
Programming in the
Partitioned Global Address

Space Model

Programming in the
Partitioned Global Address

Space Model
Bill Carlson, IDA

Tarek El-Ghazawi, GWU
Robert Numrich, U. Minnesota

Kathy Yelick, UC Berkeley

Bill Carlson, IDA
Tarek El-Ghazawi, GWU

Robert Numrich, U. Minnesota
Kathy Yelick, UC Berkeley

SC2003 S09: Programming with the Partitioned Global Address Space Model 211/16/03

Table of Contents

122 - 196Programming in Co-Array Fortran

252 - 255Conclusions and Remarks
197 - 251Programming in Titanium

29 - 121Programming with UPC
3 - 28Welcome and Introductions
SlidesTopic

Introduction to the PGAS
Model

Introduction to the PGAS
Model

Bill Carlson

IDA- Center for Computing Sciences

wwc@super.org

Bill Carlson

IDA- Center for Computing Sciences

wwc@super.org

SC2003 S09: Programming with the Partitioned Global Address Space Model 411/16/03

Naming Issues

Focus of this tutorial
0Partitioned Global Address Space (PGAS)

Model, aka
0Distributed Shared Memory Programming Model

(DSM), aka
0Locality Conscious Shared Space Model,
0…

SC2003 S09: Programming with the Partitioned Global Address Space Model 511/16/03

Outline of the Day

Introduction to PGAS Model

UPC Programming

Co-Array Fortran Programming

Titanium Programming

Summary

SC2003 S09: Programming with the Partitioned Global Address Space Model 611/16/03

Outline of this Talk

Basic Concepts
0Applications
0Programming Models
0Computer Systems

The Program View

The Memory View

Synchronization

Performance AND Ease of Use

SC2003 S09: Programming with the Partitioned Global Address Space Model 711/16/03

Parallel Programming Models

What is a programming model?
0A view of data and execution
0Where architecture and applications meet

Best when a “contract”
0Everyone knows the rules
0Performance considerations important

Benefits
0Application - independence from architecture
0Architecture - independence from applications

SC2003 S09: Programming with the Partitioned Global Address Space Model 811/16/03

The Data Parallel Model

Easy to write and comprehend, no
synchronization required

No independent branching

Example: HPF

…
Different Data / address spaces

Network

Process

SC2003 S09: Programming with the Partitioned Global Address Space Model 911/16/03

The Message Passing Model

Programmers control data and work
distribution

Explicit communication, two-sided

Library-based

Excessive buffering

Significant communication overhead
for small transactions

Example: MPI

Network

Process
Address space

SC2003 S09: Programming with the Partitioned Global Address Space Model 1011/16/03

The Shared Memory Model

Simple statements
0read remote memory via an

expression
0write remote memory through

assignment

Manipulating shared data may
require synchronization
Does not allow locality
exploitation
Example: OpenMP

Shared address
space

Thread

Shared Variable x

Thread Thread…

SC2003 S09: Programming with the Partitioned Global Address Space Model 1111/16/03

The Distributed Shared Memory Model

Similar to the shared memory
paradigm
Memory Mi has affinity to
thread Thi

Helps exploiting locality of
references
Simple statements
Examples: This Tutorial! UPC,
CAF, and Titanium

Partitioned
Global
Address
Space

M0 M1 Mn

x

Th0 Th1 Thn…

…

SC2003 S09: Programming with the Partitioned Global Address Space Model 1211/16/03

Tutorial Emphasis

Concentrate on Distributed Shared Memory
Programming as a universal model
0UPC
0Co-Array Fortran
0Titanium

Not too much on hardware or software support for
DSM after this talk...

SC2003 S09: Programming with the Partitioned Global Address Space Model 1311/16/03

Some Simple Application
Concepts

Minimal Sharing
0Asynchronous work dispatch

Moderate Sharing
0Physical systems/ “Halo Exchange”

Major Sharing
0The “don’t care, just do it” model
0May have performance problems on some

system

SC2003 S09: Programming with the Partitioned Global Address Space Model 1411/16/03

History

Many data parallel languages

Spontaneous new idea: “global/shared”
0Split-C -- Berkeley (Active Messages)
0AC -- IDA (T3D)
0F-- -- Cray/SGI
0PC++ -- Indiana
0CC++ -- ISI

SC2003 S09: Programming with the Partitioned Global Address Space Model 1511/16/03

Related Work

BSP -- Bulk Synchronous Protocol
0Alternating compute-communicate

Global Arrays
0Toolkit approach
0Includes locality concepts

SC2003 S09: Programming with the Partitioned Global Address Space Model 1611/16/03

DSM/PGAS Model: Program View

Single “program”

Multiple threads of control

Low degree of virtualization

Identity discovery

Static vs. Dynamic thread multiplicity

SC2003 S09: Programming with the Partitioned Global Address Space Model 1711/16/03

DSM Model: Memory View

“Shared” area

“Private” area

References and pointers
0Only “local” thread may reference private
0Any thread may reference/point to shared

SC2003 S09: Programming with the Partitioned Global Address Space Model 1811/16/03

Model: Memory Pointers and
Allocation

A pointer may be
0private
0shared

A pointer may point to:
0local
0global

Need to allocate both private and shared

SC2003 S09: Programming with the Partitioned Global Address Space Model 1911/16/03

DSM Model: Program
Synchronization

Controls relative execution of threads

Barrier concepts
0Simple: all stop until everyone arrives
0Sub-group barriers

Other synchronization techniques
0Loop based work sharing
0Some collective library calls

SC2003 S09: Programming with the Partitioned Global Address Space Model 2011/16/03

DSM Model: Memory Consistency

Necessary to define semantics
0When are “accesses” “visible”?
0What is relation to other synchronization?

