
Programming in the 
Partitioned Global Address 

Space Model

Programming in the 
Partitioned Global Address 

Space Model
Bill Carlson, IDA

Tarek El-Ghazawi, GWU
Robert Numrich, U. Minnesota

Kathy Yelick, UC Berkeley

Bill Carlson, IDA
Tarek El-Ghazawi, GWU

Robert Numrich, U. Minnesota
Kathy Yelick, UC Berkeley



SC2003  S09: Programming with the Partitioned Global Address Space Model 211/16/03

Table of Contents

122 - 196Programming in Co-Array Fortran

252 - 255Conclusions and Remarks
197 - 251Programming in Titanium

29 - 121Programming with UPC
3 - 28Welcome and Introductions
SlidesTopic



Introduction to the PGAS 
Model

Introduction to the PGAS 
Model

Bill Carlson

IDA- Center for Computing Sciences

wwc@super.org

Bill Carlson

IDA- Center for Computing Sciences

wwc@super.org



SC2003  S09: Programming with the Partitioned Global Address Space Model 411/16/03

Naming Issues

Focus of this tutorial
0Partitioned Global Address Space (PGAS) 

Model, aka
0Distributed Shared Memory Programming Model 

(DSM), aka
0Locality Conscious Shared Space Model,
0…
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Outline of the Day

Introduction to PGAS Model

UPC Programming

Co-Array Fortran Programming

Titanium Programming

Summary
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Outline of this Talk

Basic Concepts
0Applications
0Programming Models
0Computer Systems

The Program View

The Memory View

Synchronization

Performance AND Ease of Use
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Parallel Programming Models

What is a programming model?
0A view of data and execution
0Where architecture and applications meet

Best when a “contract”
0Everyone knows the rules
0Performance considerations important

Benefits
0Application - independence from architecture
0Architecture - independence from applications
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The Data Parallel Model

Easy to write and comprehend, no 
synchronization required

No independent branching

Example: HPF

…
Different Data / address spaces

Network

Process
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The Message Passing Model

Programmers control data and work 
distribution

Explicit communication, two-sided

Library-based

Excessive buffering

Significant communication overhead 
for small transactions

Example: MPI

Network

Process
Address space
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The Shared Memory Model

Simple statements
0read remote memory via an 

expression 
0write remote memory through 

assignment

Manipulating shared data may 
require synchronization
Does not allow locality 
exploitation
Example: OpenMP

Shared address 
space

Thread

Shared Variable x

Thread Thread…
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The Distributed Shared Memory Model

Similar to the shared memory 
paradigm
Memory Mi has affinity to 
thread Thi

Helps exploiting locality of 
references
Simple statements
Examples: This Tutorial! UPC, 
CAF, and Titanium

Partitioned
Global
Address  
Space

M0 M1 Mn

x

Th0 Th1 Thn…

…
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Tutorial Emphasis

Concentrate on Distributed Shared Memory 
Programming as a universal model
0UPC
0Co-Array Fortran
0Titanium

Not too much on hardware or software support for 
DSM after this talk...
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Some Simple Application 
Concepts

Minimal Sharing
0Asynchronous work dispatch

Moderate Sharing
0Physical systems/ “Halo Exchange”

Major Sharing
0The “don’t care, just do it” model
0May have performance problems on some 

system
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History

Many data parallel languages

Spontaneous new idea: “global/shared”
0Split-C -- Berkeley (Active Messages)
0AC -- IDA (T3D)
0F-- -- Cray/SGI
0PC++ -- Indiana
0CC++ -- ISI
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Related Work

BSP -- Bulk Synchronous Protocol
0Alternating compute-communicate

Global Arrays
0Toolkit approach
0Includes locality concepts
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DSM/PGAS Model: Program View

Single “program”

Multiple threads of control

Low degree of virtualization

Identity discovery

Static vs. Dynamic thread multiplicity
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DSM Model: Memory View

“Shared” area

“Private” area

References and pointers
0Only “local” thread may reference private
0Any thread may reference/point to shared
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Model: Memory Pointers and 
Allocation

A pointer may be 
0private
0shared

A pointer may point to:
0local
0global

Need to allocate both private and shared
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DSM Model: Program 
Synchronization

Controls relative execution of threads

Barrier concepts
0Simple: all stop until everyone arrives
0Sub-group barriers

Other synchronization techniques
0Loop based work sharing
0Some collective library calls
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DSM Model: Memory Consistency

Necessary to define semantics
0When are “accesses” “visible”?
0What is relation to other synchronization?

Ordering
0Thread A does two stores

Can thread B see second before first?
Is this good or bad?
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Model: Memory Consistency

Ordering Constraints
0Necessary for memory based synchronization

lock variables
semaphores

Fences
0Explicit ordering points in memory stream
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Performance AND Ease of Use

Why explicit message passing is often bad

Contributors to performance under DSM

Some optimizations that are possible

Some implementation strategies
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Contributors to Performance

Match between architecture and model
0If match is poor, performance can suffer greatly

Try to send single word messages on Ethernet
Try for full memory bandwidth with message passing

Match between application and model
0If model is too strict, hard to express

Try to express a linked list in data parallel
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Architecture ⇔ Model Issues

Make model match many architectures
0Distributed
0Shared
0Non-Parallel

No machine-specific models

Promote performance potential of all
0Marketplace will work out value
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Application ⇔ Model Issues

Start with an expressive model
0Many applications
0User productivity/debugging

Performance
0Don’t make model too abstract
0Allow annotation
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Just a few optimizations possible

Reference combining

Compiler/runtime directed caching

Remote memory operations
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Implementation Strategies

Hardware sharing
0Map threads onto processors
0Use existing sharing mechanisms

Software sharing
0Map threads to pthreads or processes
0Use a runtime layer to communicate
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Conclusions

Using distributed shared memory is good

Questions?

Enjoy the rest of the tutorial
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What is UPC? 

Unified Parallel C

An explicit parallel extension of ANSI C 

A distributed shared memory parallel 
programming language



SC2003  S09: Programming with the Partitioned Global Address Space Model 3211/16/03

Design Philosophy

Similar to the C language philosophy
0Programmers are clever and careful, and may 

need to get close to hardware
to get performance, but
can get in trouble

0Concise and efficient syntax

Common and familiar syntax and semantics for 
parallel C with simple extensions to ANSI C
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Design Philosophy

Start with C, Add parallelism, learn from Split-C, 
AC, PCP, etc.

Integrate user community experience and 
experimental performance observations

Integrate developer’s expertise from vendors, 
government, and academia
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History

Initial Tech. Report from IDA in collaboration with 
LLNL and UCB in May 1999.

UPC consortium of government, academia, and 
HPC vendors coordinated by GWU, IDA, and DoD

The participants currently are: ARSC, Compaq, 
CSC, Cray Inc., Etnus, GWU, HP, IBM, IDA CSC, 
Intrepid Technologies, LBNL, LLNL, MTU, NSA, 
UCB, UMCP, U florida, US DoD, US DoE
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Status

Specification v1.0 completed February of 2001, v1.1 
in March 2003

Benchmarking: Stream, GUPS, NPB suite, Splash-
2, and others

Testing suite v1.0, v1.1

2-Day Course offered in the US and abroad 

Research Exhibits at SC 2000-2002

UPC web site: upc.gwu.edu

UPC Book by SC 2004?
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Hardware Platforms
UPC implementations are available for 
0Cray T3D/E 
0Compaq AlphaServer SC
0SGI O 2000/3000
0Beowulf Reference Implementation
0UPC Berkeley Compiler: Myrinet Clusters
0Cray X-1

Other ongoing and future implementations 
0UPC Berkeley Compiler: IBM SP and Quadrics, 

and Infiniband Clusters
0HP Superdome
0SGI and T3E 64-bit GCC
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UPC Execution Model

A number of threads working independently in a 
SPMD fashion
0MYTHREAD specifies thread index 

(0..THREADS-1)
0Number of threads specified at compile-time or 

run-time

Synchronization when needed
0Barriers 
0Locks
0Memory consistency control
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UPC Memory Model

A pointer-to-shared can reference all locations in the 
shared space

A private pointer may reference only addresses in its 
private space or addresses in its portion of the shared 
space

Static and dynamic memory allocations are supported 
for both shared and private memory

Shared

Thread 0 

Private 0

Thread 
THREADS-1

Private 1 Private 
THREADS-1G

lo
ba

l a
dd

re
ss

 s
pa

ce
Thread 1 
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User’s General View

A collection of threads operating in a single global 
address space, which is logically partitioned among 
threads. Each thread has affinity with a portion of the 
globally shared address space.  Each thread has also 
a private space.



