
1

CS 240A: Shared Memory &
Multicore Programming with Cilk++

• Multicore and NUMA architectures
• Multithreaded Programming
• Cilk++ as a concurrency platform
• Work and Span

Thanks to Charles E. Leiserson for some of these slides

2

Multicore Architecture

Network

…

Memory I/O

$ $ $

Chip Multiprocessor (CMP)

core corecore

3

cc-NUMA Architectures

AMD 8-way Opteron Server (neumann@cs.ucsb.edu)

A processor
(CMP) with
2/4 cores Memory

bank local to
a processor

Point-to-point
interconnect

4

cc-NUMA Architectures

∙ No Front Side Bus
∙ Integrated memory controller
∙ On-die interconnect among CMPs
∙ Main memory is physically distributed

among CMPs (i.e. each piece of memory
has an affinity to a CMP)

∙ NUMA: Non-uniform memory access.
 For multi-socket servers only
 Your desktop is safe (well, for now at least)
 Triton nodes are not NUMA either

5

Desktop Multicores Today

This is your AMD Barcelona or Intel Core i7 !

On-die
interconnect

Private
cache: Cache
coherence is
required

6

Multithreaded Programming
∙ POSIX Threads (Pthreads) is a set of

threading interfaces developed by the IEEE

∙ “Assembly language” of shared memory
programming

∙ Programmer has to manually:
 Create and terminate threads
 Wait for threads to complete
 Manage interaction between threads using

mutexes, condition variables, etc.

7

Concurrency Platforms

• Programming directly on PThreads is
painful and error-prone.

• With PThreads, you either sacrifice memory
usage or load-balance among processors

• A concurrency platform provides linguistic
support and handles load balancing.

• Examples:
• Threading Building Blocks (TBB)
• OpenMP
• Cilk++

8

Cilk vs PThreads

How will the following code execute in
PThreads? In Cilk?

for (i=1; i<1000000000; i++) {
spawn-or-fork foo(i);

}
sync-or-join;

What if foo contains code that waits (e.g., spins) on
a variable being set by another instance of foo?

They have different liveness properties:
∙ Cilk threads are spawned lazily, “may” parallelism
∙ PThreads are spawned eagerly, “must” parallelism

9

Cilk vs OpenMP

∙ Cilk++ guarantees space bounds
 On P processors, Cilk++ uses no more than P

times the stack space of a serial execution.
∙ Cilk++ has a solution for global variables

(called “reducers” / “hyperobjects”)
∙ Cilk++ has nested parallelism that works

and provides guaranteed speed-up.
 Indeed, cilk scheduler is provably optimal.

∙ Cilk++ has a race detector (cilkscreen) for
debugging and software release.

∙ Keep in mind that platform comparisons
are (always will be) subject to debate

10

TP = execution time on P processors
T1 = work T∞ = span*

*Also called critical-path length
or computational depth.

WORK LAW
∙TP ≥T1/P

SPAN LAW
∙TP ≥ T∞

Complexity Measures

11

Work: T1(A∪B) =

Series Composition

A B

Work: T1(A∪B) = T1(A) + T1(B)
Span: T∞(A∪B) = T∞(A) +T∞(B)Span: T∞(A∪B) =

12

Parallel Composition

A

B

Span: T∞(A∪B) = max{T∞(A), T∞(B)}Span: T∞(A∪B) =
Work: T1(A∪B) =Work: T1(A∪B) = T1(A) + T1(B)

13

Def. T1/TP = speedup on P processors.

If T1/TP = Θ(P), we have linear speedup,
= P, we have perfect linear speedup,
> P, we have superlinear speedup,

which is not possible in this performance
model, because of the Work Law TP ≥ T1/P.

Speedup

14

Scheduling

∙Cilk++ allows the
programmer to express
potential parallelism in
an application.

∙The Cilk++ scheduler
maps strands onto
processors dynamically
at runtime.

∙Since on-line
schedulers are
complicated, we’ll
explore the ideas with
an off-line scheduler.

Network

…

Memory I/O

P
P P P
$ $ $

A strand is a sequence of
instructions that doesn’t contain

any parallel constructs

15

Greedy Scheduling

IDEA: Do as much as possible on every step.
Definition: A strand is ready
if all its predecessors have
executed.

16

Greedy Scheduling

IDEA: Do as much as possible on every step.
Definition: A strand is ready
if all its predecessors have
executed.
Complete step
∙ ≥ P strands ready.
∙ Run any P.

