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CS 240A: Shared Memory & 
Multicore Programming with Cilk++

• Multicore and NUMA architectures
• Multithreaded Programming
• Cilk++ as a concurrency platform
• Work and Span

Thanks to Charles E. Leiserson for some of these slides
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Multicore Architecture

Network

…

Memory I/O

$ $ $

Chip Multiprocessor (CMP)

core corecore
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cc-NUMA Architectures

AMD 8-way Opteron Server (neumann@cs.ucsb.edu)

A processor 
(CMP) with 
2/4 cores Memory 

bank local to 
a processor 

Point-to-point 
interconnect 
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cc-NUMA Architectures

∙ No Front Side Bus
∙ Integrated memory controller 
∙ On-die interconnect among CMPs 
∙ Main memory is physically distributed

among CMPs (i.e. each piece of memory 
has an affinity to a CMP)

∙ NUMA: Non-uniform memory access.
 For multi-socket servers only 
 Your desktop is safe (well, for now at least)
 Triton nodes are not NUMA either
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Desktop Multicores Today

This is your AMD Barcelona or Intel Core i7 !

On-die 
interconnect 

Private 
cache: Cache 
coherence is 
required 
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Multithreaded Programming
∙ POSIX Threads (Pthreads) is a set of 

threading interfaces developed by the IEEE

∙ “Assembly language” of shared memory 
programming

∙ Programmer has to manually:
 Create and terminate threads
 Wait for threads to complete 
 Manage interaction between threads using 

mutexes, condition variables, etc.
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Concurrency Platforms

• Programming directly on PThreads is 
painful and error-prone.

• With PThreads, you either sacrifice memory 
usage or load-balance among processors 

• A concurrency platform provides linguistic 
support and handles load balancing.

• Examples:
• Threading Building Blocks (TBB)
• OpenMP
• Cilk++
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Cilk vs PThreads

How will the following code execute in 
PThreads?  In Cilk?

for (i=1; i<1000000000; i++) {
spawn-or-fork foo(i);  

}
sync-or-join;

What if foo contains code that waits (e.g., spins) on 
a variable being set by another instance of foo?

They have different liveness properties:
∙ Cilk threads are spawned lazily, “may” parallelism
∙ PThreads are spawned eagerly, “must” parallelism
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Cilk vs OpenMP

∙ Cilk++ guarantees space bounds
 On P processors, Cilk++ uses no more than P 

times the stack space of a serial execution. 
∙ Cilk++ has a solution for global variables 

(called “reducers” / “hyperobjects”) 
∙ Cilk++ has nested parallelism that works 

and provides guaranteed speed-up. 
 Indeed, cilk scheduler is provably optimal.

∙ Cilk++ has a race detector (cilkscreen) for 
debugging and software release. 

∙ Keep in mind that platform comparisons 
are (always will be) subject to debate
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TP = execution time on P processors
T1 = work T∞ = span*

*Also called critical-path length
or computational depth.

WORK LAW
∙TP ≥T1/P

SPAN LAW
∙TP ≥ T∞

Complexity Measures
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Work: T1(A∪B) =

Series Composition

A B

Work: T1(A∪B) = T1(A) + T1(B)
Span: T∞(A∪B) = T∞(A) +T∞(B)Span: T∞(A∪B) =
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Parallel Composition

A

B

Span: T∞(A∪B) = max{T∞(A), T∞(B)}Span: T∞(A∪B) =
Work: T1(A∪B) =Work: T1(A∪B) = T1(A) + T1(B)
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Def.  T1/TP = speedup on P processors.

If T1/TP = Θ(P), we have linear speedup,
= P, we have perfect linear speedup,
> P, we have superlinear speedup, 

which is not possible in this performance 
model, because of the Work Law TP ≥ T1/P.

Speedup
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Scheduling

∙Cilk++ allows the 
programmer to express 
potential parallelism in 
an application.

∙The Cilk++ scheduler
maps strands onto 
processors dynamically 
at runtime.

∙Since on-line
schedulers are 
complicated, we’ll 
explore the ideas with 
an off-line scheduler.