SC2003  S09: Programming with the Partitioned Global Address Space Model 4211/16/03

UPC Outline

1. Background and 
Philosophy

2. UPC Execution Model

3. UPC Memory Model

4. UPC: A Quick Intro

5. Data and Pointers

6. Dynamic Memory 
Management

7. Programming Examples

8. Synchronization
9. Performance Tuning 

and Early Results
10. Concluding 

Remarks



SC2003  S09: Programming with the Partitioned Global Address Space Model 4311/16/03

A First Example: Vector addition

//vect_add.c

#include <upc_relaxed.h>
#define N 100*THREADS

shared int v1[N], v2[N], v1plusv2[N];
void main(){

int i;
for(i=0; i<N; i++)

If (MYTHREAD==i%THREADS)
v1plusv2[i]=v1[i]+v2[i];

}
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2nd Example: 
Vector Addition with upc_forall

//vect_add.c

#include <upc_relaxed.h>
#define N 100*THREADS

shared int v1[N], v2[N], v1plusv2[N];

void main()
{

int i;
upc_forall(i=0; i<N; i++; i)

v1plusv2[i]=v1[i]+v2[i];
}



SC2003  S09: Programming with the Partitioned Global Address Space Model 4511/16/03

Compiling and Running on Cray

Cray
0To compile with a fixed number (4) of threads:

upc –O2 –fthreads-4 –o vect_add vect_add.c
0To run:

./vect_add
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Compiling and Running on Compaq

Compaq
0To compile with a fixed number of threads and 

run:
upc –O2 –fthreads 4 –o vect_add vect_add.c
prun ./vect_add

0To compile without specifying a number of 
threads and run:

upc –O2 –o vect_add vect_add.c
prun –n 4 ./vect_add
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UPC DATA: Shared Scalar and Array Data

The shared qualifier, a new qualifier

Shared array elements and blocks can be spread 
across the threads
shared int x[THREADS] /*One element per thread */

shared int y[10][THREADS] /*10 elements per thread */

Scalar data declarations

shared int a; /*One item on system (affinity to thread 0) */

int b; /* one private b at each thread */

Shared data cannot have dynamic scope
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UPC Pointers

Pointer declaration:

shared int *p; 

p is a pointer to 
an integer residing in the shared memory space.

p is called a pointer to shared.
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A Third Example: Pointers to Shared

#include <upc_relaxed.h>
#define N 100*THREADS

shared int v1[N], v2[N], v1plusv2[N];

void main()
{

int i;
shared int *p1, *p2;

p1=v1; p2=v2;
upc_forall(i=0; i<N; i++, p1++, p2++; i)

v1plusv2[i]=*p1+*p2;
}
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Synchronization - Barriers

No implicit synchronization among the threads
Among the synchronization mechanisms offered 
by UPC are:
0Barriers  (Blocking)
0Split Phase Barriers 
0Locks
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Distributes independent iterations

Each thread gets a bunch of iterations

Affinity (expression) field to determine how to 
distribute work

Simple C-like syntax and semantics
upc_forall(init; test; loop; expression)

statement;

Work Sharing with upc_forall()
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Example 4: UPC Matrix-Vector 
Multiplication- Default Distribution

// vect_mat_mult.c
#include <upc_relaxed.h>

shared int a[THREADS][THREADS] ;
shared int b[THREADS], c[THREADS] ;
void main (void) {

int i, j; 
upc_forall( i = 0 ; i < THREADS ; i++; i) {

c[i] = 0;
for ( j= 0 ; j < THREADS ; j++)

c[i] += a[i][j]*b[j];
}

}
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Data Distribution

Th. 0

Th. 1

Th. 2

* =

A B C

Thread 0

Thread 1

Thread 2
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A Better Data Distribution

Th. 0

Th. 1

Th. 2

* =

A B C

Thread 0

Thread 1

Thread 2
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Example 5: UPC Matrix-Vector 
Multiplication-- The Better Distribution

// vect_mat_mult.c
#include <upc_relaxed.h>

shared [THREADS] int a[THREADS][THREADS];
shared int b[THREADS], c[THREADS];

void main (void) {
int i, j; 
upc_forall( i = 0 ; i < THREADS ; i++; i) {

c[i] = 0;
for ( j= 0 ; j< THREADS ; j++)

c[i] += a[i][j]*b[j];
}

}
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Examples of Shared and Private Data Layout:

Assume THREADS = 3

shared int x;  /*x will have affinity to thread 0 */

shared int y[THREADS];

int z; 

will result in the layout:

Thread 0 Thread 1 Thread 2

Shared and Private Data

x

z z z

y[0] y[1] y[2]
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shared int A[2][2*THREADS];

will result in the following data layout:

Shared and Private Data

Thread 0

A[0][0]

A[0][THREADS]

A[1][0]

A[1][THREADS]

A[0][THREADS-1]A[0][1]

A[0][THREADS+1]

Thread 1 Thread (THREADS-1)

A[0][2*THREADS-1]

A[1][THREADS-1]

A[1][2*THREADS-1]

A[1][1]

A[1][THREADS+1]
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Blocking of Shared Arrays

Default block size is 1

Shared arrays can be distributed on a block per 
thread basis, round robin, with arbitrary block 
sizes.

A block size is specified in the declaration as 
follows:
0shared [block-size] array[N];
0e.g.: shared [4] int a[16];
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Blocking of Shared Arrays

Block size and THREADS determine affinity

The term affinity means in which thread’s local 
shared-memory space, a shared data item will 
reside

Element i of a blocked array has affinity to thread:

THREADS
blocksize

i mod⎥⎦
⎥

⎢⎣
⎢
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Shared and Private Data

Shared objects placed in memory based on 
affinity

Affinity can be also defined based on the ability 
of a thread to refer to an object by a private 
pointer

All non-array scalar shared qualified objects have 
affinity with thread 0

Threads access shared and private data
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Assume THREADS = 4

shared [3] int A[4][THREADS]; 

will result in the following data layout:

A[0][0]

A[0][1]

A[0][2]

A[3][0]
A[3][1]
A[3][2]

A[0][3]

A[1][0]

A[1][1]

A[3][3]

A[1][2]

A[1][3]

A[2][0]

A[2][1]

A[2][2]

A[2][3]

Thread 0 Thread 1 Thread 2 Thread 3

Shared and Private Data
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UPC Pointers 

SSSPShared

PSPPPrivate
SharedPrivate

Where does the pointer reside?

Where 
does it 
point?
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UPC Pointers 

How to declare them?
0int *p1; /* private pointer pointing locally */
0shared int *p2;  /* private pointer pointing into 

the shared space */
0int *shared p3;  /* shared pointer pointing locally */
0shared int *shared p4; /* shared pointer pointing 

into the shared space */
You may find many using “shared pointer” to mean a 
pointer pointing to a shared object, e.g. equivalent to p2 but 
could be p4 as well.
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UPC Pointers 

Shared

Private P1
P2

P4
P3

Thread 0

P1 P1P2

P2
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UPC Pointers 

What are the common usages?
0int *p1; /* access to private data or to         

local shared data */
0shared int *p2; /* independent access of 

threads to data in shared 
space */

0int *shared p3; /* not recommended*/
0shared int *shared p4; /* common access of 

all threads to data in 
the shared space*/
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UPC Pointers 

In UPC pointers to shared objects have three 
fields: 
0thread number 
0local address of block
0phase (specifies position in the block)

Example: Cray T3E implementation

Virtual AddressThreadPhase

03738484963

PhaseThreadVirtual Address
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UPC Pointers

Pointer arithmetic supports blocked and non-
blocked array distributions

Casting of shared to private pointers is allowed 
but not vice versa !

When casting a pointer to shared to a private 
pointer, the thread number of the pointer to 
shared may be lost

Casting of shared to private is well defined only if 
the object pointed to by the pointer to shared has 
affinity with the thread performing the cast
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Special Functions

size_t upc_threadof(shared void *ptr);
returns the thread number that has affinity to the 
pointer to shared

size_t upc_phaseof(shared void *ptr);
returns the index (position within the block)field of 
the pointer to shared

size_t upc_addrfield(shared void *ptr);
returns the address of the block which is pointed at 
by the pointer to shared

shared void *upc_resetphase(shared void *ptr); 
resets the phase to zero
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UPC Pointers

pointer to shared Arithmetic Examples:

Assume THREADS = 4

#define N 16

shared int x[N];

shared int *dp=&x[5], *dp1;

dp1 =  dp + 9;
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UPC Pointers

dp + 3
dp + 7

Thread 0 Thread 0 Thread 2 Thread 3

X[0]

X[4]

X[8]

X[1]
X[5]

X[9]

X[2]

X[6]

X[10]

X[3]

X[7]

X[11]dp + 5
dp + 9

dp+1 

dp + 4
dp + 8

dp
dp+6
dp+2 

X[12] X[13] X[14] X[15]

dp1
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UPC Pointers

Assume THREADS = 4
shared[3] x[N], *dp=&x[5], *dp1;
dp1 =  dp + 9;
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UPC Pointers

dp
dp + 2
dp + 3

dp + 5

dp + 6

Thread 0 Thread 2Thread 1 Thread 3
dp + 1 dp + 4

dp + 7

dp + 8

dp1

X[0]

X[1]

X[2]

X[3]

X[4]

X[5]

X[6]

X[7]