P = 3

17

Greedy Scheduling

IDEA: Do as much as possible on every step.
Definition: A strand is ready
if all its predecessors have
executed.
Complete step
∙ ≥ P strands ready.
∙ Run any P.

P = 3

Incomplete step
∙ < P strands ready.
∙ Run all of them.

18

Theorem : Any greedy scheduler achieves
TP ≤ T1/P + T∞.

Analysis of Greedy

Proof.
∙ # complete steps ≤ T1/P,

since each complete step
performs P work.

∙ # incomplete steps ≤ T∞,
since each incomplete step
reduces the span of the
unexecuted dag by 1. ■

P = 3

19

Optimality of Greedy

Corollary. Any greedy scheduler achieves
within a factor of 2 of optimal.
Proof. Let TP* be the execution time
produced by the optimal scheduler.
Since TP* ≥ max{T1/P, T∞} by the Work and
Span Laws, we have

TP ≤ T1/P + T∞
≤ 2⋅max{T1/P, T∞}
≤ 2TP* . ■

20

Linear Speedup

Corollary. Any greedy scheduler
achieves near-perfect linear
speedup whenever P ≪ T1/T∞.
Proof. Since P ≪ T1/T∞ is equivalent
to T∞ ≪ T1/P, the Greedy Scheduling
Theorem gives us

TP ≤ T1/P + T∞
≈ T1/P .

Thus, the speedup is T1/TP ≈ P. ■

Definition. The quantity T1/PT∞ is
called the parallel slackness.

21

Each worker (processor) maintains a work deque of
ready strands, and it manipulates the bottom of the
deque like a stack

P

spawn
call
call
call

P

spawn
spawn

PP

call
spawn

call

spawn
callcall

Call!

Cilk++ Runtime System

22

P

spawn
call
call
call

spawn

P

spawn
spawn

PP

call
spawn

call

spawn
callcall

Spawn!

Each worker (processor) maintains a work deque of
ready strands, and it manipulates the bottom of the
deque like a stack

Cilk++ Runtime System

23

P

spawn
call
call
call

spawn
spawn

P

spawn
spawn

PP

call
spawn

call
call

spawn
call

spawn
call

Spawn!Spawn! Call!

Each worker (processor) maintains a work deque of
ready strands, and it manipulates the bottom of the
deque like a stack

Cilk++ Runtime System

24

spawn
call

P

spawn
call
call
call

spawn

P

spawn

PP

call
spawn

call
call

spawn
call

spawn
spawn

Return!

Each worker (processor) maintains a work deque of
ready strands, and it manipulates the bottom of the
deque like a stack

Cilk++ Runtime System

25

spawn

P

spawn
call
call
call

spawn

P

spawn

PP

call
spawn

call
call

spawn
call

spawn
spawn

Return!

Each worker (processor) maintains a work deque of
ready strands, and it manipulates the bottom of the
deque like a stack

Cilk++ Runtime System

26

P

spawn
call
call
call

spawn

P

spawn

PP

call
spawn

call
call

spawn
call

spawn
spawn

When a worker runs out of work, it steals
from the top of a random victim’s deque.

Steal!

Each worker (processor) maintains a work deque of
ready strands, and it manipulates the bottom of the
deque like a stack

Cilk++ Runtime System

27

P

spawn
call
call
call

spawn

P

spawn

PP

call
spawn

call
call

spawn
call

spawn
spawn

Steal!

Each worker (processor) maintains a work deque of
ready strands, and it manipulates the bottom of the
deque like a stack

Cilk++ Runtime System

When a worker runs out of work, it steals
from the top of a random victim’s deque.

28

P

spawn
call
call
call

spawn

P

spawn

PP

call
spawn

call
call

spawn
call

spawn
spawn

Each worker (processor) maintains a work deque of
ready strands, and it manipulates the bottom of the
deque like a stack

Cilk++ Runtime System

When a worker runs out of work, it steals
from the top of a random victim’s deque.

29

P

spawn
call
call
call

spawn

P

spawn

PP

call
spawn

call
call

spawn
call

spawn
spawn

Spawn!

spawn

Each worker (processor) maintains a work deque of
ready strands, and it manipulates the bottom of the
deque like a stack

Cilk++ Runtime System

When a worker runs out of work, it steals
from the top of a random victim’s deque.

