CS 290N/219: Sparse matrix algorithms: Homework 4

Assigned October 28, 2009
Due by class Wednesday, November 4

1. [20 points]

(a) Find a 2-by-2 matrix A that is symmetric and nonsingular, but for which neither A nor $-A$ is positive definite. What are the eigenvalues of A ? Find a 2 -vector y such that $y^{T} A y<0$.
(b) For A as above, find a 2 -vector b such that the conjugate gradient algorithm, when started with the zero vector as an initial guess, does not converge to the solution of $A x=b$. Show what happens on the first two iterations of CG, as in the October 28 class slides. How do you know it won't converge to the right answer?
2. [40 points] In this problem you'll actually prove that CG works in at most n steps, assuming that real numbers are represented exactly. (This is not a realistic assumption in floating-point arithmetic, or on any computer with a finite amount of hardware, but it gives a solid theoretical underpinning to CG.) Let A be an n-by- n symmetric, positive definite matrix, and let b be an n-vector.

We start with the idea of searching through n-dimensional space for the value of x that minimizes $f(x)=\frac{1}{2} x^{T} A x-b^{T} x$, which is the x that satisfies $A x=b$. We begin by picking a set of n linearly independent search directions, called $d_{0}, d_{1}, \ldots, d_{n-1}$. (Actually we don't know them in advance, but that's a detail.) At each iteration we proceed along the next direction until we are "lined up" with the final answer, the value of x at which $A x=b$. In n-space, once we are lined up with the answer from n independent directions, we will be exactly on the answer.

The first magic of CG is that for the right kind of search directions, there is a way to define "lined up" for which we can actually compute how far to go along each search direction. The key definition uses A-conjugate vectors. Then "lined up" means that the error $e_{i}=x_{i}-x$ is exactly crossways to the search direction d_{i-1}, not in the sense of being perpendicular (which would mean $e_{i}^{T} d_{i-1}=0$), but in the sense of being A-conjugate: $e_{i}^{T} A d_{i-1}=0$.

An informal way to say that is, we proceed along the search direction until we are lined up with the solution as seen through A-glasses. The reason for lining up through A-glasses rather than bare eyes is that we can compute where to stop without knowing where the final answer is. We can't see and compute with x-space directly, but we can see the space where $A x$ and b live. And after lining up each of n independent directions in an n-dimensional space we are guaranteed to be sitting on top of the right answer, whether the independent directions are the conventional coordinate axes or the A-conjugate axes we see through our A-glasses.

To go along with this, we need to choose the search directions themselves to be mutually A conjugate: we will require each d_{i} to be A-conjugate to all the earlier d_{j} 's, so $d_{i}^{T} A d_{j}=0$ if $i \neq j$.
(a) Suppose we are given i mutually A-conjugate vectors d_{0}, \ldots, d_{i-1}. Suppose $x_{0}=0$, and for each $j<i$ we have $x_{j}=x_{j-1}+\alpha_{j} d_{j-1}$. Write down and prove correct an expression for a scalar α_{i} such that, if we take $x_{i}=x_{i-1}+\alpha_{i} d_{i-1}$, then the error $e_{i}=x_{i}-x$ is A-conjugate to d_{i-1}.

Now, how do we get a sequence of A-conjugate directions to search along? In fact, we can start with any sequence of linearly independent directions, and convert them to A-conjugate directions by projecting out all the earlier search directions from each one, using Gram-Schmidt orthogonalization, as follows.
(b) Suppose we are given i mutually A-conjugate vectors d_{0}, \ldots, d_{i-1}, and one more vector u_{i} that does not lie in their span. Write down and prove correct an expression for scalars $\beta_{i, j}$ such that, if we take

$$
d_{i}=u_{i}+\sum_{j=0}^{i-1} \beta_{i, j} d_{j},
$$

then d_{i} is A-conjugate to all the earlier d_{j}.
Finally, the second magic of CG is that there is a way to choose a particular sequence of directions for which the Gram-Schmidt orthogonalization is really easy. If we choose the right directions to start with, we only need to project out one earlier direction, not all i of them. This is why the cost of one CG iteration is only $O(n)$, not $O\left(n^{2}\right)$.
(c) Suppose the vectors d_{0}, \ldots, d_{i-1}, the vectors x_{0}, \ldots, x_{i-1}, and the scalars α_{j} and $\beta_{i, j}$ are as above. Suppose in addition that at each stage we take $u_{i}=b-A x_{i}$ (which is also known as r_{i}, the residual). First, prove that if this choice of u_{i} lies in the span of d_{0}, \ldots, d_{i-1}, the CG iteration can stop with $x_{i}=x$. Second, show that this direction u_{i} is already A-conjugate to all of the d_{j} except d_{i-1}, and therefore we can take $\beta_{i, j}=0$ for $j<i-1$.
(d) One last detail: Prove that the CG code on the course slide does in fact compute the residual r_{i} correctly; that is, prove that $r_{i-1}-\alpha_{i} A d_{i-1}$ is in fact equal to $b-A x_{i}$.