X[8]

X[9]

X[10]

X[11]

X[12]

X[13]

X[14]

X[15]

dp+9
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String functions in UPC

UPC provides standard library functions to move 
data to/from shared memory

Can be used to move chunks in the shared space 
or between shared and private spaces
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String functions in UPC

Equivalent of memcpy :
0upc_memcpy(dst, src, size) : copy from shared 

to shared
0upc_memput(dst, src, size) : copy from private 

to shared
0upc_memget(dst, src, size) : copy from shared 

to private

Equivalent of memset:
0upc_memset(dst, char, size) : initialize shared 

memory with a character
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Worksharing with upc_forall

Distributes independent iteration across threads in the way 
you wish– typically to boost locality exploitation

Simple C-like syntax and semantics
upc_forall(init; test; loop; expression)

statement
Expression could be an integer expression or a reference to 
(address of) a shared object



SC2003  S09: Programming with the Partitioned Global Address Space Model 7711/16/03

Example 1: Exploiting locality
shared int a[100],b[100], c[101];
int i;
upc_forall (i=0; i<100; i++; &a[i])

a[i] = b[i] * c[i+1];

Example 2: distribution in a round-robin 
fashion
shared int a[100],b[100], c[101];
int i;
upc_forall (i=0; i<100; i++; i)

a[i] = b[i] * c[i+1];

Note: Examples 1 and 2 happened to result in the same distribution

Work Sharing: upc_forall()
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Example 3: distribution by chunks
shared int a[100],b[100], c[101];
int i;
upc_forall (i=0; i<100; i++; (i*THREADS)/100)

a[i] = b[i] * c[i+1];

3300..39675..99
2200..29650..74
1100..19625..49
00..960..24
i*THREADS/100i*THREADSi

Work Sharing: upc_forall()
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Dynamic Memory Allocation in UPC

Dynamic memory allocation of shared memory is 
available in UPC

Functions can be collective or not

A collective function has to be called by every 
thread and will return the same value to all of 
them
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Global Memory Allocation
shared void *upc_global_alloc(size_t nblocks, size_t 

nbytes);

nblocks : number of blocks
nbytes : block size
Non collective, expected to be called by one thread 

The calling thread allocates a contiguous memory space in 
the shared space

If called by more than one thread, multiple regions are 
allocated and each thread which makes the call gets a 
different pointer

Space allocated per calling thread is equivalent to :
shared [nbytes] char[nblocks * nbytes]

(Not yet implemented on Cray)
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Collective Global Memory Allocation 

shared void *upc_all_alloc(size_t nblocks, size_t nbytes);

nblocks: number of blocks
nbytes: block size

This function has the same result as upc_global_alloc. But 
this is a collective function, which is expected to be called 
by all threads

All the threads will get the same pointer 

Equivalent to : 
shared [nbytes] char[nblocks * nbytes]
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Memory Freeing

void upc_free(shared void *ptr);

The upc_free function frees the dynamically 
allocated shared memory pointed to by ptr

upc_free is not collective
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Example: Matrix Multiplication in UPC

Given two integer matrices A(NxP) and B(PxM), 
we want to compute C =A x B.  

Entries cij in C are computed by the formula:

bac lj

p

l
ilij ×= ∑

=1
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Doing it in C
#include <stdlib.h>
#include <time.h>
#define N  4
#define P  4
#define M 4
int a[N][P] =  {1,2,3,4,5,6,7,8,9,10,11,12,14,14,15,16}, c[N][M];
int b[P][M] = {0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1};

void main (void) {
int i, j , l;
for (i = 0 ; i<N ; i++) {

for (j=0 ; j<M ;j++) {
c[i][j] = 0;
for (l = 0 ; l<P ; l++) c[i][j] += a[i][l]*b[l][j];

}
}

} Note: most compilers are not yet supporting the intialization in declaration statements
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Domain Decomposition for UPC

A (N × P) is decomposed row-wise 
into blocks of size (N × P) / 
THREADS as shown below:

B(P × M) is decomposed column 
wise into M/ THREADS blocks as 
shown below:

Thread 0
Thread 1

Thread THREADS-1

0 .. (N*P / THREADS) -1

(N*P / THREADS)..(2*N*P / THREADS)-1 

((THREADS-1)×N*P) / THREADS .. 
(THREADS*N*P / THREADS)-1 

Columns 0: 
(M/THREADS)-1 Columns ((THREAD-1) ×

M)/THREADS:(M-1)

Thread 0
Thread THREADS-1

•Note: N and M are assumed to be multiples 
of THREADS

• Exploits locality in matrix multiplication

N

P M

P
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UPC Matrix Multiplication Code
#include <upc_relaxed.h>
#define N  4
#define P  4
#define M 4

shared [N*P /THREADS] int a[N][P] =  
{1,2,3,4,5,6,7,8,9,10,11,12,14,14,15,16}, c[N][M];
// a and c are blocked shared matrices, initialization is not currently 
implemented
shared[M/THREADS] int b[P][M] = {0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1};
void main (void) {

int i, j , l; // private variables

upc_forall(i = 0 ; i<N ; i++; &c[i][0]) {
for (j=0 ; j<M ;j++) {

c[i][j] = 0;
for (l= 0 ; l<P ; l++) c[i][j] += a[i][l]*b[l][j];

}
}

}
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UPC Matrix Multiplication 
Code with block copy

#include <upc_relaxed.h>
shared [N*P /THREADS] int a[N][P], c[N][M];
// a and c are blocked shared matrices, initialization is not currently implemented
shared[M/THREADS] int b[P][M];
int b_local[P][M];

void main (void) {
int i, j , l; // private variables

upc_memget(b_local, b, P*M*sizeof(int));

upc_forall(i = 0 ; i<N ; i++; &c[i][0]) {
for (j=0 ; j<M ;j++) {

c[i][j] = 0;
for (l= 0 ; l<P ; l++) c[i][j] += a[i][l]*b_local[l][j];

}
}

}
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Synchronization

No implicit synchronization among the threads
UPC provides the following synchronization 
mechanisms:
0Barriers  
0Locks
0Memory Consistency Control
0Fence
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Synchronization - Barriers

No implicit synchronization among the threads
UPC provides the following barrier 
synchronization constructs:
0Barriers  (Blocking)

upc_barrier expropt;
0Split-Phase Barriers (Non-blocking)

upc_notify expropt;
upc_wait expropt;

Note: upc_notify is not blocking upc_wait is 
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Synchronization- Fence

Upc provides a fence construct
0Equivalent to a null strict reference, and has the 

syntax
upc_fence;

0UPC ensures that all shared references issued 
before the upc_fence are complete
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Synchronization - Locks

In UPC, shared data can be protected against 
multiple writers :
0void upc_lock(upc_lock_t *l)
0int upc_lock_attempt(upc_lock_t *l) //returns 1 

on success and 0 on failure
0void upc_unlock(upc_lock_t *l)

Locks can be allocated dynamically. Dynamically 
allocated locks can be freed

Dynamic locks are properly initialized and static 
locks need initialization
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Memory Consistency Models

Has to do with the ordering of shared operations

Under the relaxed consistency model, the shared 
operations can be reordered by the compiler / 
runtime system

The strict consistency model enforces sequential 
ordering of shared operations. (no shared 
operation can begin before the previously specified 
one is done)
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Memory Consistency Models

User specifies the memory model through:
0declarations 
0pragmas for a particular statement or 

sequence of statements
0use of barriers, and global operations

Consistency can be strict or relaxed 

Programmers responsible for using correct 
consistency model
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Memory Consistency

Default  behavior can be controlled by the 
programmer: 
0Use strict memory consistency

#include<upc_strict.h> 
0Use relaxed memory consistency

#include<upc_relaxed.h>  
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Memory Consistency

Default  behavior can be altered for a variable 
definition using:
0Type qualifiers: strict & relaxed 

Default  behavior can be altered for a statement or 
a block of statements using
0#pragma upc strict
0#pragma upc relaxed
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Productivity ~ Code Size
  SEQ*1 MPI SEQ*2 UPC MPI/SEQ

(%) 
UPC/SEQ

(%) 
#line 41 98 41 47 139.02 14.63 GUPS 

#char 1063 2979 1063 1251 180.02 17.68 
Histogram #line 12 30 12 20 150.00 66.67 

 #char 188 705 188 376 275.00 100.00 
NAS-EP #line 130 187 127 149 43.85 17.32 
 #char 4741 6824 2868 3326 44.94 15.97 

#line 704 1281 607 952 81.96 56.84 NAS-FT 

#char 23662 44203 13775 20505 86.81 48.86 
#line 86 166 86 139 93.02 61.63 N-Queens 

#char 1555 3332 1555 2516 124.28 61.80 
 

 All the line counts are the number of real code lines (no comments, no blocks)
*1: The sequential code is coded in C except for NAS-EP and FT which are coded in Fortran.
*2: The sequential code is always in C.
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How to Exploit the Opportunities 
for Performance Enhancement?