30

P

spawn
call
call
call

spawn

P

spawn

PP

call
spawn

call
call

spawn
call

spawn
spawn

spawn

Each worker (processor) maintains a work deque of
ready strands, and it manipulates the bottom of the
deque like a stack

Cilk++ Runtime System

When a worker runs out of work, it steals
from the top of a random victim’s deque.

31

P

spawn
call
call
call

spawn

P

spawn

PP

call
spawn

call
call

spawn
call

spawn
spawn

spawn

Theorem: With sufficient parallelism, workers
steal infrequently ⇒ linear speed-up.

Each worker (processor) maintains a work deque of
ready strands, and it manipulates the bottom of the
deque like a stack

Cilk++ Runtime System

32

Great, how do we program it?
∙ Cilk++ is a faithful extension of C++

∙ Often use divide-and-conquer

∙ Three (really two) hints to the compiler:
 cilk_spawn: this function can run in parallel

with the caller
 cilk_sync: all spawned children must return

before execution can continue
 cilk_for: all iterations of this loop can run in

parallel
 Compiler translates cilk_for into cilk_spawn &

cilk_sync under the covers

33

template <typename T>
void qsort(T begin, T end) {
if (begin != end) {

T middle = partition(
begin,
end,
bind2nd(less<typename iterator_traits<T>::value_type>(),

*begin)
);

cilk_spawn qsort(begin, middle);
qsort(max(begin + 1, middle), end);
cilk_sync;

}
}

The named child
function may execute
in parallel with the
parent caller.

Control cannot pass this
point until all spawned
children have returned.

Example: Quicksort

Nested Parallelism

34

Cilk++ Loops

∙ A cilk_for loop’s iterations execute in
parallel.

∙ The index must be declared in the loop
initializer.

∙ The end condition is evaluated exactly
once at the beginning of the loop.

∙ Loop increments should be a const value

cilk_for (int i=1; i<n; ++i) {
cilk_for (int j=0; j<i; ++j) {

B[i][j] = A[j][i];
}

}

Example: Matrix transpose

35

Serial Correctness

Cilk++ source

Conventional
Regression Tests

Reliable Single-
Threaded Code

Cilk++
Compiler

Conventional
Compiler

Binary

Linkerint fib (int n) {
if (n<2) return (n);
else {

int x,y;
x = fib(n-1);
y = fib(n-2);
return (x+y);

}
} Serialization

int fib (int n) {
if (n<2) return (n);
else {

int x,y;
x = cilk_spawn fib(n-1);
y = fib(n-2);
cilk_sync;
return (x+y);

}
}

Cilk++ Runtime
Library

The serialization is the
code with the Cilk++
keywords replaced by
null or C++ keywords.

Serial correctness can
be debugged and
verified by running the
multithreaded code on a
single processor.

36

Serialization

#ifdef CILKPAR
#include <cilk.h>

#else
#define cilk_for for
#define cilk_main main
#define cilk_spawn
#define cilk_sync

#endif

 cilk++ -DCILKPAR –O2 –o parallel.exe main.cpp
 g++ –O2 –o serial.exe main.cpp

How to seamlessly switch between serial
c++ and parallel cilk++ programs?

Add to the
beginning of
your program

Compile !

37

int fib (int n) {
if (n<2) return (n);
else {

int x,y;
x = cilk_spawn fib(n-1);
y = fib(n-2);
cilk_sync;
return (x+y);

}
}

Parallel Correctness

Cilk++ source

Cilk++
Compiler

Conventional
Compiler

Binary

Reliable Multi-
Threaded Code

Cilkscreen
Race Detector

Parallel
Regression Tests

Linker

Parallel correctness can be debugged
and verified with the Cilkscreen race
detector, which guarantees to find
inconsistencies with the serial code

38

Race Bugs
Definition. A determinacy race occurs when
two logically parallel instructions access the
same memory location and at least one of
the instructions performs a write.

int x = 0;
cilk_for(int i=0, i<2, ++i) {

x++;
}
assert(x == 2);

A

B C

D

x++;

int x = 0;

assert(x == 2);

x++;

A

B C

D

Example

Dependency Graph

39

Race Bugs

r1 = x;

r1++;

x = r1;

r2 = x;

r2++;

x = r2;

x = 0;

assert(x == 2);

1

2

3

4

5

67

8

Definition. A determinacy race occurs when
two logically parallel instructions access the
same memory location and at least one of
the instructions performs a write.

x++;

int x = 0;

assert(x == 2);

x++;

A

B C

D

40

Types of Races

A B Race Type
read read none
read write read race
write read read race
write write write race

Two sections of code are independent if they
have no determinacy races between them.

