set of v in G+(A). Ashcraft and
Grimes [2] defined a fundamental supernode as a maximal contiguous set of vertices

{v, v + 1,..., v + s} such that v + i is the only child of v + i + 1 in the elimination
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tree (for 0, 1,...,s-- 1) and

had2 [v] had3 Iv + s] U {v + 1, v + 2,..., v + s}.

The fundamental supernodes partition the vertices of G(A).
In matrix terms, a supernode is any group of consecutive columns in L with a

full diagonal block and with identical column patterns below the diagonal block. A
fundamental supernode is maximal subject to the following condition: every column
of the supernode except the last is an only child in the elimination tree. Liu, Ng, and
Peyton [20] give several reasons why fundamental supernodes are the most appropriate
choice of supernodes for most applications, one of which is that they are independent
of the choice of postordering for T(A).

Finding the set of fundamental supernodes is equivalent to finding the first vertex
of each supernode. These "first vertices" are characterized by the following result.

THEOREM 3.1 (Liu, Ng, and Peyton [20]). Vertex v is the first vertex in a funda-
mental supernode if and only if vertex v has two or more children in the elimination
tree, or v is a leaf of some row subtree of T(A).

The key observation is that the vertices required by the row/column count algo-
rithm (the pi’s and qi’s) are in fact first vertices of fundamental supernodes. It follows
from the discussion immediately after Lemma 2.3 in 2.3 that the vertex pairs pi, pi+l

whose least common ancestors must be found can be restricted to vertices that are
leaves of some row subtree of T(A). This is equivalent to restricting the algorithm
in Fig. 2 to the skeleton graph G-(A). Furthermore, when the pi’s are restricted in
this manner, it is clear that every least common ancestor q lca(pi, p+) has two
or more children. Consequently, the Liu, Ng, and Peyton algorithm is an excellent
vehicle for an efficient implementation of our new algorithm.

3.2. Detailed implementation of the new algorithm. The details of our
single-pass, column-oriented implementation are given in Fig. 3. Note that it traverses
the higher adjacency sets hadj9] rather than the lower adjacency sets used by the
algorithm in Fig. 2. Again, the vertices are numbered by a postorder of the tree T(A),
but here no assumption is made concerning the order of the vertices in hadj9], nor are
the least common ancestors computed in advance. Consequently, this implementation
makes only a single pass through G(A).

The vector of markers prev_p(u) stores the most recently visited vertex pr that is
a leaf in Tr[u]. The pairs p, pr produced by the algorithm are precisely the multiset
consisting of every consecutive pair of leaves in every row subtree Tr[u]. The reason
for this is that one of the if tests in the algorithm screens out all edges in G(A) except
those in the skeleton graph G-(A). The lines marked with asterisks have been added
to the algorithm solely for this purpose. Of these, the key line is the test for whether
or not the first (i.e., lowest numbered) descendant of p (fst_desc(p)) is greater than
the most recently visited vertex in ladj[u], namely the vertex stored in the marker
variable prev_nbr(u). It is not difficult to verify that when the condition holds true,
no descendant of p is adjacent to u in G(A); hence p is indeed a leaf in Tr[u]. For full
details of this test, see Liu, Ng, and Peyton [20].

The implementation is correct with or without the starred lines. We have imple-
mented both versions: we call the one with the starred lines the supernodal version,
and the one without these lines the nodal version. We experiment with both versions
of the algorithm in our tests in 4.

In the nodal version, prev_p(u) functions precisely as prev_nbr(u) does in the supernodal version.
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Sort the vertices by a postorder of T(A);
Compute level(u) as the distance from u to n (the root), for all u;
Compute fst_desc(u) as the first (least) descendant of u in T(A), for all u;
prev_p(u) --O, for all u;
prev_nbr(u) -O, for all u;
rc(u) -- 1, for all u;
wt(u) -- O, for all nonleaves u in T(A);
wt(u) +- 1, for all leaves u in T(A);
for p +- 1 to n do

if p n then
wt(parent(p)) -- wt(parent(p)) 1;

end if
for u E hadj[p] do

if fst_desc(p) > prev_nbr(u) then
wt(p) - wt(p) + 1;
p prev_p(u);
if p 0 then
() - ()+ wt()- w();

else
q .- FIND(p’);

wt(q) - wt(q)- 1;
end if
prev_p(u) - p;

end if
prev_nbr(u) -- p;

end for
UNION(p, parent (p));

end for
cc(v) wt(v), for all v;
for v-lton-1 do

cc(parent(v) - cc(parent(v) + cc(v);
end for

FIG. 3. Implementation of algorithm to compute row and column counts.