Compiler optimizations 

Run-time system

Hand tuning
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List of Possible Optimizations 
for UPC Codes

Space privatization: use private pointers instead of 
pointer to shareds when dealing with local shared 
data (through casting and assignments)

Block moves: use block copy instead of copying 
elements one by one with a loop, through string 
operations or structures

Latency hiding: For example, overlap remote 
accesses with local processing using split-phase 
barriers

Vendors can also help decrease cost for address 
translation and providing optimized standard 
libraries
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Performance of Shared vs. Private 
Accesses (Old COMPAQ Measurement)

0.20.2UPC remote 
shared

44.07.0UPC local 
shared

565.0686.0UPC Private
400.0640.0CC

write single 
elements

read single 
elements

MB/s

Recent compiler developments have improved some of that



SC2003  S09: Programming with the Partitioned Global Address Space Model 10411/16/03

Using Local Pointers Instead of 
pointer to shared

…

int *pa = (int*) &A[i][0];
int *pc = (int*) &C[i][0];
…
upc_forall(i=0;i<N;i++;&A[i][0]) {

for(j=0;j<P;j++)
pa[j]+=pc[j];

}

Pointer arithmetic is faster using local pointers 
than pointer to shared

The pointer dereference can be one order of 
magnitude faster
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Performance of UPC

UPC benchmarking results  
0Nqueens Problem
0Matrix Multiplication
0Sobel Edge detection
0Stream and GUPS
0NPB
0Splash-2

Compaq AlphaServer SC and Origin 2000/3000

Check the web site for new measurements
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266266884440N/AUPC Shared (SMP)

200200723834N/AUPC Shared 
(Remote)

4004001004440N/AUPC Local

N/AN/A800266266400UPC Private

N/AN/A800266266400GCC

Block 
Scale

Block 
Get

SumScaleArray 
Copy

MemcpyMB/S

Shared vs. Private Accesses (Recent SGI 
Origin 3000 Measurement)

ST
R

EA
M

 B
EN

C
H

M
A

R
K
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Execution Time over SGI–Origin 2k 
NAS-EP – Class A
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Performance of the N-QUEENS 
problem on the Origin 2000

0

0.05

0.1

0.15

0.2

0.25

1 2 4 8 16

THREADS

Ex
ec

ut
io

n 
Ti

m
e 

(s
ec

)

UPC NO OPT. UPC FULL OPT.

UPC N-Queens: 
Execution Time



SC2003  S09: Programming with the Partitioned Global Address Space Model 10911/16/03

Performance of Edge detection 
on the Origin 2000
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Execution Time over SGI–Origin 2k 
NAS-FT – Class A
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Execution Time over SGI–Origin 2k 
NAS-CG – Class A
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Execution Time over SGI–Origin 2k 
NAS-EP – Class A
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Execution Time over SGI–Origin 2k 
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Execution Time over SGI–Origin 2k 
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UPCTime-To-Solution=
UPCProgramming Time + UPCExecution Time

Simple and Familiar View
0Domain decomposition 

maintains global 
application view

0No function calls

Concise Syntax
0Remote writes with 

assignment to shared
0Remote reads with 

expressions involving 
shared

0Domain decomposition 
(mainly) implied in 
declarations (logical 
place!)

Data locality exploitation
No calls
One-sided communications
Low overhead for short 
accesses

Conclusions
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Conclusions

UPC is easy to program in for C writers, 
significantly easier than alternative paradigms at 
times

UPC exhibits very little overhead when compared 
with MPI for problems that are embarrassingly 
parallel. No tuning is necessary.

For other problems compiler optimizations are 
happening but not fully there

With hand-tuning, UPC performance compared 
favorably with MPI

Hand tuned code, with block moves, is still 
substantially simpler than message passing code
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Conclusions

Automatic compiler optimizations should focus on
0Inexpensive address translation
0Space Privatization for local shared accesses
0Prefetching and aggregation of remote 

accesses, prediction is easier under the UPC 
model

More performance help is expected from optimized 
standard library implementations, specially 
collective and I/O



SC2003  S09: Programming with the Partitioned Global Address Space Model 12011/16/03

References
The official UPC website, http://upc.gwu.edu
T. A.El-Ghazawi, W.W.Carlson, J. M. Draper. UPC Language 
Specifications V1.1 (http://upc.gwu.edu). May, 2003
François Cantonnet, Yiyi Yao, Smita Annareddy, Ahmed S. Mohamed, 
Tarek A. El-Ghazawi Performance Monitoring and Evaluation of a UPC 
Implementation on a NUMA Architecture, International Parallel and 
Distributed Processing Symposium(IPDPS’03) Nice Acropolis 
Convention Center, Nice, France, 2003.  
Wei-Yu Chen, Dan Bonachea, Jason Duell, Parry Husbands, Costin
Iancu, Katherine Yelick, A performance analysis of the Berkeley UPC 
compiler, International Conference on Supercomputing, Proceedings 
of the 17th annual international conference on Supercomputing 
2003,San Francisco, CA, USA 
Tarek A. El-Ghazawi, François Cantonnet, UPC Performance and 
Potential: A NPB Experimental Study, SuperComputing 2002 (SC2002). 
IEEE, Baltimore MD, USA, 2002.
Tarek A.El-Ghazawi, Sébastien Chauvin, UPC Benchmarking Issues, 
Proceedings of the International Conference on Parallel Processing 
(ICPP’01). IEEE CS Press. Valencia, Spain, September 2001.



SC2003  S09: Programming with the Partitioned Global Address Space Model 12111/16/03

http://upc.gwu.edu



Co-Array Fortran 
Tutorial 
SC 2003

Co-Array Fortran 
Tutorial 
SC 2003

Robert W. Numrich
Minnesota Supercomputing Institute

University of Minnesota

rwn@msi.umn.edu

Robert W. Numrich
Minnesota Supercomputing Institute

University of Minnesota

rwn@msi.umn.edu



SC2003  S09: Programming with the Partitioned Global Address Space Model 12311/16/03

Abstract

Co-Array Fortran is a simple extension to Fortran 90 that allows programmers to 
write efficient parallel applications using a Fortran-like syntax. It assumes the SPMD 
programming model with replicated data objects called co-arrays. Co-Array objects 
are visible to all processors and each processor can read or write data belonging to 
any other processor by setting the index of the co-dimension to the appropriate value. 
It can be thought of as the SHMEM model implemented as an extension to the 
language. The combination of co-array syntax with the 'object-oriented' features of 
Fortran 90 provides a powerful method of encapsulating parallel data structures and 
parallel algorithms into Fortran 90 modules that resemble class libraries in an object-
oriented language. 
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Outline
1. Philosophy of Co-Array Fortran
2. Execution model
3. Co-arrays and co-dimensions
4. Memory model
5. Relative image indices
6. CAF intrinsic procedures
7. Dynamic memory management
8. CAF I/O
9. “Object-Oriented” Techniques 
10. Summary
11. Examples

Examples from Linear Algebra
Example from UK Met Office

12. Exercises
Global reductions
PIC code fragment
CAF Class Library
Poisson Solver



1. Philosophy of Co-Array 
Fortran

1. Philosophy of Co-Array 
Fortran
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The Guiding Principle behind
Co-Array Fortran

What is the smallest change required to make Fortran 90 an 
effective parallel language?

How can this change be expressed so that it is intuitive and 
natural for Fortran programmers?

How can it be expressed so that existing compiler 
technology can implement it easily and efficiently?
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What’s the Problem with SPMD?

One processor knows nothing about another’s memory 
layout.
0Local variables live on the local heap.
0Addresses, sizes and shapes are different on different 

program images.

How can we exchange data between such non-aligned 
variables?
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Some  Solutions

MPI-1
0Elaborate system of buffers
0Two-sided send/receive protocol
0Programmer moves data between local buffers only.

SHMEM
0One-sided exchange between variables in COMMON
0Programmer manages non-aligned variables using an 

awkward mechanism
MPI-2
0Mimic SHMEM by exposing some of the buffer system
0One-sided data exchange within predefined windows
0Programmer manages addresses and offsets within the 

windows
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Co-Array Fortran Extension

Incorporate the SPMD Model into Fortran 95
Multiple images of the same program
0Text and data are replicated in each image

Mark some variables with co-dimensions
0Co-dimensions behave like normal dimensions
0Co-dimensions express a logical problem decomposition 
0One-sided data exchange between co-arrays using a Fortran-

like syntax

Require the underlying run-time system to map the logical 
problem decomposition onto specific hardware.



2.  Execution Model2.  Execution Model
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The CAF Execution Model 

The number of images is fixed and each image has its own index, retrievable at 
run-time:

1 ≤ num_images()
1 ≤ this_image()  ≤ num_images()

Each image executes the same program independently of the others.

The programmer inserts explicit synchronization and branching as needed.

An “object” has the same name in each image.

Each image works on its own local data.

An image moves remote data to local data through, and only through, explicit 
CAF syntax.