Ordering
0Thread A does two stores

Can thread B see second before first?
Is this good or bad?

SC2003 S09: Programming with the Partitioned Global Address Space Model 2111/16/03

Model: Memory Consistency

Ordering Constraints
0Necessary for memory based synchronization

lock variables
semaphores

Fences
0Explicit ordering points in memory stream

SC2003 S09: Programming with the Partitioned Global Address Space Model 2211/16/03

Performance AND Ease of Use

Why explicit message passing is often bad

Contributors to performance under DSM

Some optimizations that are possible

Some implementation strategies

SC2003 S09: Programming with the Partitioned Global Address Space Model 2311/16/03

Contributors to Performance

Match between architecture and model
0If match is poor, performance can suffer greatly

Try to send single word messages on Ethernet
Try for full memory bandwidth with message passing

Match between application and model
0If model is too strict, hard to express

Try to express a linked list in data parallel

SC2003 S09: Programming with the Partitioned Global Address Space Model 2411/16/03

Architecture ⇔ Model Issues

Make model match many architectures
0Distributed
0Shared
0Non-Parallel

No machine-specific models

Promote performance potential of all
0Marketplace will work out value

SC2003 S09: Programming with the Partitioned Global Address Space Model 2511/16/03

Application ⇔ Model Issues

Start with an expressive model
0Many applications
0User productivity/debugging

Performance
0Don’t make model too abstract
0Allow annotation

SC2003 S09: Programming with the Partitioned Global Address Space Model 2611/16/03

Just a few optimizations possible

Reference combining

Compiler/runtime directed caching

Remote memory operations

SC2003 S09: Programming with the Partitioned Global Address Space Model 2711/16/03

Implementation Strategies

Hardware sharing
0Map threads onto processors
0Use existing sharing mechanisms

Software sharing
0Map threads to pthreads or processes
0Use a runtime layer to communicate

SC2003 S09: Programming with the Partitioned Global Address Space Model 2811/16/03

Conclusions

Using distributed shared memory is good

Questions?

Enjoy the rest of the tutorial

Programming in UPCProgramming in UPC
Tarek El-Ghazawi

The George Washington University
tarek@seas.gwu.edu

Tarek El-Ghazawi

The George Washington University
tarek@seas.gwu.edu

upc.gwu.edu

SC2003 S09: Programming with the Partitioned Global Address Space Model 3011/16/03

UPC Outline

1. Background and
Philosophy

2. UPC Execution Model

3. UPC Memory Model

4. UPC: A Quick Intro

5. Data and Pointers

6. Dynamic Memory
Management

7. Programming Examples

8. Synchronization
9. Performance Tuning

and Early Results
10. Concluding

Remarks

SC2003 S09: Programming with the Partitioned Global Address Space Model 3111/16/03

What is UPC?

Unified Parallel C

An explicit parallel extension of ANSI C

A distributed shared memory parallel
programming language

SC2003 S09: Programming with the Partitioned Global Address Space Model 3211/16/03

Design Philosophy

Similar to the C language philosophy
0Programmers are clever and careful, and may

need to get close to hardware
to get performance, but
can get in trouble

0Concise and efficient syntax

Common and familiar syntax and semantics for
parallel C with simple extensions to ANSI C

SC2003 S09: Programming with the Partitioned Global Address Space Model 3311/16/03

Design Philosophy

Start with C, Add parallelism, learn from Split-C,
AC, PCP, etc.

Integrate user community experience and
experimental performance observations

Integrate developer’s expertise from vendors,
government, and academia

SC2003 S09: Programming with the Partitioned Global Address Space Model 3411/16/03

History

Initial Tech. Report from IDA in collaboration with
LLNL and UCB in May 1999.

UPC consortium of government, academia, and
HPC vendors coordinated by GWU, IDA, and DoD

The participants currently are: ARSC, Compaq,
CSC, Cray Inc., Etnus, GWU, HP, IBM, IDA CSC,
Intrepid Technologies, LBNL, LLNL, MTU, NSA,
UCB, UMCP, U florida, US DoD, US DoE

SC2003 S09: Programming with the Partitioned Global Address Space Model 3511/16/03

Status

Specification v1.0 completed February of 2001, v1.1
in March 2003

Benchmarking: Stream, GUPS, NPB suite, Splash-
2, and others

Testing suite v1.0, v1.1

2-Day Course offered in the US and abroad

Research Exhibits at SC 2000-2002

UPC web site: upc.gwu.edu

UPC Book by SC 2004?