Network

…

Memory I/O

P
P P P
$ $ $

A strand is a sequence of 
instructions that doesn’t contain 

any parallel constructs
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Greedy Scheduling

IDEA: Do as much as possible on every step.
Definition: A strand is ready
if all its predecessors have 
executed.
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Greedy Scheduling

IDEA: Do as much as possible on every step.
Definition: A strand is ready
if all its predecessors have 
executed.
Complete step
∙ ≥ P strands ready.
∙ Run any P.

P = 3
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Greedy Scheduling

IDEA: Do as much as possible on every step.
Definition: A strand is ready
if all its predecessors have 
executed.
Complete step
∙ ≥ P strands ready.
∙ Run any P.

P = 3

Incomplete step
∙ < P strands ready.
∙ Run all of them.
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Theorem :  Any greedy scheduler achieves
TP ≤ T1/P + T∞.

Analysis of Greedy

Proof. 
∙ # complete steps ≤ T1/P, 

since each complete step 
performs P work.

∙ # incomplete steps ≤ T∞, 
since each incomplete step 
reduces the span of the 
unexecuted dag by 1.  ■

P = 3
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Optimality of Greedy

Corollary. Any greedy scheduler achieves 
within a factor of 2 of optimal.
Proof. Let TP* be the execution time 
produced by the optimal scheduler.  
Since TP* ≥ max{T1/P, T∞} by the Work and 
Span Laws, we have

TP ≤ T1/P + T∞ 
≤ 2⋅max{T1/P, T∞}
≤ 2TP* .  ■
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Linear Speedup

Corollary. Any greedy scheduler 
achieves near-perfect linear 
speedup whenever P ≪ T1/T∞. 
Proof. Since P ≪ T1/T∞ is equivalent 
to T∞ ≪ T1/P, the Greedy Scheduling 
Theorem gives us

TP ≤ T1/P + T∞
≈ T1/P .

Thus, the speedup is T1/TP ≈ P.  ■

Definition. The quantity T1/PT∞ is 
called the parallel slackness.
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Each worker (processor) maintains a work deque of 
ready strands, and it manipulates the bottom of the 
deque like a stack

P

spawn
call
call
call

P

spawn
spawn

PP

call
spawn

call

spawn
callcall

Call!

Cilk++ Runtime System
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P

spawn
call
call
call

spawn

P

spawn
spawn

PP

call
spawn

call

spawn
callcall

Spawn!

Each worker (processor) maintains a work deque of 
ready strands, and it manipulates the bottom of the 
deque like a stack

Cilk++ Runtime System
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P

spawn
call
call
call

spawn
spawn

P

spawn
spawn

PP

call
spawn

call
call

spawn
call

spawn
call

Spawn!Spawn! Call!

Each worker (processor) maintains a work deque of 
ready strands, and it manipulates the bottom of the 
deque like a stack

Cilk++ Runtime System
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spawn
call

P

spawn
call
call
call

spawn

P

spawn

PP

call
spawn

call
call

spawn
call

spawn
spawn

Return!

Each worker (processor) maintains a work deque of 
ready strands, and it manipulates the bottom of the 
deque like a stack

Cilk++ Runtime System
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spawn

P

spawn
call
call
call

spawn

P

spawn

PP

call
spawn

call
call

spawn
call

spawn
spawn

Return!

Each worker (processor) maintains a work deque of 
ready strands, and it manipulates the bottom of the 
deque like a stack

Cilk++ Runtime System
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P

spawn
call
call
call

spawn

P

spawn

PP

call
spawn

call
call

spawn
call

spawn
spawn

When a worker runs out of work, it steals
from the top of a random victim’s deque.

Steal!

Each worker (processor) maintains a work deque of 
ready strands, and it manipulates the bottom of the 
deque like a stack

Cilk++ Runtime System
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P

spawn
call
call
call

spawn

P

spawn

PP

call
spawn

call
call

spawn
call

spawn
spawn

Steal!