3.  Co-Arrays and Co-
Dimensions

3.  Co-Arrays and Co-
Dimensions
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What is Co-Array Syntax?

Co-Array syntax is a simple parallel extension to normal 
Fortran syntax.
0It uses normal rounded brackets ( ) to point to data in 

local memory.
0It uses square brackets [ ] to point to data in remote 

memory.
0Syntactic and semantic rules apply separately but equally 

to ( ) and [ ].
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Examples of Co-Array 
Declarations

real :: a(n)[∗]
complex :: z[∗]
integer :: index(n)[∗]
real :: b(n)[p, ∗]
real :: c(n,m)[0:p, -7:q, +11:∗]
real,allocatable :: w(:)[:]
type(field) :: maxwell[p,∗]



4.  CAF Memory Model4.  CAF Memory Model
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CAF Memory Model
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One-to-One Execution Model
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Many-to-One Execution Model
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One-to-Many Execution Model
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p q

x(n)[p]

x(1)

x(n)

x(1)

x(n)
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One
Physical
Processor



SC2003  S09: Programming with the Partitioned Global Address Space Model 14011/16/03

Many-to-Many Execution Model

x(1)

x(n)

x(1)

x(n)

x(1)[q]

p q

x(n)[p]

x(1)

x(n)

x(1)

x(n)

x(1)

x(n)

Many
Physical

Processors
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Communication Using CAF Syntax

y(:) = x(:)[p]
myIndex(:) = index(:)
yourIndex(:) = index(:)[you]
x(index(:)) = y[index(:)]

x(:)[q] = x(:) + x(:)[p]

Absent co-dimension defaults to the local object.
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Non-Aligned Variables

real,allocatable,target :: field (:)

type(field) :: z[∗]

allocate(field(0:n+1))

me = this_image(z)

z%field => field

field(0)     = z[me-1]%field(n)

field(n+1) = z[me+1]%field(1)
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Co-Array Alias to a Remote Field

z%field z%field

field
field

z[p]%field



5.  Relative Image Indices5.  Relative Image Indices
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What Do Co-Dimensions Mean?

real :: x(n)[p,q,∗]

1. Replicate an array of length n, one on each image.
2. Build a map so each image knows how to find the array 

on any other image.
3. Organize images in a logical (not physical) three 

dimensional grid.
4. The last co-dimension acts like an assumed size array:   ∗

⇒ num_images()/(pxq)
5. A specific implementation could choose to represent 

memory hierarchy through the co-dimensions.
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Relative Image Indices

Runtime system builds a map among images.

CAF syntax is a logical  expression of this map.

Current image index:
1 <= this_image() <= num_images()

Current image index relative to a co-array:
lowCoBnd(x) <= this_image(x) <= upCoBnd(x)
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Relative Image Indices (1)

161284

151173

14106                     2

13951
1

2

3

4

1 2 3 4

this_image() = 15       this_image(x) = (/3,4/)x[4,*]
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Relative Image Indices (II)

161284

151173

14106                     2

13951
0

1

2

3

0 1 2 3

this_image() = 15       this_image(x) = (/2,3/)x[0:3,0:*]
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Relative Image Indices (III)

161284

151173

14106                     2

13951
-5

-4

-3

-2

0 1 2 3

this_image() = 15       this_image(x) = (/-3, 3/)x[-5:-2,0:*]
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Relative Image Indices (IV)

161412108642
151311975310

1

0 1 2 3 4 5 6 7

x[0:1,0:*]     this_image() = 15   this_image(x) =(/0,7/)



6.  CAF Intrinsic 
Procedures

6.  CAF Intrinsic 
Procedures
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Synchronization Intrinsic Procedures

sync_all()
Full barrier; wait for all images before continuing.

sync_all(wait(:))
Partial barrier; wait only for  those images in the wait(:) list.

sync_team(list(:))
Team barrier; only images in list(:) are involved. 

sync_team(list(:),wait(:))
Team barrier; wait only for those images in the wait(:) list.

sync_team(myPartner)
Synchronize with one other image.
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Events

sync_team(list(:),list(me:me))    post event

sync_team(list(:),list(you:you))  wait event
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Other CAF Intrinsic Procedures

sync_memory()
Make co-arrays visible to all images

sync_file(unit)
Make local I/O operations visible to the global file system.

start_critical()
end_critical()

Allow only one image at a time into a protected region.
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Other CAF Intrinsic Procedures

log2_images()
Log base 2 of the greatest power of two less
than or equal to the value of num_images()

rem_images()
The difference between num_images() and
the nearest power-of-two.



7.  Dynamic Memory 
Management

7.  Dynamic Memory 
Management
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Dynamic Memory Management

Co-Arrays can be (should be) declared as allocatable
real,allocatable,dimension(:,:)[:,:] :: x

Co-dimensions are set at run-time
allocate(x(n,n)[p,*])

implied sync after all images have allocated
deallocate(x)

implied sync before any image deallocates

Pointers are not allowed to be co-arrays
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User Defined Derived Types

• F90 Derived types are similar to structures in C

type vector
real, pointer,dimension(:) :: elements
integer :: size

end type vector

Pointer components are allowed
Allocatable components will be allowed in F2000
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Irregular and Changing Data 
Structures

z%ptr z%ptr

x
x

z[p]%ptr
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Irregular and Changing
Data Structures

Co-arrays of derived type vectors can be used
to create sparse matrix structures.

type(vector),allocatable,dimension(:)[:] :: rowMatrix
allocate(rowMatrix(n)[*])
do i=1,n

m = rowSize(i)
rowMatrix(i)%size = m
allocate(rowMatrix(i)%elements(m))

enddo



8.  CAF I/O8.  CAF I/O
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CAF I/O (1)

There is one file system visible to all images.
An image can open a file alone or as part of a team.
The programmer controls access to the file using 
direct access I/O and CAF intrinsic functions.
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CAF I/O (2)

A new keyword , team= , has been added to the open 
statement:

open(unit=,file=,team=list,access=direct)
Implied synchronization among team members.

A CAF intrinsic function is provided to control file 
consistency across images:

call sync_file(unit)
Flush all local I/O operations to make them  visible to the 
global file system.
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CAF I/O (3)

Read from unit 10 and place data in x(:) on image p.
read(10,*) x(:)[p]

Copy data from x(:) on image p to a local buffer and 
then write it to unit 10.

write(10,*) x(:)[p]
Write to a specified record in a file:

write(unit,rec=myPart) x(:)[q]
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9. Using “Object-Oriented”
Techniques with Co-Array Fortran
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Using “Object-Oriented” Techniques with Co-
Array Fortran

Fortran 95 is not an object-oriented language.

But it contains some features that can be used to emulate object-
oriented programming methods.
0Allocate/deallocate for dynamic memory management
0Named derived types are similar to classes without methods.
0Modules can be used to associate methods loosely with 

objects.
0Constructors and destructors can be defined to encapsulate 

parallel data structures.
0Generic interfaces can be used to overload procedures based 

on the named types of the actual arguments. 
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A Parallel “Class Library” for CAF

Combine the object-based features of Fortran 95 with co-array 
syntax to obtain an efficient parallel numerical class library that 
scales to large numbers of processors.
Encapsulate all the hard stuff in modules using named objects, 
constructors,destructors, generic interfaces, dynamic memory 
management.
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CAF Parallel “Class Libraries”

use BlockMatrices
use BlockVectors

type(PivotVector)  :: pivot[p,*]
type(BlockMatrix) :: a[p,*]
type(BlockVector) :: x[*]

call newBlockMatrix(a,n,p)
call newPivotVector(pivot,a)
call newBlockVector(x,n)
call luDecomp(a,pivot)
call solve(a,x,pivot)
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LU Decomposition
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CAF I/O for Named Objects

use BlockMatrices
use DiskFiles

type(PivotVector)  :: pivot[p,*]
type(BlockMatrix) :: a[p,*]
type(DirectAccessDiskFile) :: file

call newBlockMatrix(a,n,p)
call newPivotVector(pivot,a)
call newDiskFile(file)
call readBlockMatrix(a,file)
call luDecomp(a,pivot)
call writeBlockMatrix(a,file)



10.  Summary10.  Summary
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Why Language Extensions?

Programmer uses a familiar language.
Syntax gives the programmer control and flexibility.
Compiler concentrates on local code optimization.
Compiler evolves as the hardware evolves.
0Lowest latency and highest bandwidth allowed by the 

hardware
0Data ends up in registers or cache not in memory
0Arbitrary communication patterns
0Communication along multiple channels
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Summary

Co-dimensions match your problem decomposition
0Run-time system matches them to hardware 

decomposition
0Local computation of neighbor relationships
0Flexible communication patterns

Code simplicity
0Non-intrusive code conversion
0Modernize code to Fortran 95 standard

Performance is comparable to or better than library based 
models.