SC2003 S09: Programming with the Partitioned Global Address Space Model 3611/16/03

Hardware Platforms
UPC implementations are available for
0Cray T3D/E
0Compaq AlphaServer SC
0SGI O 2000/3000
0Beowulf Reference Implementation
0UPC Berkeley Compiler: Myrinet Clusters
0Cray X-1

Other ongoing and future implementations
0UPC Berkeley Compiler: IBM SP and Quadrics,

and Infiniband Clusters
0HP Superdome
0SGI and T3E 64-bit GCC

SC2003 S09: Programming with the Partitioned Global Address Space Model 3711/16/03

UPC Outline

1. Background and
Philosophy

2. UPC Execution Model

3. UPC Memory Model

4. UPC: A Quick Intro

5. Data and Pointers

6. Dynamic Memory
Management

7. Programming Examples

8. Synchronization
9. Performance Tuning

and Early Results
10. Concluding

Remarks

SC2003 S09: Programming with the Partitioned Global Address Space Model 3811/16/03

UPC Execution Model

A number of threads working independently in a
SPMD fashion
0MYTHREAD specifies thread index

(0..THREADS-1)
0Number of threads specified at compile-time or

run-time

Synchronization when needed
0Barriers
0Locks
0Memory consistency control

SC2003 S09: Programming with the Partitioned Global Address Space Model 3911/16/03

UPC Outline

1. Background and
Philosophy

2. UPC Execution Model

3. UPC Memory Model

4. UPC: A Quick Intro

5. Data and Pointers

6. Dynamic Memory
Management

7. Programming Examples

8. Synchronization
9. Performance Tuning

and Early Results
10. Concluding

Remarks

SC2003 S09: Programming with the Partitioned Global Address Space Model 4011/16/03

UPC Memory Model

A pointer-to-shared can reference all locations in the
shared space

A private pointer may reference only addresses in its
private space or addresses in its portion of the shared
space

Static and dynamic memory allocations are supported
for both shared and private memory

Shared

Thread 0

Private 0

Thread
THREADS-1

Private 1 Private
THREADS-1G

lo
ba

l a
dd

re
ss

 s
pa

ce
Thread 1

SC2003 S09: Programming with the Partitioned Global Address Space Model 4111/16/03

User’s General View

A collection of threads operating in a single global
address space, which is logically partitioned among
threads. Each thread has affinity with a portion of the
globally shared address space. Each thread has also
a private space.

SC2003 S09: Programming with the Partitioned Global Address Space Model 4211/16/03

UPC Outline

1. Background and
Philosophy

2. UPC Execution Model

3. UPC Memory Model

4. UPC: A Quick Intro

5. Data and Pointers

6. Dynamic Memory
Management

7. Programming Examples

8. Synchronization
9. Performance Tuning

and Early Results
10. Concluding

Remarks

SC2003 S09: Programming with the Partitioned Global Address Space Model 4311/16/03

A First Example: Vector addition

//vect_add.c

#include <upc_relaxed.h>
#define N 100*THREADS

shared int v1[N], v2[N], v1plusv2[N];
void main(){

int i;
for(i=0; i<N; i++)

If (MYTHREAD==i%THREADS)
v1plusv2[i]=v1[i]+v2[i];

}

SC2003 S09: Programming with the Partitioned Global Address Space Model 4411/16/03

2nd Example:
Vector Addition with upc_forall

//vect_add.c

#include <upc_relaxed.h>
#define N 100*THREADS

shared int v1[N], v2[N], v1plusv2[N];

void main()
{

int i;
upc_forall(i=0; i<N; i++; i)

v1plusv2[i]=v1[i]+v2[i];
}

SC2003 S09: Programming with the Partitioned Global Address Space Model 4511/16/03

Compiling and Running on Cray

Cray
0To compile with a fixed number (4) of threads:

upc –O2 –fthreads-4 –o vect_add vect_add.c
0To run:

./vect_add

SC2003 S09: Programming with the Partitioned Global Address Space Model 4611/16/03

Compiling and Running on Compaq

Compaq
0To compile with a fixed number of threads and

run:
upc –O2 –fthreads 4 –o vect_add vect_add.c
prun ./vect_add

0To compile without specifying a number of
threads and run:

upc –O2 –o vect_add vect_add.c
prun –n 4 ./vect_add

SC2003 S09: Programming with the Partitioned Global Address Space Model 4711/16/03

UPC DATA: Shared Scalar and Array Data

The shared qualifier, a new qualifier

Shared array elements and blocks can be spread
across the threads
shared int x[THREADS] /*One element per thread */

shared int y[10][THREADS] /*10 elements per thread */

Scalar data declarations

shared int a; /*One item on system (affinity to thread 0) */

int b; /* one private b at each thread */

Shared data cannot have dynamic scope

SC2003 S09: Programming with the Partitioned Global Address Space Model 4811/16/03

UPC Pointers

Pointer declaration:

shared int *p;

p is a pointer to
an integer residing in the shared memory space.

p is called a pointer to shared.

SC2003 S09: Programming with the Partitioned Global Address Space Model 4911/16/03

A Third Example: Pointers to Shared

#include <upc_relaxed.h>
#define N 100*THREADS

shared int v1[N], v2[N], v1plusv2[N];

void main()
{

int i;
shared int *p1, *p2;

p1=v1; p2=v2;
upc_forall(i=0; i<N; i++, p1++, p2++; i)

v1plusv2[i]=*p1+*p2;
}

SC2003 S09: Programming with the Partitioned Global Address Space Model 5011/16/03

Synchronization - Barriers

No implicit synchronization among the threads
Among the synchronization mechanisms offered
by UPC are:
0Barriers (Blocking)
0Split Phase Barriers
0Locks

SC2003 S09: Programming with the Partitioned Global Address Space Model 5111/16/03