3.3. Disjoint set union. To compute least common ancestors, the algorithm in
Fig. 3 must manipulate disjoint sets of vertices, each of which induces a subtree of the
elimination tree. The highest numbered vertex in each set (the root of the subtree)
is used to "name" the set, and is called the representative vertex of the set. Initially
each vertex p from 1 to n is a singleton set. As the algorithm proceeds, it executes a
sequence of FIND and UNION operations which are defined as follows.

FIND(p): return the representative vertex of the unique set that
contains p.
UNION(u, v): combine the two distinct sets represented by u and v
into a single set, which will be represented by the larger of u and v.

It is not hard to show that the call to FIND(p’) in our algorithm returns lca(p’,p);
see Tarjan [28] for details.
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Each disjoint set is implemented as a tree stored using a parent vector (not to be
confused with the parent vector in the elimination tree). The operation UNION(u, v)
joins the two distinct trees represented by u and v together by making one of the
roots a child of the other root. Consequently, UNION is a constant-time operation.
This is not the case for FIND. The operation FIND(p) traces the find path from p to
the root of p’s tree. This root either is the representative vertex or contains a pointer
to the representative vertex, depending on the implementation of UNION.

Tarjan [29] describes several techniques to shorten the find paths and thus reduce
the amount of work spent on the FIND operations. Union by rank makes the shorter
tree’s root a child of the taller tree’s root in UNION, which tends to keep the trees
short and bushy. With no other enhancements, union by rank ensures that find paths
are no longer than O(log2(n)). This is usually combined with one of two techniques
for shortening the find path during a FIND operation. The first of these is path
compression, which, after finding the root, makes the parent for each vertex on the
find path point to the root during a second pass along the path. Alternatively, path
halving resets the parent pointer for every other vertex on the find path to point to its
grandparent. Path compression shortens the find path more, but requires two passes
over the find path; path halving needs only one pass.

Tarjan [27], [29] showed that when union by rank is combined with either path
compression or path halving, any sequence of n UNION’s and m FIND’s takes only
O(.m (m, n)) time. Tarjan [28] pointed out how to use the disjoint set union algorithm
to find the least common ancestors of an arbitrary set of pairs of vertices from the
same tree; our implementation of the row and column count algorithm uses the same
method. Consequently, we can implement the nodal version of our algorithm to run
in O(m a(m, n)) time, and similarly we can implement the supernodal version to run
in O(m + m- c(m-, n) time.

Gabow and Tarjan [10] showed that if the order of the UNION operations is known
in advance (as is the case in our problem), then disjoint set union can be implemented
so that a sequence of n UNION’s and m (>_ n) FIND’s takes only O(m) time. Their
sophisticated hybrid algorithm partitions the vertices into microsets and performs all
the operations in a hierarchical fashion, using table look-up to answer queries within
the microsets, and using the standard disjoint set union algorithm on the microsets
themselves. We did not implement this algorithm; we believe its increased overhead
would wipe out the difference between O(m a(m, n)) and O(m) in our application.

We implemented and tested the following six combinations.
1. No union by rank, no path compression or halving.
2. No union by rank, path compression.
3. No union by rank, path halving.
4. Union by rank, no path compression or halving.
5. Union by rank, path compression.
6. Union by rank, path halving.

We found surprisingly little difference in performance among the various options. Far
more important is whether or not the row/column count processing is limited to the
skeleton graph, as we see in the next section. We found that any gains due to union by
rank were more than offset by the additional overhead required for its implementation.
The third option--no union by rank, path hMvingwperformed slightly better on most
machines we tried. Path halving was clearly superior to path compression when the
skeleton adjacency structure was not exploited. Consequently, we recommend path
halving to those implementing the method, and in the next section all our timings
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were obtained using path halving and no union by rank.