11.  Examples11.  Examples



Examples from Linear 
Algebra

Examples from Linear 
Algebra
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Matrix Multiplication

= x
myP

myQ

myP

myQ
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Matrix Multiplication

real,dimension(n,n)[p,*] :: a,b,c

do k=1,n
do q=1,p

c(i,j)[myP,myQ] = c(i,j)[myP,myQ]
+ a(i,k)[myP, q]*b(k,j)[q,myQ]

enddo
enddo
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Matrix Multiplication

real,dimension(n,n)[p,*] :: a,b,c

do k=1,n
do q=1,p

c(i,j) = c(i,j) + a(i,k)[myP, q]*b(k,j)[q,myQ]
enddo

enddo
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Block Matrix Multiplication
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Distributed Transpose (1)

myQ myP

myQ

real matrixT(n,m)[p,*], matrix(m,n)[q,*]
matrixT[myP,myQ](i,j) = matrix(j,i)[myQ,myP]

(i,j)
(j,i)

myP
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Blocked Matrices (1)

type matrix
real,pointer,dimension(:,:) :: elements
integer :: rowSize, colSize

end type matrix

type blockMatrix
type(matrix),pointer,dimension(:,:) :: block

end type blockMatrix
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Blocked Matrices (2)

type(blockMatrix),allocatable :: a[:,:]
allocate(a[p,*])
allocate(a%block(nRowBlks,nColBlks))
a%block(j,k)%rowSize = nRows
a%block(j,k)%colSize = nCols
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Distributed Transpose (2)

myQ myP

myQ

type(blockMatrix) :: a[p,*],aT[q,*]
aT%block(j,k)%element(i,j) = a[myQ,myP]%block(k,j)%element(j,i)

myP

block(j,k) block(k,j)
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Block Matrix Transpose
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Distributed Transpose (3)

you

me you

me

type(columnBlockMatrix) :: a[*],b[*]
a[me]%block(you)%element(i,j) = b[you]%block(me)%element(j,i)

(i,j)
(j,i)



Example from the UK Met 
Office 

Example from the UK Met 
Office 
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Problem Decomposition and Co-
Dimensions

[p,q-1]

[p+1,q][p,q][p-1,q]

[p,q+1]

EW

S

N
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Cyclic Boundary Conditions in 
East-West Directions

real,dimension [p,*] :: z

myP = this_image(z,1)                !East-West

West = myP - 1

if(West < 1) West = nProcX !Cyclic

East = myP + 1

if(East > nProcX) East = 1           !Cyclic
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Incremental Update to Fortran 95

Field arrays are allocated on the local heap.
Define one supplemental F95 structure
type cafField
real,pointer,dimension(:,:,:) :: Field

end type cafField

Declare a co-array of this type
type(cafField),allocatable,dimension[:,:] :: z
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Allocate Co-Array Structure

allocate ( z [ nP,*] )

Implied synchronization
Structure is aligned across memory images.
0Every image knows how to find the pointer 

component in any other image.

Set the co-dimensions to match your problem 
decomposition.
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East-West Communication

Move last row from west  to my first halo 

Field(0,1:n,:)   =  z [ West, myQ ]%Field(m,1:n,:)

Move first row from east to my last halo

Field(m+1,1:n,:) = z [ East, myQ ]%Field(1,1:n,:)
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Total Time (s)

32.4

55.9

55.5

105

205

MPI

31.629.827.34x8

54.453.750.04x4

52.752.249.82x8

10099.095.02x4

2011981912x2

MPI 

w/CAF 
SWAP

SHMEM
w/CAF 
SWAP

SHMEMPxQ
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Other Kinds of Communication

Semi-Lagrangian on-demand lists 
Field(i,list1(:),k) =z [myPal]% Field(i,list2(:),k)

Gather data from a list of neighbors
Field(i, j,k) = z [list(:)]%Field(i,j,k)

Combine arithmetic with communication
Field(i, j,k) = scale*z [myPal]%Field(i,j,k)
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CRAY Co-Array Fortran

CAF has been a supported feature of Cray Fortran 90 since 
release 3.1

CRAY T3E
0f90  -Z  src.f90
0mpprun -n7  a.out

CRAY X1
0ftn -Z src.f90
0aprun -n7 a.out
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Co-Array Fortran on Other Platforms

Rice University is developing a source-to-source preprocessor for 
CAF.
0www.pmodels.org

DARPA High Productivity Computing Systems (HPCS) Project 
wants CAF.
0 IBM, CRAY, SUN

Open source CAF compiler under consideration by DoE.
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The Co-Array Fortran Standard

Co-Array Fortran is defined by:
0R.W. Numrich and J.K. Reid, “Co-Array Fortran for Parallel 

Programming”, ACM Fortran Forum, 17(2):1-31, 1998

Additional information on the web:
0www.co-array.org
0www.pmodels.org
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Motivation: Target Problems

Many modeling problems in astrophysics, biology, 
material science, and other areas require 
0Enormous range of spatial and temporal scales

To solve interesting problems, one needs:
0Adaptive methods
0Large scale parallel machines

Titanium is designed for
0Structured grids
0Locally-structured grids (AMR)
0Unstructured grids (in progress)

Source: J. Bell, LBNL
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Titanium Background

Based on Java, a cleaner C++
0Classes, automatic memory management, etc.
0Compiled to C and then machine code, no JVM

Same parallelism model at UPC and CAF
0SPMD parallelism
0Dynamic Java threads are not supported

Optimizing compiler
0Analyzes global synchronization
0Optimizes pointers, communication, memory
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Summary of Features Added to Java
Multidimensional arrays: iterators, subarrays, copying
Immutable (“value”) classes
Templates
Operator overloading
Scalable SPMD parallelism replaces threads
Global address space with local/global reference 
distinction
Checked global synchronization 
Zone-based memory management (regions)
Libraries for collective communication, distributed 
arrays, bulk I/O, performance profiling
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Outline

Titanium Execution Model
0SPMD
0Global Synchronization
0Single

Titanium Memory Model

Support for Serial Programming

Performance and Applications

Compiler/Language Status
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SPMD Execution Model

Titanium has the same execution model as UPC and CAF

Basic Java programs may be run as Titanium programs, 
but all processors do all the work.

E.g., parallel hello world
class HelloWorld {

public static void main (String [] argv) {
System.out.println(“Hello from proc “

+ Ti.thisProc()
+ “ out of “
+ Ti.numProcs());

}
}

Global synchronization done using Ti.barrier()
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Barriers and Single

Common source of bugs is barriers or other collective 
operations inside branches or loops

barrier, broadcast, reduction, exchange

A “single” method is one called by all procs
public single static void allStep(...)

A “single” variable has same value on all procs
int single timestep = 0;

Single annotation on methods is optional, but useful in 
understanding compiler messages

Compiler proves that all processors call barriers together
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Explicit Communication: Broadcast
Broadcast is a one-to-all communication

broadcast <value> from <processor>

For example: 
int count = 0;

int allCount = 0;

if (Ti.thisProc() == 0) count = computeCount();

allCount = broadcast count from 0;

The processor number in the broadcast must be single; 
all constants are single.
0All processors must agree on the broadcast source.

The allCount variable could be declared single.
0All will have the same value after the broadcast.
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More on Single
Global synchronization needs to be controlled
if (this processor owns some data) {

compute on it
barrier

}

Hence the use of “single” variables in Titanium

If a conditional or loop block contains a barrier, all 
processors must execute it
0conditions must contain only single variables

Compiler analysis statically enforces freedom from 
deadlocks due to barrier and other collectives being 
called non-collectively "Barrier Inference" [Gay & Aiken]
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Single Variable Example
Barriers and single in N-body Simulation
class ParticleSim {

public static void main (String [] argv) {
int single allTimestep = 0;
int single allEndTime = 100;
for (; allTimestep < allEndTime; allTimestep++){

read remote particles, compute forces on mine
Ti.barrier();
write to my particles using new forces
Ti.barrier();

}
}

}     

Single methods inferred by the compiler 
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Outline

Titanium Execution Model

Titanium Memory Model
0Global and Local References
0Exchange: Building Distributed Data Structures
0Region-Based Memory Management

Support for Serial Programming

Performance and Applications

Compiler/Language Status
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Global Address Space

Globally shared address space is partitioned 

References (pointers) are either local or global 
(meaning possibly remote)

Object heaps
are shared

G
lo

ba
l a

dd
re

ss
 s

pa
ce x: 1

y: 2

Program stacks 
are private

l: l: l: 

g: g: g: 

x: 5
y: 6

x: 7
y: 8

p0 p1 pn
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Use of Global / Local
As seen, global references (pointers) may point to 
remote locations
0easy to port shared-memory programs

Global pointers are more expensive than local
0True even when data is on the same processor
0Costs of global:

space (processor number + memory address)
dereference time (check to see if local)

May declare references as local
0Compiler will automatically infer local when 

possible
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Global Address Space