Distributes independent iterations

Each thread gets a bunch of iterations

Affinity (expression) field to determine how to
distribute work

Simple C-like syntax and semantics
upc_forall(init; test; loop; expression)

statement;

Work Sharing with upc_forall()

SC2003 S09: Programming with the Partitioned Global Address Space Model 5211/16/03

Example 4: UPC Matrix-Vector
Multiplication- Default Distribution

// vect_mat_mult.c
#include <upc_relaxed.h>

shared int a[THREADS][THREADS] ;
shared int b[THREADS], c[THREADS] ;
void main (void) {

int i, j;
upc_forall(i = 0 ; i < THREADS ; i++; i) {

c[i] = 0;
for (j= 0 ; j < THREADS ; j++)

c[i] += a[i][j]*b[j];
}

}

SC2003 S09: Programming with the Partitioned Global Address Space Model 5311/16/03

Data Distribution

Th. 0

Th. 1

Th. 2

* =

A B C

Thread 0

Thread 1

Thread 2

SC2003 S09: Programming with the Partitioned Global Address Space Model 5411/16/03

A Better Data Distribution

Th. 0

Th. 1

Th. 2

* =

A B C

Thread 0

Thread 1

Thread 2

SC2003 S09: Programming with the Partitioned Global Address Space Model 5511/16/03

Example 5: UPC Matrix-Vector
Multiplication-- The Better Distribution

// vect_mat_mult.c
#include <upc_relaxed.h>

shared [THREADS] int a[THREADS][THREADS];
shared int b[THREADS], c[THREADS];

void main (void) {
int i, j;
upc_forall(i = 0 ; i < THREADS ; i++; i) {

c[i] = 0;
for (j= 0 ; j< THREADS ; j++)

c[i] += a[i][j]*b[j];
}

}

SC2003 S09: Programming with the Partitioned Global Address Space Model 5611/16/03

UPC Outline

1. Background and
Philosophy

2. UPC Execution Model

3. UPC Memory Model

4. UPC: A Quick Intro

5. Data and Pointers

6. Dynamic Memory
Management

7. Programming Examples

8. Synchronization
9. Performance Tuning

and Early Results
10. Concluding

Remarks

SC2003 S09: Programming with the Partitioned Global Address Space Model 5711/16/03

Examples of Shared and Private Data Layout:

Assume THREADS = 3

shared int x; /*x will have affinity to thread 0 */

shared int y[THREADS];

int z;

will result in the layout:

Thread 0 Thread 1 Thread 2

Shared and Private Data

x

z z z

y[0] y[1] y[2]

SC2003 S09: Programming with the Partitioned Global Address Space Model 5811/16/03

shared int A[2][2*THREADS];

will result in the following data layout:

Shared and Private Data

Thread 0

A[0][0]

A[0][THREADS]

A[1][0]

A[1][THREADS]

A[0][THREADS-1]A[0][1]

A[0][THREADS+1]

Thread 1 Thread (THREADS-1)

A[0][2*THREADS-1]

A[1][THREADS-1]

A[1][2*THREADS-1]

A[1][1]

A[1][THREADS+1]

SC2003 S09: Programming with the Partitioned Global Address Space Model 5911/16/03

Blocking of Shared Arrays

Default block size is 1

Shared arrays can be distributed on a block per
thread basis, round robin, with arbitrary block
sizes.

A block size is specified in the declaration as
follows:
0shared [block-size] array[N];
0e.g.: shared [4] int a[16];

SC2003 S09: Programming with the Partitioned Global Address Space Model 6011/16/03

Blocking of Shared Arrays

Block size and THREADS determine affinity

The term affinity means in which thread’s local
shared-memory space, a shared data item will
reside

Element i of a blocked array has affinity to thread:

THREADS
blocksize

i mod⎥⎦
⎥

⎢⎣
⎢

SC2003 S09: Programming with the Partitioned Global Address Space Model 6111/16/03

Shared and Private Data

Shared objects placed in memory based on
affinity

Affinity can be also defined based on the ability
of a thread to refer to an object by a private
pointer

All non-array scalar shared qualified objects have
affinity with thread 0

Threads access shared and private data

SC2003 S09: Programming with the Partitioned Global Address Space Model 6211/16/03

Assume THREADS = 4

shared [3] int A[4][THREADS];

will result in the following data layout:

A[0][0]

A[0][1]

A[0][2]

A[3][0]
A[3][1]
A[3][2]

A[0][3]

A[1][0]

A[1][1]

A[3][3]

A[1][2]

A[1][3]

A[2][0]

A[2][1]

A[2][2]

A[2][3]

Thread 0 Thread 1 Thread 2 Thread 3

Shared and Private Data

SC2003 S09: Programming with the Partitioned Global Address Space Model 6311/16/03

UPC Pointers

SSSPShared

PSPPPrivate
SharedPrivate

Where does the pointer reside?

Where
does it
point?

SC2003 S09: Programming with the Partitioned Global Address Space Model 6411/16/03

UPC Pointers

How to declare them?
0int *p1; /* private pointer pointing locally */
0shared int *p2; /* private pointer pointing into

the shared space */
0int *shared p3; /* shared pointer pointing locally */
0shared int *shared p4; /* shared pointer pointing

into the shared space */
You may find many using “shared pointer” to mean a
pointer pointing to a shared object, e.g. equivalent to p2 but
could be p4 as well.