4. Experimental results. We ran the new algorithms on several problems from
the Harwell-Boeing.sparse matrix collection [8]. Table 1 lists our test problems, and
Table 2 contains the problem statistics that have a bearing on the observed perfor-
mance of our algorithms. Throughout this section supcnt refers to the "supernodal"
version of the algorithm (Fig. 3 with the starred lines), which identifies the edges of
the skeleton graph G-(A) and uses only those edges in its row and column count cal-
culations, and nodcnt refers to the "nodal" version of the algorithm (Fig. 3 without
the starred lines), which uses all the edges of G(A).

4.1. Performance of the disjoint set union options. The primary purpose
of Table 3 is to explain two things we observed in our tests: (i) why exploiting the
skeleton graph is so beneficial and (ii) why the various disjoint set union (DSU)
implementation options have so little influence on the performance of our code. The
number of FIND operations required by nodcnt and supcnt is bounded above .by m
and m-, respectively, and bounded below by m- n and m- -n. Thus, the huge
difference between the number of FIND’s required by nodcnt and the number of
FIND’s required by supcnt (see Table 3) simply reflects the fact that the skeleton
graph of A is typically much sparser than the graph of A (see Table 2).

Each FIND(p) operation traverses the find path in p’s tree beginning at p and
ending at the root of the tree. The average number of vertices on these find paths
is reported for each DSU implementation. We tested only two options for nodcnt:
path compression and path halving, both without union by rank. Note that the
average number of vertices on a find path ranges from 2 to 2.7, with path compression
faring slightly better than path halving. The performance of path compression suffers,
however, because the find path must be traversed twice, compared with once for path
halving. Our tests indicate that path halving does indeed substantially outperform
path compression, and in nodcnt, where the number of FIND’s is large, the gain in
efficiency is substantial.

We tried all six options mentioned in 3.3 in our implementations of supcnt and,
as noted earlier, we saw little difference in performance from one option to the next.
The primary explanation for this phenomenon is the small proportion of supcnt’s
total work devoted to DSU operations. The number of FIND operations is small
relative to m, and the average number of vertices on a find path is small (from 1.4 to
2.6) for five of the six options tested. For the sixth option (no DSU enhancements),
the average number of vertices on a find path is still quite modest (from 3.6 to 5.8),
with less work required for each vertex visited. Consequently, even this option is
competitive in our tests.

When path compression or path halving is used, union by rank obtains only
modest reductions in the average number of nodes visited. The overhead costs associ-
ated with union by rank more than offset any advantages conferred by the technique.
Comparing path compression and path halving with no union by rank, the same ob-
servations made previously for nodcnt hold for supcnt also. The primary difference
is that the total work associated with DSU operations in supcnt is so small that the
performance edge of path halving over path compression is quite small. Nonetheless,
path halving with no union by rank has proven most effective overall and has the
added advantage of simplicity. Finally, note that for our chosen option the total num-
ber of vertices visited by FIND operations is much less than m for most of the test
problems.
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TABLE 1
List of test problems.

Problem Brief description
NASA1824
NASA2910
NASA4704
BCSSTK13
BCSSTK14
BCSSTK15
BCSSTK16
BCSSTK17
BCSSTK18
BCSSTK23
BCSSTK24

Structure from NASA Langiey, 1824 degrees Of freedom
Structure from NASA Langley, 2910 degrees of freedom
Structure from NASA Langley, 4704 degrees of freedom
Stiffness matrix--fluid flow generalized eigenvalues
Stiffness matrix--roof of Omni Coliseum, Atlanta
Stiffness matrix--module of an offshore platform
Stiffness matrixwCorps of Engineers dam
Stiffness matrix---elevated pressure vessel
Stiffness matrix--R. E. Ginna nuclear power station
Stiffness matrix--portion of a 3D globally triangular building
Stiffness matrix--winter sports arena

TABLE 2
Problem statistics.