Processes allocate locally

References can be passed to 
other processes

class C { public int val;... }

Process 0

HEAP0

Process 1

HEAP1

val:  0

lv

gv

lv

gv

C gv; // global pointer
C local lv; // local pointer 
if (Ti.thisProc() == 0) {

lv = new C();
}
gv = broadcast lv from 0;    
//data race    
gv.val = Ti.thisProc()+1; 

int winner = gv.val

winner: 2 winner: 2

2
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Aside on Titanium Arrays

Titanium adds its own multidimensional array 
class for performance

Distributed data structures are built using a 1D 
Titanium array

Slightly different syntax, since Java arrays still 
exist in Titanium, e.g.: 

int [1d] a;

a = new int [1:100];

a[1] = 2*a[1] - a[0] – a[2]; 

Will discuss these more later…
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Explicit Communication: Exchange
To create shared data structures
0each processor builds its own piece
0pieces are exchanged (for objects, just exchange 

pointers)

Exchange primitive in Titanium
int [1d] single allData;
allData = new int [0:Ti.numProcs()-1];
allData.exchange(Ti.thisProc()*2);

E.g., on 4 procs, each will have copy of allData:

0 2 4 6
allData
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Distributed Data Structures
Building distributed arrays: 
Particle [1d] single [1d] allParticle = 

new Particle [0:Ti.numProcs-1][1d];

Particle [1d] myParticle = 

new Particle [0:myParticleCount-1];

allParticle.exchange(myParticle);

Now each processor has array of pointers, one to 
each processor’s chunk of particles

P0 P1 P2

All to all broadcast
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Region-Based Memory Management
An advantage of Java over C/C++ is:
0Automatic memory management

But garbage collection:
0Has a reputation of slowing serial code
0Does not scale well in a parallel environment

Titanium approach:
0Preserves safety – cannot deallocate live data
0Garbage collection is the default (on most platforms)
0Higher performance is possible using region-based 

explicit memory management
0Takes advantage of memory management phases
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Region-Based Memory Management
Need to organize data structures 

Allocate set of objects (safely)

Delete them with a single explicit call (fast)
PrivateRegion r = new PrivateRegion();
for (int j = 0; j < 10; j++) {

int[] x = new ( r ) int[j + 1];
work(j, x);

}
try { r.delete(); }
catch (RegionInUse oops) {

System.out.println(“failed to delete”);
}

}
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Outline

Titanium Execution Model

Titanium Memory Model

Support for Serial Programming
0Immutables
0Operator overloading
0Multidimensional arrays
0Templates

Performance and Applications

Compiler/Language Status
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Java Objects
Primitive scalar types: boolean, double, int, etc.
0implementations store these on the program stack
0access is fast -- comparable to other languages

Objects: user-defined and standard library
0always allocated dynamically in the heap
0passed by pointer value (object sharing) 
0has implicit level of indirection
0simple model, but inefficient for small objects

2.6

3
true

real:   7.1

imag:  4.3
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Java Object Example
class Complex {

private double real;

private double imag;

public Complex(double r, double i) {

real = r; imag = i; }

public Complex add(Complex c) { 

return new Complex(c.real + real, c.imag + imag);  

public double getReal { return real; }

public double getImag { return imag; }

}

Complex c = new Complex(7.1, 4.3);

c = c.add(c);

class VisComplex extends Complex { ... }
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Immutable Classes in Titanium
For small objects, would sometimes prefer
0to avoid level of indirection and allocation overhead
0pass by value (copying of entire object)
0especially when immutable -- fields never modified

extends the idea of primitive values to user-defined types

Titanium introduces immutable classes
0all fields are implicitly final (constant)
0cannot inherit from or be inherited by other classes
0needs to have 0-argument constructor

Examples: Complex, xyz components of a force 

Note: considering lang. extension to allow mutation
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Example of Immutable Classes
The immutable complex class nearly the same

immutable class Complex {
Complex () {real=0; imag=0;}
...

}

Use of immutable complex values
Complex c1 = new Complex(7.1, 4.3);
Complex c2 = new Complex(2.5, 9.0);
c1 = c1.add(c2);  

Addresses performance and programmability
0Similar to C structs in terms of performance
0Support for Complex with a general mechanism

Zero-argument 
constructor 
requirednew 

keyword
Rest unchanged.  No assignment 
to fields outside of constructors.
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Operator Overloading

Titanium provides operator overloading
0Convenient in scientific code
0Feature is similar to that in C++

class Complex {

...

public Complex op+(Complex c) { 

return new Complex(c.real + real, c.imag + imag);  

}

Complex c1 = new Complex(7.1, 4.3);

Complex c2 = new Complex(5.4, 3.9);

Complex c3 = c1 + c2;
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Arrays in Java
Arrays in Java are objects

Only 1D arrays are directly 
supported

Multidimensional arrays 
are arrays of arrays

General, but slow

2d 
array

Subarrays are important in AMR (e.g., interior of a grid)
0Even C and C++ don’t support these well
0Hand-coding (array libraries) can confuse optimizer
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Multidimensional Arrays in Titanium
New multidimensional array added
0One array may be a subarray of another

e.g., a is interior of b, or a is all even elements of b 
can easily refer to rows, columns, slabs or boundary 
regions as sub-arrays of a larger array

0Indexed by Points (tuples of ints)
0Built on a rectangular set of Points, RectDomain
0Points, Domains and RectDomains are built-in 

immutable classes, with useful literal syntax

Support for AMR and other grid computations
0domain operations: intersection, shrink, border
0bounds-checking can be disabled after debugging
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Unordered Iteration
Motivation:
0Memory hierarchy optimizations are essential
0Compilers sometimes do these, but hard in general

Titanium has explicitly unordered iteration
0Helps the compiler with analysis 
0Helps programmer avoid indexing details

foreach (p in r) { … A[p] … }

p is a Point (tuple of ints), can be used as array index 
r is a RectDomain or Domain

Additional operations on domains to transform 

Note: foreach is not a parallelism construct
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Point, RectDomain, Arrays in General

Points specified by a tuple of ints

RectDomains given by 3 points:
0lower bound, upper bound (and optional stride)

Array declared by num dimensions and type

Array created by passing RectDomain

double [2d] a;

Point<2> lb = [1, 1];
Point<2> ub = [10, 20];

RectDomain<2> r = [lb : ub];

a = new double [r];
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Simple Array Example
Matrix sum in Titanium

Point<2> lb = [1,1];
Point<2> ub = [10,20];
RectDomain<2> r = [lb:ub];

double [2d] a = new double [r];
double [2d] b = new double [1:10,1:20];
double [2d] c = new double [lb:ub:[1,1]];

for (int i = 1; i <= 10; i++)
for (int j = 1; j <= 20; j++) 

c[i,j] = a[i,j] + b[i,j];

foreach(p in c.domain()) { c[p] = a[p] + b[p]; }

No array allocation here

Syntactic sugar

Optional stride

Equivalent loops
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MatMul with Titanium Arrays

public static void matMul(double [2d] a, 

double [2d] b, 

double [2d] c) {

foreach (ij in c.domain()) {

double [1d] aRowi = a.slice(1, ij[1]);

double [1d] bColj = b.slice(2, ij[2]);

foreach (k in aRowi.domain()) {

c[ij] += aRowi[k] * bColj[k];

}

}

}

Current performance: comparable to 3 nested loops in C
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Example: Setting Boundary Conditions

foreach (l in local_grids.domain()) {

foreach (a in all_grids.domain()) {

local_grids[l].copy(all_grids[a]);

}

}

"ghost" cells

Proc 0 Proc 1
local_grids

all_grids
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Templates
Many applications use containers:
0Parameterized by dimensions, element types,…
0Java supports parameterization through inheritance

Can only put Object types into containers
Inefficient when used extensively

Titanium provides a template mechanism closer to C++
0Can be instantiated with non-object types (double, 

Complex) as well as objects

Example: Used to build a distributed array package
0Hides the details of exchange, indirection within the 

data structure, etc.
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Example of Templates

template <class Element> class Stack {
. . .
public Element pop() {...}
public void push( Element arrival ) {...}

}

template Stack<int> list = new template Stack<int>();
list.push( 1 );
int x = list.pop();

Addresses programmability and performance

Not an object
Strongly typed, 

No dynamic cast
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Outline

Titanium Execution Model

Titanium Memory Model

Support for Serial Programming

Performance and Applications
0Serial Performance on pure Java (SciMark)
0Parallel Applications
0Compiler status & usability results

Compiler/Language Status
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SciMark Large - Linux, 1.8GHz Athlon, 256 KB L2, 1GB RAM
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– Sun JDK 1.4.1_01 (HotSpot(TM) Client VM) for Linux
– IBM J2SE 1.4.0 (Classic VM cxia32140-20020917a, jitc JIT) for 32-bit Linux
– Titaniumc v2.87 for Linux, gcc 3.2 as backend compiler -O3. no bounds check
– gcc 3.2, -O3 (ANSI-C version of the SciMark2 benchmark)

Java Compiled by Titanium Compiler
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Applications in Titanium
Benchmarks and Kernels
0Scalable Poisson solver for infinite domains
0NAS PB: MG, FT, IS, CG
0Unstructured mesh kernel: EM3D
0Dense linear algebra: LU, MatMul
0Tree-structured n-body code
0Finite element benchmark