SC2003 S09: Programming with the Partitioned Global Address Space Model 6511/16/03

UPC Pointers

Shared

Private P1
P2

P4
P3

Thread 0

P1 P1P2

P2

SC2003 S09: Programming with the Partitioned Global Address Space Model 6611/16/03

UPC Pointers

What are the common usages?
0int *p1; /* access to private data or to

local shared data */
0shared int *p2; /* independent access of

threads to data in shared
space */

0int *shared p3; /* not recommended*/
0shared int *shared p4; /* common access of

all threads to data in
the shared space*/

SC2003 S09: Programming with the Partitioned Global Address Space Model 6711/16/03

UPC Pointers

In UPC pointers to shared objects have three
fields:
0thread number
0local address of block
0phase (specifies position in the block)

Example: Cray T3E implementation

Virtual AddressThreadPhase

03738484963

PhaseThreadVirtual Address

SC2003 S09: Programming with the Partitioned Global Address Space Model 6811/16/03

UPC Pointers

Pointer arithmetic supports blocked and non-
blocked array distributions

Casting of shared to private pointers is allowed
but not vice versa !

When casting a pointer to shared to a private
pointer, the thread number of the pointer to
shared may be lost

Casting of shared to private is well defined only if
the object pointed to by the pointer to shared has
affinity with the thread performing the cast

SC2003 S09: Programming with the Partitioned Global Address Space Model 6911/16/03

Special Functions

size_t upc_threadof(shared void *ptr);
returns the thread number that has affinity to the
pointer to shared

size_t upc_phaseof(shared void *ptr);
returns the index (position within the block)field of
the pointer to shared

size_t upc_addrfield(shared void *ptr);
returns the address of the block which is pointed at
by the pointer to shared

shared void *upc_resetphase(shared void *ptr);
resets the phase to zero

SC2003 S09: Programming with the Partitioned Global Address Space Model 7011/16/03

UPC Pointers

pointer to shared Arithmetic Examples:

Assume THREADS = 4

#define N 16

shared int x[N];

shared int *dp=&x[5], *dp1;

dp1 = dp + 9;

SC2003 S09: Programming with the Partitioned Global Address Space Model 7111/16/03

UPC Pointers

dp + 3
dp + 7

Thread 0 Thread 0 Thread 2 Thread 3

X[0]

X[4]

X[8]

X[1]
X[5]

X[9]

X[2]

X[6]

X[10]

X[3]

X[7]

X[11]dp + 5
dp + 9

dp+1

dp + 4
dp + 8

dp
dp+6
dp+2

X[12] X[13] X[14] X[15]

dp1

SC2003 S09: Programming with the Partitioned Global Address Space Model 7211/16/03

UPC Pointers

Assume THREADS = 4
shared[3] x[N], *dp=&x[5], *dp1;
dp1 = dp + 9;

SC2003 S09: Programming with the Partitioned Global Address Space Model 7311/16/03

UPC Pointers

dp
dp + 2
dp + 3

dp + 5

dp + 6

Thread 0 Thread 2Thread 1 Thread 3
dp + 1 dp + 4

dp + 7

dp + 8

dp1

X[0]

X[1]

X[2]

X[3]

X[4]

X[5]

X[6]

X[7]

X[8]

X[9]

X[10]

X[11]

X[12]

X[13]

X[14]

X[15]

dp+9

SC2003 S09: Programming with the Partitioned Global Address Space Model 7411/16/03

String functions in UPC

UPC provides standard library functions to move
data to/from shared memory

Can be used to move chunks in the shared space
or between shared and private spaces

SC2003 S09: Programming with the Partitioned Global Address Space Model 7511/16/03

String functions in UPC

Equivalent of memcpy :
0upc_memcpy(dst, src, size) : copy from shared

to shared
0upc_memput(dst, src, size) : copy from private

to shared
0upc_memget(dst, src, size) : copy from shared

to private

Equivalent of memset:
0upc_memset(dst, char, size) : initialize shared

memory with a character

SC2003 S09: Programming with the Partitioned Global Address Space Model 7611/16/03

Worksharing with upc_forall

Distributes independent iteration across threads in the way
you wish– typically to boost locality exploitation

Simple C-like syntax and semantics
upc_forall(init; test; loop; expression)

statement
Expression could be an integer expression or a reference to
(address of) a shared object

SC2003 S09: Programming with the Partitioned Global Address Space Model 7711/16/03

Example 1: Exploiting locality
shared int a[100],b[100], c[101];
int i;
upc_forall (i=0; i<100; i++; &a[i])

a[i] = b[i] * c[i+1];

Example 2: distribution in a round-robin
fashion
shared int a[100],b[100], c[101];
int i;
upc_forall (i=0; i<100; i++; i)

a[i] = b[i] * c[i+1];

Note: Examples 1 and 2 happened to result in the same distribution

Work Sharing: upc_forall()

SC2003 S09: Programming with the Partitioned Global Address Space Model 7811/16/03

Example 3: distribution by chunks
shared int a[100],b[100], c[101];
int i;
upc_forall (i=0; i<100; i++; (i*THREADS)/100)

a[i] = b[i] * c[i+1];

3300..39675..99
2200..29650..74
1100..19625..49
00..960..24
i*THREADS/100i*THREADSi

Work Sharing: upc_forall()

SC2003 S09: Programming with the Partitioned Global Address Space Model 7911/16/03