Problem Dimension

NASA1824
NASA2910
NASA4704
BCSSTK13
BCSSTK14
BCSSTK15
BCSSTK16
BCSSTK17
BCSSTK18
BCSSTK23
BCSSTK24

1824
2910
4704
2003
1806
3948
4884
10974
11948
3134
3562

Edges in G(A)
m

Edges in G- (A)
m

18692
85693
50026
40940
30824
56934
142747
208838
68571
21022
78174

3565
8113
9672
5598
4352
13186
11665
24569
23510
8500
6977

Edges in G+(A)
m+

71875
201493
276768
269668
110461
647274
736294
994885
650777
417177
275360

TABLE 3
Average number of vertices on a find path for DSU implementation options: PC is path compression,
PH is path halving, R is union by rank, and NR is no union by rank.

Problem

NASA1824
NASA2920
NASA4704
BCSSTK13
BCSSTK14
BCSSTK15
BCSSTK16
BCSSTK17
BCSSTK18
BCSSTK23
BCSSTK24

nodcnt supcnt
verticesvertices

path

.PC PH FIND’s none
NR NR R

2’ 2:3 17050 4.1 1.9
2.0 2.1 83071 3.6 1.6
2.2 2.3 45809 4.1 1.9
2.1 2.2 39125 5.5 2.2
2.1 2.2 29200 4.2 1.7
2.2 2.3 53468 4.7 2.0
2.1 2.1 138121 4.4 2.0
2.1 2.1 199092 4.1 1.9
2.3 2.5 59624 5.5 2.2
2.4 2.7 18419 5.8 2.4
2.0 2.1 74762 3.8 1.7

path
PC

NR R
2.3 1.6
2.1 1.4
2.2 1.6
2.2 1.8
2.2 1.5
2.2 1.6
2.1 1.7
2.2 1.6
2.5 1.8
2.4 1.9
2.1 1.6

PH FIND’s
NR ’R’"
2.5 1.6 1923
2.2 1.4 5491
2.4 1.6 5455
2.4 1.8 3783
2.3 1.5 2728
2.3 1.7 9720
2.2 1.7 7039
2.2 1.6 14823
2.8 1.9 14563
2.6 1.9 5897
2.2 1.6 3565
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TABLE 4
Run times in seconds on an IBM RS/6000 (model 320).

Problem E-tree

NASA1824 .035
NASA2920 .156
NASA4704 .096
BCSSTK13 .078
BCSSTK14 .057
BCSSTK15 .108
BCSSTK16 .262
BCSSTK17 .391
BCSSTK18 .144
BCSSTK23 .044
BCSSTK24 .143

Post-
ordering

.006

.009

.016

.006

.005

.013

.016

.037

.040

.010

.012

Row/column counts
Liu’s
lnzcnt

.076

.256

.261

.238

.118

.513

.691

.965

.549

.310

.295

New
nodcnt

.047

.198

.128

.098

.074

.142

.331

.500

.197

.059

.184

Super-
supcnt nodes

.038 .031

.144 .128

.104 .085

.074 .064

.056 .048

.113 .091

.239 .216

.408 .329

.181 .141

.054 .039

.134 .120

4.2. Performance of the row and column count algorithm. We coded
nodcnt and supcnt in Fortran 77 and ran our tests on an IBM RS/6000 (model 320).
We used the standard Fortran compiler and compiler optimization flag (xlf -0). We
used a high-resolution timer (readrtc) to obtain our timings on this machine, re-
peating each run ten times in succession and returning the average elapsed time. The
results are shown in Table 4. We used path halving and no union by rank in the
implementation of the disjoint set union algorithm for both nodcnt and supcnt. The
time required to compute the elimination tree and postordering are of interest for two
reasons. First, they must be computed before the row/column counts can be com-
puted. Second, the algorithm for computing the elimination tree is, like nodcnt and
supcnt, a single-pass O(m c(m, n)) algorithm that relies on efficient implementation
of the disjoint set union operations for efficiency. Thus it is interesting to compare its
performance with that of the new algorithms.