Each worker (processor) maintains a work deque of 
ready strands, and it manipulates the bottom of the 
deque like a stack

Cilk++ Runtime System

When a worker runs out of work, it steals
from the top of a random victim’s deque.
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P
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call
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PP
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spawn
spawn

Each worker (processor) maintains a work deque of 
ready strands, and it manipulates the bottom of the 
deque like a stack

Cilk++ Runtime System

When a worker runs out of work, it steals
from the top of a random victim’s deque.
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P

spawn
call
call
call

spawn

P

spawn

PP

call
spawn

call
call

spawn
call

spawn
spawn

Spawn!

spawn

Each worker (processor) maintains a work deque of 
ready strands, and it manipulates the bottom of the 
deque like a stack

Cilk++ Runtime System

When a worker runs out of work, it steals
from the top of a random victim’s deque.
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P

spawn
call
call
call

spawn

P

spawn

PP

call
spawn

call
call

spawn
call

spawn
spawn

spawn

Each worker (processor) maintains a work deque of 
ready strands, and it manipulates the bottom of the 
deque like a stack

Cilk++ Runtime System

When a worker runs out of work, it steals
from the top of a random victim’s deque.



31

P

spawn
call
call
call

spawn

P

spawn

PP

call
spawn

call
call

spawn
call

spawn
spawn

spawn

Theorem:  With sufficient parallelism, workers 
steal infrequently ⇒ linear speed-up.

Each worker (processor) maintains a work deque of 
ready strands, and it manipulates the bottom of the 
deque like a stack

Cilk++ Runtime System
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Great, how do we program it?
∙ Cilk++ is a faithful extension of C++

∙ Often use divide-and-conquer

∙ Three (really two) hints to the compiler:
 cilk_spawn: this function can run in parallel 

with the caller
 cilk_sync: all spawned children must return 

before execution can continue
 cilk_for: all iterations of this loop can run in 

parallel 
 Compiler translates cilk_for into cilk_spawn & 

cilk_sync under the covers
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template <typename T>
void qsort(T begin, T end) { 
if (begin != end) {

T middle = partition( 
begin, 
end, 
bind2nd( less<typename iterator_traits<T>::value_type>(), 

*begin )
);

cilk_spawn qsort(begin, middle); 
qsort(max(begin + 1, middle), end); 
cilk_sync;

}
}

The named child
function may execute 
in parallel with the 
parent caller.

Control cannot pass this 
point until all spawned 
children have returned.

Example: Quicksort

Nested Parallelism
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Cilk++ Loops

∙ A cilk_for loop’s iterations execute in 
parallel.

∙ The index must be declared in the loop 
initializer.

∙ The end condition is evaluated exactly 
once at the beginning of the loop.

∙ Loop increments should be a const value

cilk_for (int i=1; i<n; ++i) {
cilk_for (int j=0; j<i; ++j) {

B[i][j] = A[j][i];
}

}

Example: Matrix transpose
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Serial Correctness

Cilk++ source

Conventional 
Regression Tests

Reliable Single-
Threaded Code

Cilk++
Compiler

Conventional 
Compiler

Binary

Linkerint fib (int n) {
if (n<2) return (n);
else {

int x,y;
x = fib(n-1);
y = fib(n-2);
return (x+y);

}
} Serialization

int fib (int n) {
if (n<2) return (n);
else {

int x,y;
x = cilk_spawn fib(n-1);
y = fib(n-2);
cilk_sync;
return (x+y);

}
}

Cilk++ Runtime 
Library

The serialization is the 
code with the Cilk++
keywords replaced by 
null or C++ keywords.

Serial correctness can 
be debugged and 
verified by running the 
multithreaded code on a 
single processor.
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Serialization

#ifdef CILKPAR
#include <cilk.h>

#else
#define cilk_for for
#define cilk_main main
#define cilk_spawn
#define cilk_sync

#endif

 cilk++ -DCILKPAR –O2 –o parallel.exe main.cpp
 g++ –O2 –o serial.exe main.cpp

How to seamlessly switch between serial 
c++ and parallel cilk++ programs?