UPC Outline

1. Background and
Philosophy

2. UPC Execution Model

3. UPC Memory Model

4. UPC: A Quick Intro

5. Data and Pointers

6. Dynamic Memory
Management

7. Programming Examples

8. Synchronization
9. Performance Tuning

and Early Results
10. Concluding

Remarks

SC2003 S09: Programming with the Partitioned Global Address Space Model 8011/16/03

Dynamic Memory Allocation in UPC

Dynamic memory allocation of shared memory is
available in UPC

Functions can be collective or not

A collective function has to be called by every
thread and will return the same value to all of
them

SC2003 S09: Programming with the Partitioned Global Address Space Model 8111/16/03

Global Memory Allocation
shared void *upc_global_alloc(size_t nblocks, size_t

nbytes);

nblocks : number of blocks
nbytes : block size
Non collective, expected to be called by one thread

The calling thread allocates a contiguous memory space in
the shared space

If called by more than one thread, multiple regions are
allocated and each thread which makes the call gets a
different pointer

Space allocated per calling thread is equivalent to :
shared [nbytes] char[nblocks * nbytes]

(Not yet implemented on Cray)

SC2003 S09: Programming with the Partitioned Global Address Space Model 8211/16/03

Collective Global Memory Allocation

shared void *upc_all_alloc(size_t nblocks, size_t nbytes);

nblocks: number of blocks
nbytes: block size

This function has the same result as upc_global_alloc. But
this is a collective function, which is expected to be called
by all threads

All the threads will get the same pointer

Equivalent to :
shared [nbytes] char[nblocks * nbytes]

SC2003 S09: Programming with the Partitioned Global Address Space Model 8311/16/03

Memory Freeing

void upc_free(shared void *ptr);

The upc_free function frees the dynamically
allocated shared memory pointed to by ptr

upc_free is not collective

SC2003 S09: Programming with the Partitioned Global Address Space Model 8411/16/03

UPC Outline

1. Background and
Philosophy

2. UPC Execution Model

3. UPC Memory Model

4. UPC: A Quick Intro

5. Data and Pointers

6. Dynamic Memory
Management

7. Programming Examples

8. Synchronization
9. Performance Tuning

and Early Results
10. Concluding

Remarks

SC2003 S09: Programming with the Partitioned Global Address Space Model 8511/16/03

Example: Matrix Multiplication in UPC

Given two integer matrices A(NxP) and B(PxM),
we want to compute C =A x B.

Entries cij in C are computed by the formula:

bac lj

p

l
ilij ×= ∑

=1

SC2003 S09: Programming with the Partitioned Global Address Space Model 8611/16/03

Doing it in C
#include <stdlib.h>
#include <time.h>
#define N 4
#define P 4
#define M 4
int a[N][P] = {1,2,3,4,5,6,7,8,9,10,11,12,14,14,15,16}, c[N][M];
int b[P][M] = {0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1};

void main (void) {
int i, j , l;
for (i = 0 ; i<N ; i++) {

for (j=0 ; j<M ;j++) {
c[i][j] = 0;
for (l = 0 ; l<P ; l++) c[i][j] += a[i][l]*b[l][j];

}
}

} Note: most compilers are not yet supporting the intialization in declaration statements

SC2003 S09: Programming with the Partitioned Global Address Space Model 8711/16/03

Domain Decomposition for UPC

A (N × P) is decomposed row-wise
into blocks of size (N × P) /
THREADS as shown below:

B(P × M) is decomposed column
wise into M/ THREADS blocks as
shown below:

Thread 0
Thread 1

Thread THREADS-1

0 .. (N*P / THREADS) -1

(N*P / THREADS)..(2*N*P / THREADS)-1

((THREADS-1)×N*P) / THREADS ..
(THREADS*N*P / THREADS)-1

Columns 0:
(M/THREADS)-1 Columns ((THREAD-1) ×

M)/THREADS:(M-1)

Thread 0
Thread THREADS-1

•Note: N and M are assumed to be multiples
of THREADS

• Exploits locality in matrix multiplication

N

P M

P

SC2003 S09: Programming with the Partitioned Global Address Space Model 8811/16/03

UPC Matrix Multiplication Code
#include <upc_relaxed.h>
#define N 4
#define P 4
#define M 4

shared [N*P /THREADS] int a[N][P] =
{1,2,3,4,5,6,7,8,9,10,11,12,14,14,15,16}, c[N][M];
// a and c are blocked shared matrices, initialization is not currently
implemented
shared[M/THREADS] int b[P][M] = {0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1};
void main (void) {

int i, j , l; // private variables

upc_forall(i = 0 ; i<N ; i++; &c[i][0]) {
for (j=0 ; j<M ;j++) {

c[i][j] = 0;
for (l= 0 ; l<P ; l++) c[i][j] += a[i][l]*b[l][j];

}
}

}

SC2003 S09: Programming with the Partitioned Global Address Space Model 8911/16/03

UPC Matrix Multiplication
Code with block copy

#include <upc_relaxed.h>
shared [N*P /THREADS] int a[N][P], c[N][M];
// a and c are blocked shared matrices, initialization is not currently implemented
shared[M/THREADS] int b[P][M];
int b_local[P][M];

void main (void) {
int i, j , l; // private variables

upc_memget(b_local, b, P*M*sizeof(int));

upc_forall(i = 0 ; i<N ; i++; &c[i][0]) {
for (j=0 ; j<M ;j++) {

c[i][j] = 0;
for (l= 0 ; l<P ; l++) c[i][j] += a[i][l]*b_local[l][j];