Both nodcnt and supcnt are much more efficient than lnzcnt, the O(]LI) al-
gorithm from Liu [19]. Algorithm nodcnt is 1.29 to 5.25 times faster than lnzcnt,
while supcnt is, in turn, 1.08 to 1.39 times faster than nodcnt. For every problem
but one, supcnt is at least twice as fast as lnzcnt. (For NASA2920, supcnt is 1.77
times faster than 1nzcnt.) For four of the problems, supcn; is more than three times
faster than lnzcnt. For BCSSTK15 supcnt is 4.54 times faster, and for BCSSTK23
supcnt is 5.74 times faster.

Finally, it is interesting to compare the timings for the elimination tree algo-
rithm [19] and the supernode algorithm [20] with those for supcnt. First, supcnt can
be viewed as an extension of the supernode algorithm, and consequently the time for
supcnt should be bounded below by the time for the supernode algorithm. Though
there are some differences in the amount and kind of O(n) work performed by the
two algorithms before and after the main loop, the difference in the two timings can
nevertheless be viewed as a crude measure of the cost of adding the instructions nec-
essary to compute row and column counts to the supernode algorithm. Clearly, this
cost is quite small, especially considering the simplicity and demonstrated practical
efficiency of the supernode algorithm. Note also that the timings for supcnt and
the elimination tree algorithm closely track each other. From these observations, we
conclude that it is probably not possible to improve the performance of supcnt much
beyond what we are currently observing.
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5. Conclusion. We have considered in this paper the problem of predicting the
row counts and column counts in the Cholesky factor L of a sparse symmetric positive
definite matrix A, given the zero/nonzero structure of A and the elimination tree T(A).
We have presented new algorithms for determining the counts, the complexities of
which are linear in IAI times a slowly growing inverse of Ackermann’s function; the
previously known algorithms ran in O(ILI) time. The key to the new algorithms is the
computation of least common ancestors in a tree using the disjoint set union algorithm.
We have investigated different ways of implementing the disjoint set union operations
in our algorithms. Based on our experimental results, we conclude that pth halving
with no union by rank is the best technique for an efficient implementation of the
disjoint set union algorithm.

We have further improved our new algorithms by exploiting the skeleton graph
of A. We hve demonstrated that the supernodal version is faster than the nodal
version in all of the problems we tested. Moreover, both the nodal and supernodal
versions are much more efficient than the previously known O(ILI)-time algorithms.
we expect the algorithms described in this paper to be of practical use in a wide
range of sparse matrix computations.

REFERENCES

[1] C. C. ASHCRAFT, A Vector Implementation of the Multifrontal Method for Large Sparse, Sym-
metric Positive Definite Linear Systems, Tech. Report ETA-TR-51, Engineering Technol-
ogy Applications Division, Boeing Computer Services, Seattle, WA, 1987.

[2] C. C. ASHCRAFT AND R. G. GRIMES, The influence of relaxed supernode partitions on the

multifrontal method, ACM Trans. Math. Software, 15 (1989), pp. 291-309.
[3] H. BODLAENDER, J. R. GILBERT, H. HAFSTEINSSON, AND T. KLOKS, Approximating treewidth,

pathwidth, frontsize, and minimum elimination tree height, J. Algorithms, to appear.
[4] E. C. H. CHU, A. GEORGE, J. W-H. LIU, AND E. G-Y. N(, User’s Guide for SPARSPAK-A:

Waterloo Sparse Linear Equations Package, Tech. Report CS-84-36, University of Water-
loo, Waterloo, Ontario, 1984.

[5] W. COLEMAN AND Y. LI, On the Convergence of Reflective Newton Methods for Large-Scale
Nonlinear Minimization Subject to Bounds, Tech. Report 92-1314, Cornell University
Computer Science Department, Ithaca, NY, 1992.

[6] , A Reflective Newton Method for Minimizing a Quadratic Function Subject to Bounds
on the ariables, Tech. Report 92-1315, Cornell University Computer Science Department,
Ithaca, NY, 1992.

[7] I. S. DUFF, A. M. ERISMAN, AND J. K. REID, Direct Methods for Sparse Matrices, Oxford
University Press, Oxford, England, 1987.