Add to the 
beginning of 
your program  

Compile !  
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int fib (int n) {
if (n<2) return (n);
else {

int x,y;
x = cilk_spawn fib(n-1);
y = fib(n-2);
cilk_sync;
return (x+y);

}
}

Parallel Correctness

Cilk++ source

Cilk++
Compiler

Conventional 
Compiler

Binary

Reliable Multi-
Threaded Code

Cilkscreen
Race Detector

Parallel 
Regression Tests

Linker

Parallel correctness can be debugged 
and verified with the Cilkscreen race 
detector, which guarantees to find 
inconsistencies with the serial code
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Race Bugs
Definition. A determinacy race occurs when 
two logically parallel instructions access the 
same memory location and at least one of 
the instructions performs a write.

int x = 0;
cilk_for(int i=0, i<2, ++i) {

x++;
}
assert(x == 2);

A

B C

D

x++;

int x = 0;

assert(x == 2);

x++;

A

B C

D

Example

Dependency Graph
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Race Bugs

r1 = x;

r1++;

x = r1;

r2 = x;

r2++;

x = r2;

x = 0;

assert(x == 2);

1

2

3

4

5

67

8

Definition. A determinacy race occurs when 
two logically parallel instructions access the 
same memory location and at least one of 
the instructions performs a write.

x++;

int x = 0;

assert(x == 2);

x++;

A

B C

D
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Types of Races

A B Race Type
read read none
read write read race
write read read race
write write write race

Two sections of code are independent if they 
have no determinacy races between them.

Suppose that instruction A and instruction B
both access a location x, and suppose that 
A∥B (A is parallel to B).  
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Avoiding Races

cilk_spawn qsort(begin, middle); 
qsort(max(begin + 1, middle), end); 
cilk_sync;

• All the iterations of a cilk_for should be 
independent.

• Between a cilk_spawn and the corresponding
cilk_sync, the code of the spawned child should 
be independent of the code of the parent, including 
code executed by additional spawned or called 
children.

Note: The arguments to a spawned function are 
evaluated in the parent before the spawn occurs.

Ex.
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Cilk++ Reducers
∙ Hyperobjects: reducers, holders, splitters
∙ Primarily designed as a solution to global 

variables, but has broader application

int result = 0; 
cilk_for (size_t i = 0; i < N; ++i) { 

result += MyFunc(i);
}

#include <reducer_opadd.h> 
…
cilk::hyperobject<cilk::reducer_opadd<int> > result; 
cilk_for (size_t i = 0; i < N; ++i) { 

result() += MyFunc(i);
}

Data race !

Race free !

This uses one of the predefined 
reducers, but you can also write 
your own reducer easily
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Hyperobjects under the covers
∙ A reducer hyperobject<T> includes an 

associative binary operator ⊗ and an 
identity element. 

∙ Cilk++ runtime system gives each thread 
a private view of the global variable

∙ When threads synchronize, their private 
views are combined with ⊗
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Cilkscreen

∙ Cilkscreen runs off the binary executable:
 Compile your program with –fcilkscreen
 Go to the directory with your executable and say 
cilkscreen your_program [options]
 Cilkscreen prints info about any races it detects

∙ Cilkscreen guarantees to report a race if there 
exists a parallel execution that could produce 
results different from the serial execution.

∙ It runs about 20 times slower than single-
threaded real-time.
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Parallelism

Because the Span Law dictates 
that TP ≥ T∞, the maximum 
possible speedup given T1and T∞ is
T1/T∞ = parallelism

= the average 
amount of work 
per step along 
the span.
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Three Tips on Parallelism
1. Minimize span to maximize parallelism.  Try to 

generate 10 times more parallelism than 
processors for near-perfect linear speedup.

2. If you have plenty of parallelism, try to trade 
some if it off for reduced work overheads.

3. Use divide-and-conquer recursion or parallel 
loops rather than spawning one small thing off 
after another.

for (int i=0; i<n; ++i) {
cilk_spawn foo(i);

}
cilk_sync;

cilk_for (int i=0; i<n; ++i) {
foo(i);

}

Do this:

Not this:
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Three Tips on Overheads

1. Make sure that work/#spawns is not too small.
• Coarsen by using function calls and inlining near 

the leaves of recursion rather than spawning.

2. Parallelize outer loops if you can, not inner loops 
(otherwise, you’ll have high burdened parallelism, 
which includes runtime and scheduling overhead).

If you must parallelize an inner loop, coarsen it, but 
not too much.  
• 500 iterations should be plenty coarse for even 

the most meager loop. Fewer iterations should 
suffice for “fatter” loops.

3. Use reducers only in sufficiently fat loops.
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