}
}

}

SC2003 S09: Programming with the Partitioned Global Address Space Model 9011/16/03

UPC Outline

1. Background and
Philosophy

2. UPC Execution Model

3. UPC Memory Model

4. UPC: A Quick Intro

5. Data and Pointers

6. Dynamic Memory
Management

7. Programming Examples

8. Synchronization
9. Performance Tuning

and Early Results
10. Concluding

Remarks

SC2003 S09: Programming with the Partitioned Global Address Space Model 9111/16/03

Synchronization

No implicit synchronization among the threads
UPC provides the following synchronization
mechanisms:
0Barriers
0Locks
0Memory Consistency Control
0Fence

SC2003 S09: Programming with the Partitioned Global Address Space Model 9211/16/03

Synchronization - Barriers

No implicit synchronization among the threads
UPC provides the following barrier
synchronization constructs:
0Barriers (Blocking)

upc_barrier expropt;
0Split-Phase Barriers (Non-blocking)

upc_notify expropt;
upc_wait expropt;

Note: upc_notify is not blocking upc_wait is

SC2003 S09: Programming with the Partitioned Global Address Space Model 9311/16/03

Synchronization- Fence

Upc provides a fence construct
0Equivalent to a null strict reference, and has the

syntax
upc_fence;

0UPC ensures that all shared references issued
before the upc_fence are complete

SC2003 S09: Programming with the Partitioned Global Address Space Model 9411/16/03

Synchronization - Locks

In UPC, shared data can be protected against
multiple writers :
0void upc_lock(upc_lock_t *l)
0int upc_lock_attempt(upc_lock_t *l) //returns 1

on success and 0 on failure
0void upc_unlock(upc_lock_t *l)

Locks can be allocated dynamically. Dynamically
allocated locks can be freed

Dynamic locks are properly initialized and static
locks need initialization

SC2003 S09: Programming with the Partitioned Global Address Space Model 9511/16/03

Memory Consistency Models

Has to do with the ordering of shared operations

Under the relaxed consistency model, the shared
operations can be reordered by the compiler /
runtime system

The strict consistency model enforces sequential
ordering of shared operations. (no shared
operation can begin before the previously specified
one is done)

SC2003 S09: Programming with the Partitioned Global Address Space Model 9611/16/03

Memory Consistency Models

User specifies the memory model through:
0declarations
0pragmas for a particular statement or

sequence of statements
0use of barriers, and global operations

Consistency can be strict or relaxed

Programmers responsible for using correct
consistency model

SC2003 S09: Programming with the Partitioned Global Address Space Model 9711/16/03

Memory Consistency

Default behavior can be controlled by the
programmer:
0Use strict memory consistency

#include<upc_strict.h>
0Use relaxed memory consistency

#include<upc_relaxed.h>

SC2003 S09: Programming with the Partitioned Global Address Space Model 9811/16/03

Memory Consistency

Default behavior can be altered for a variable
definition using:
0Type qualifiers: strict & relaxed

Default behavior can be altered for a statement or
a block of statements using
0#pragma upc strict
0#pragma upc relaxed

SC2003 S09: Programming with the Partitioned Global Address Space Model 9911/16/03

UPC Outline

1. Background and
Philosophy

2. UPC Execution Model

3. UPC Memory Model

4. UPC: A Quick Intro

5. Data and Pointers

6. Dynamic Memory
Management

7. Programming Examples

8. Synchronization
9. Performance Tuning

and Early Results
10. Concluding

Remarks

SC2003 S09: Programming with the Partitioned Global Address Space Model 10011/16/03

Productivity ~ Code Size
 SEQ*1 MPI SEQ*2 UPC MPI/SEQ

(%)
UPC/SEQ

(%)
#line 41 98 41 47 139.02 14.63 GUPS

#char 1063 2979 1063 1251 180.02 17.68
Histogram #line 12 30 12 20 150.00 66.67

 #char 188 705 188 376 275.00 100.00
NAS-EP #line 130 187 127 149 43.85 17.32
 #char 4741 6824 2868 3326 44.94 15.97

#line 704 1281 607 952 81.96 56.84 NAS-FT

#char 23662 44203 13775 20505 86.81 48.86
#line 86 166 86 139 93.02 61.63 N-Queens

#char 1555 3332 1555 2516 124.28 61.80

 All the line counts are the number of real code lines (no comments, no blocks)
*1: The sequential code is coded in C except for NAS-EP and FT which are coded in Fortran.
*2: The sequential code is always in C.

SC2003 S09: Programming with the Partitioned Global Address Space Model 10111/16/03

How to Exploit the Opportunities
for Performance Enhancement?