[8] I. S. DUFF, R. G. GRIMES, AND J. G. LEWIS, Sparse matrix test problems, ACM Trans. Math.
Software, 15 (1989), pp. 1-14.

[9] S. C. EISENSTAT, M. C. GURSKY, M. H. SCHULTZ, AND A. H. SHERMAN, The Yale sparse
matrix package I: The symmetric codes, Internat. J. Numer. Meth. Engrg., 18 (1982),
pp. 1145-1151.

[10] H. N. GABOW AND R. E. TARJAN, A linear time algorithm for a special case of disjoint set
union, J. Comput. Syst. Sci., 30 (1985), pp. 209-221.

[11] F. GAVRIL, The intersection graphs of subtrees in trees are exactly the chordal graphs, J.
Combinatorial Theory B, 16 (1974), pp. 47-56.

[12] A. GEORGE AND M. T. HEATH, Solution of sparse linear least squares problems using Givens
rotations, Linear Algebra Appl., 34 (1980), pp. 69-83.

[13] A. GEORGE, M. T. HEATH, J. w-n. LIU, AND E. G-Y. NG, Solution of sparse positive definite
systems on a shared memory multiprocessor, Internat. J. Parallel Programming, 15 (1986),
pp. 309-325.

[14] , Sparse Cholesky factorization on a local-memory multiprocessor, SIAM J. Sci. Statist.
Comput., 9 (1988), pp. 327-340.

[15] A. GEORGE AND J. W-H. LIU, Computer Solution of Large Sparse Positive Definite Systems,
Prentice-Hall, Englewood Cliffs, NJ, 1981.



ROW AND COLUMN COUNTS FOR SPARSE CHOLESKY 1091

[16] M. T. HEATH, E. NG, AND B. W. PEYTON, Parallel algorithms for sparse linear systems, SIAM
Rev., 33 (1991), pp. 420-460.

[17] J. G. LEWIS, B. W. PEYTON, AND A. POTHEN, A fast algorithm for reordering sparse matrices

for parallel factorization, SIAM J. Sci. Statist. Comput., 10 (1989), pp. 1156-1173.
[18] J. W-H. Lu, A compact row storage scheme for Cholesky factors using elimination trees, ACM

Trans. Math. Software, 12 (1986), pp. 127-148.
[19] , The role of elimination trees in sparse factorization, SIAM J. Matrix Anal. Appl., 11

(1990), pp. 134-172.
[20] J. W-H. LIU, E. NG, AND B. W. PEYTON, On finding supernodes for sparse matrix computa-

tions, SIAM J. Matrix Anal. Appl., 14 (1993), pp. 242-252.
[21] A. POTHEN, Simplicial Cliques, Shortest Elimination Trees, and Supernodes in Sparse Cholesky

Factorization, Tech. Report CS-88-13, Department of Computer Science, The Pennsylvania
State University, University Park, PA, 1988.

[22] D. J. ROSE, A graph-theoretic study of the numerical solution of sparse positive definite systems
of linear equations, in Graph Theory and Computing, R. C. Read, ed., Academic Press,
1972, pp. 183-217.

[23] D. J. ROSE, R. E. TARJAN, AND G. S. LUEKER, Algorithmic aspects of vertex elimination on
graphs, SIAM J. Comput., 5 (1976), pp. 266-283.

[24] R. SEDGEWICK, Algorithms, Addison-Wesley, Reading, MA, 1983.
[25] A. H. SHERMAN, On the efficient solution of sparse systems of linear and nonlinear equations,

Ph.D. thesis, Yale University, New Haven, CT, 1975.
[26] R. E. TARJAN, Depth-first search and linear graph algorithms, SIAM J. Comput., 1 (1972),

pp. 146-160.
[27] EJficiency of a good but not linear set union algorithm, J. ACM, 22 (1975), pp. 215-225.
[28] ., Applications of path compression on balanced trees, J. ACM, 26 (1979), pp. 690-715.
[29] , Data Structures and Network Algorithms, CBMS-NSF Regional Conference Series in

Applied Math, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1983.