Larger applications
0Gas Dynamics with AMR
0Heart and Cochlea simulation (ongoing)
0Genetics: micro-array selection
0Ocean modeling with AMR (in progress)
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Heart Simulation: Immersed Boundary Method

Problem: compute blood flow in the heart
0Modeled as an elastic structure in an 

incompressible fluid.
The “immersed boundary method” [Peskin and McQueen].
20 years of development in model

0Many other applications: blood clotting, inner ear, 
paper making, embryo growth, and more

Can be used for design                                          
of prosthetics
0Artificial heart valves
0Cochlear implants
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MOOSE Application
Problem: Genome Microarray construction
0Used for genetic experiments
0Possible medical applications long-term

Microarray Optimal Oligo Selection Engine (MOOSE) 
0A parallel engine for selecting the best 

oligonucleotide sequences for genetic microarray 
testing from a sequenced genome (based on 
uniqueness and various structural and chemical 
properties)
0First parallel implementation for solving this 

problem
0Uses dynamic load balancing within Titanium
0Significant memory and I/O demands for larger 

genomes



SC2003  S09: Programming with the Partitioned Global Address Space Model 23611/16/03

Scalable Parallel Poisson Solver
MLC for Finite-Differences by Balls and Colella

Poisson equation with infinite boundaries
0arise in astrophysics, some biological systems, etc.

Method is scalable
0Low communication (<5%)                                         

Performance on
0SP2 (shown) and T3E
0scaled speedups
0nearly ideal (flat)

Currently 2D and
non-adaptive
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Error on High-Wavenumber Problem

Charge is
01 charge of 

concentric waves 
02 star-shaped 

charges.

Largest error is where 
the charge is changing 
rapidly. Note:
0discretization error
0faint decomposition 

error

Run on 16 procs
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AMR Gas Dynamics
Hyperbolic Solver [McCorquodale and Colella]
0Implementation of Berger-Colella algorithm
0Mesh generation algorithm included

2D Example (3D supported)
0Mach-10 shock on solid surface                                       

at oblique angle

Future: Self-gravitating gas dynamics package
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Outline

Titanium Execution Model

Titanium Memory Model

Support for Serial Programming

Performance and Applications

Compiler/Language Status
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Titanium Compiler Status

Titanium runs on almost any machine
0Requires a C compiler and C++ for the translator
0Pthreads for shared memory
0GASNet for distributed memory, which exists on

Quadrics, IBM/SP (LAPI), Myrinet (GM), Infiniband, and MPI
Shared with Berkeley UPC compiler

Recent language and compiler work
0Indexed (scatter/gather) array copy
0Non-blocking array copy underway
0Loop level cache optimizations
0Inspector/Executor underway
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Programmability

Heart simulation developed in ~1 year
0Extended to support 2D structures for Cochlea model in 

~1 month

Preliminary code length measures
0Simple torus model

Serial Fortran torus code is 17045 lines long (2/3 comments)
Parallel Titanium torus version is 3057 lines long.

0Full heart model
Shared memory Fortran heart code is 8187 lines long
Parallel Titanium version is 4249 lines long.

0Need to be analyzed more carefully, but not a significant 
overhead for distributed memory parallelism
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Current Work & Future Plans

Unified communication layer with UPC: GASNet

Exploring communication overlap optimizations
0Explicit (programmer-controlled) and automated

Analysis and refinement of cache optimizations

Additional language support for unstructured grids
0Arrays over general domains
0Arrays with multiple values per grid point

Continued work on new and existing applications

http://titanium.cs.berkeley.edu
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Titanium Group (Past and Present)
Susan Graham
Katherine Yelick
Paul Hilfinger
Phillip Colella (LBNL)
Alex Aiken

Greg Balls
Andrew Begel
Dan Bonachea
Kaushik Datta
David Gay
Ed Givelberg
Arvind Krishnamurthy

Ben Liblit
Peter McQuorquodale (LBNL)
Sabrina Merchant
Carleton Miyamoto
Chang Sun Lin
Geoff Pike
Luigi Semenzato (LBNL)
Armando Solar-Lezama
Jimmy Su
Tong Wen (LBNL)
Siu Man Yau
and many undergraduate 
researchers

http://titanium.cs.berkeley.edu
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Example of Data Input
Reading from keyboard, uses Java exceptions
int myCount = 0;

int single allCount = 0;

if (Ti.thisProc() == 0) 

try {

DataInputStream kb = 

new DataInputStream(System.in);

myCount = 

Integer.valueOf(kb.readLine()).intValue();

} catch (Exception e) {

System.err.println("Illegal Input");

}

allCount = broadcast myCount from 0;
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Shared/Private vs Global/Local
Titanium’s global address space is based on pointers rather 
than shared variables

There is no distinction between a private and shared heap 
for storing objects
0Although recent compiler analysis infers this distinction 

and uses it for performing optimizations 

Any object may be referenced by global or local pointers 

There is no direct support for distributed arrays
0Irregular problems do not map easily to distributed 

arrays, since each processor will own a set of objects 
(sub-grids) 

0For regular problems, Titanium uses pointer dereference 
instead of index calculation 

0Important to have local “views” of data structures
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Domain Example

Point<2> lb = [0, 0];
Point<2> ub = [6, 4];
RectDomain<2> r = [lb : ub : [2, 2]];
...
Domain<2> red = r + (r + [1, 1]);
foreach (p in red) { 

...
}

(0, 0)

(6, 4)
r

(1, 1)

(7, 5)
r + [1, 1]

(0, 0)

(7, 5)
red

Domains in general are not rectangular
Built using set operations
0union, +
0intersection, *
0difference, -

Example is red-black SOR
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Example using Domains and foreach

Gauss-Seidel red-black computation in multigrid
void gsrb() {

for (Domain<2> d = red; d != null; 

d = (d == red ? black : null)) {

foreach (q in d)

res[q] = ((phi[n(q)] + phi[s(q)] 

+ phi[e(q)] + phi[w(q)])*4 

+ phi[ne(q) + phi[nw(q)] 

+ phi[se(q)] + phi[sw(q)] 

+ 20.0*phi[q] - k*rhs[q]) * 0.05;

foreach (q in d) phi[q] += res[q];

}

}

unordered iteration
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SciMark Benchmark

Numerical benchmark for Java, with C versions
0purely sequential, no Titanium extensions

Five kernels:
0FFT (complex, 1D)
0Successive Over-Relaxation (SOR)
0Monte Carlo integration (MC)
0Sparse matrix multiply 
0dense LU factorization

Results are reported in Mflops

From Roldan Pozo at NIST
0http://math.nist.gov/scimark2

Roldan Pozo, NIST, http://math.nist.gov/~Rpozo
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• Immersed Boundary Method
• Material (e.g., heart muscles, 

cochlea structure) modeled by 
grid of material points

• Fluid space modeled by a regular 
lattice

• Irregular material points need to 
interact with regular fluid lattice
• Trade-off between load balancing 

of fibers and minimizing 
communication

• Memory and communication 
intensive

• Includes a Navier-Stokes solver 
and a 3-D FFT solver

Fluid Flow in Biological Systems

• Heart simulation is complete, Cochlea simulation is close to done
• First time that immersed boundary simulation has been done on 

distributed-memory machines
• Working on a Ti library for doing other immersed boundary simulations
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SciMark Small - Linux, 1.8GHz Athlon, 256 KB L2, 1GB RAM
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Java Compiled by Titanium Compiler

– Sun JDK 1.4.1_01 (HotSpot(TM) Client VM) for Linux
– IBM J2SE 1.4.0 (Classic VM cxia32140-20020917a, jitc JIT) for 32-bit Linux
– Titaniumc v2.87 for Linux, gcc 3.2 as backend compiler -O3. no bounds check
– gcc 3.2, -O3 (ANSI-C version of the SciMark2 benchmark)
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Implementation Portability Status
Titanium has been tested on:
0POSIX-compliant workstations & SMPs
0Clusters of uniprocessors or SMPs 
0Cray T3E 
0IBM SP
0SGI Origin 2000
0Compaq AlphaServer
0MS Windows/GNU Cygwin
0and others…

Supports many communication layers
0High performance networking layers:

IBM/LAPI, Myrinet/GM, Quadrics/Elan, Cray/shmem, Infiniband (soon)
0Portable communication layers:

MPI-1.1, TCP/IP (UDP)

http://titanium.cs.berkeley.edu

Automatic portability: 
Titanium applications run 
on all of these!
Very important productivity 
feature for debugging & 
development
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One Model

Distributed Shared Memory
0Coding simplicity
0Recognizes system capabilities
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Three Languages

Small changes to existing languages
0ANSI C ⇒ UPC
0F90 ⇒ Co-Array Fortran
0Java ⇒ Titanium

Many implementations on the way
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For More Info

UPC
0http://upc.gwu.edu

Co-Array Fortran
0http://www.co-array.org

Titanium
0http://titanium.cs.berkeley.edu