Suppose that instruction A and instruction B
both access a location x, and suppose that
A∥B (A is parallel to B).

41

Avoiding Races

cilk_spawn qsort(begin, middle);
qsort(max(begin + 1, middle), end);
cilk_sync;

• All the iterations of a cilk_for should be
independent.

• Between a cilk_spawn and the corresponding
cilk_sync, the code of the spawned child should
be independent of the code of the parent, including
code executed by additional spawned or called
children.

Note: The arguments to a spawned function are
evaluated in the parent before the spawn occurs.

Ex.

42

Cilk++ Reducers
∙ Hyperobjects: reducers, holders, splitters
∙ Primarily designed as a solution to global

variables, but has broader application

int result = 0;
cilk_for (size_t i = 0; i < N; ++i) {

result += MyFunc(i);
}

#include <reducer_opadd.h>
…
cilk::hyperobject<cilk::reducer_opadd<int> > result;
cilk_for (size_t i = 0; i < N; ++i) {

result() += MyFunc(i);
}

Data race !

Race free !

This uses one of the predefined
reducers, but you can also write
your own reducer easily

43

Hyperobjects under the covers
∙ A reducer hyperobject<T> includes an

associative binary operator ⊗ and an
identity element.

∙ Cilk++ runtime system gives each thread
a private view of the global variable

∙ When threads synchronize, their private
views are combined with ⊗

44

Cilkscreen

∙ Cilkscreen runs off the binary executable:
 Compile your program with –fcilkscreen
 Go to the directory with your executable and say
cilkscreen your_program [options]
 Cilkscreen prints info about any races it detects

∙ Cilkscreen guarantees to report a race if there
exists a parallel execution that could produce
results different from the serial execution.

∙ It runs about 20 times slower than single-
threaded real-time.

45

Parallelism

Because the Span Law dictates
that TP ≥ T∞, the maximum
possible speedup given T1and T∞ is
T1/T∞ = parallelism

= the average
amount of work
per step along
the span.

46

Three Tips on Parallelism
1. Minimize span to maximize parallelism. Try to

generate 10 times more parallelism than
processors for near-perfect linear speedup.

2. If you have plenty of parallelism, try to trade
some if it off for reduced work overheads.

3. Use divide-and-conquer recursion or parallel
loops rather than spawning one small thing off
after another.

for (int i=0; i<n; ++i) {
cilk_spawn foo(i);

}
cilk_sync;

cilk_for (int i=0; i<n; ++i) {
foo(i);

}

Do this:

Not this:

47

Three Tips on Overheads

1. Make sure that work/#spawns is not too small.
• Coarsen by using function calls and inlining near

the leaves of recursion rather than spawning.

2. Parallelize outer loops if you can, not inner loops
(otherwise, you’ll have high burdened parallelism,
which includes runtime and scheduling overhead).

If you must parallelize an inner loop, coarsen it, but
not too much.
• 500 iterations should be plenty coarse for even

the most meager loop. Fewer iterations should
suffice for “fatter” loops.

3. Use reducers only in sufficiently fat loops.

	CS 240A: Shared Memory & Multicore Programming with Cilk++
	Multicore Architecture
	cc-NUMA Architectures
	cc-NUMA Architectures
	Desktop Multicores Today
	Multithreaded Programming
	Concurrency Platforms
	Cilk vs PThreads
	Cilk vs OpenMP
	Complexity Measures
	Series Composition
	Parallel Composition
	Speedup
	Scheduling
	Greedy Scheduling
	Greedy Scheduling
	Greedy Scheduling
	Analysis of Greedy
	Optimality of Greedy
	Linear Speedup
	Cilk++ Runtime System
	Cilk++ Runtime System
	Cilk++ Runtime System
	Cilk++ Runtime System
	Cilk++ Runtime System
	Cilk++ Runtime System
	Cilk++ Runtime System
	Cilk++ Runtime System
	Cilk++ Runtime System
	Cilk++ Runtime System
	Cilk++ Runtime System
	Great, how do we program it?
	Nested Parallelism
	Cilk++ Loops
	Serial Correctness
	Serialization
	Parallel Correctness
	Race Bugs
	Race Bugs
	Types of Races
	Avoiding Races
	Cilk++ Reducers
	Hyperobjects under the covers
	Cilkscreen
	Parallelism
	Three Tips on Parallelism
	Three Tips on Overheads