Compiler optimizations

Run-time system

Hand tuning

SC2003 S09: Programming with the Partitioned Global Address Space Model 10211/16/03

List of Possible Optimizations
for UPC Codes

Space privatization: use private pointers instead of
pointer to shareds when dealing with local shared
data (through casting and assignments)

Block moves: use block copy instead of copying
elements one by one with a loop, through string
operations or structures

Latency hiding: For example, overlap remote
accesses with local processing using split-phase
barriers

Vendors can also help decrease cost for address
translation and providing optimized standard
libraries

SC2003 S09: Programming with the Partitioned Global Address Space Model 10311/16/03

Performance of Shared vs. Private
Accesses (Old COMPAQ Measurement)

0.20.2UPC remote
shared

44.07.0UPC local
shared

565.0686.0UPC Private
400.0640.0CC

write single
elements

read single
elements

MB/s

Recent compiler developments have improved some of that

SC2003 S09: Programming with the Partitioned Global Address Space Model 10411/16/03

Using Local Pointers Instead of
pointer to shared

…

int *pa = (int*) &A[i][0];
int *pc = (int*) &C[i][0];
…
upc_forall(i=0;i<N;i++;&A[i][0]) {

for(j=0;j<P;j++)
pa[j]+=pc[j];

}

Pointer arithmetic is faster using local pointers
than pointer to shared

The pointer dereference can be one order of
magnitude faster

SC2003 S09: Programming with the Partitioned Global Address Space Model 10511/16/03

Performance of UPC

UPC benchmarking results
0Nqueens Problem
0Matrix Multiplication
0Sobel Edge detection
0Stream and GUPS
0NPB
0Splash-2

Compaq AlphaServer SC and Origin 2000/3000

Check the web site for new measurements

SC2003 S09: Programming with the Partitioned Global Address Space Model 10611/16/03

266266884440N/AUPC Shared (SMP)

200200723834N/AUPC Shared
(Remote)

4004001004440N/AUPC Local

N/AN/A800266266400UPC Private

N/AN/A800266266400GCC

Block
Scale

Block
Get

SumScaleArray
Copy

MemcpyMB/S

Shared vs. Private Accesses (Recent SGI
Origin 3000 Measurement)

ST
R

EA
M

 B
EN

C
H

M
A

R
K

SC2003 S09: Programming with the Partitioned Global Address Space Model 10711/16/03

Execution Time over SGI–Origin 2k
NAS-EP – Class A

0

20

40

60

80

100

120

140

160

180

200

1 2 4 8 16 32

Processors

C
om

pu
ta

tio
n

Ti
m

e
(s

ec
)

UPC - O0 GCC

SC2003 S09: Programming with the Partitioned Global Address Space Model 10811/16/03

Performance of the N-QUEENS
problem on the Origin 2000

0

0.05

0.1

0.15

0.2

0.25

1 2 4 8 16

THREADS

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

UPC NO OPT. UPC FULL OPT.

UPC N-Queens:
Execution Time

SC2003 S09: Programming with the Partitioned Global Address Space Model 10911/16/03

Performance of Edge detection
on the Origin 2000

0.01

0.1

1

10

100

1 2 4 8 16 32

NP

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

UPC NO OPT. UPC FULL OPT.

0

5

10

15

20

25

30

35

1 2 4 8 16 32

NP

Sp
ee

du
p

FULL OPTIMIZED OPTIMAL

Execution Time Speedup

SC2003 S09: Programming with the Partitioned Global Address Space Model 11011/16/03

Execution Time over SGI–Origin 2k
NAS-FT – Class A

0

50

100

150

200

250

300

350

400

450

1 2 4 8 16 32

Processors

C
om

pu
ta

tio
n

Ti
m

e
(s

ec
)

UPC - O0 UPC - O1 GCC

SC2003 S09: Programming with the Partitioned Global Address Space Model 11111/16/03

Execution Time over SGI–Origin 2k
NAS-CG – Class A

0

10

20

30

40

50

60

70

1 2 4 8 16 32

Processors

C
om

pu
ta

tio
n

Ti
m

e
(s

ec
)

UPC - O0 UPC - O1 UPC - O3 GCC

SC2003 S09: Programming with the Partitioned Global Address Space Model 11211/16/03

Execution Time over SGI–Origin 2k
NAS-EP – Class A

0

50

100

150

200

250

1 2 4 8 16 32

Processors

C
om

pu
ta

tio
n

Ti
m

e
(s

ec
)

UPC - O0 MPI OpenMP F/CC GCC
MPI & OpenMP versions written in
Fortran and compiled by F77
UPC version compiled by GCC

SC2003 S09: Programming with the Partitioned Global Address Space Model 11311/16/03

Execution Time over SGI–Origin 2k
NAS-FT – Class A

0

20

40

60

80

100

120

140

160

1 2 4 8 16 32

Processors

C
om

pu
ta

tio
n

Ti
m

e
(s

ec
)

UPC - O1 MPI OpenMP F/CC GCC
MPI & OpenMP versions written in
Fortran and compiled by F77
UPC version compiled by GCC

SC2003 S09: Programming with the Partitioned Global Address Space Model 11411/16/03

Execution Time over SGI–Origin 2k
NAS-CG – Class A

0

10

20

30

40

50

60

70

1 2 4 8 16 32

Processors

C
om

pu
ta

tio
n

Ti
m

e
(s

ec
)

UPC - O3 MPI OpenMP F/CC GCC
MPI & OpenMP versions written in
Fortran and compiled by F77
UPC version compiled by GCC

SC2003 S09: Programming with the Partitioned Global Address Space Model 11511/16/03

Execution Time over SGI–Origin 2k
NAS-MG – Class A

0

10

20

30

40

50

60

70

80

1 2 4 8 16 32

Processors

C
om

pu
ta

tio
n

Ti
m

e
(s

ec
)

UPC - O3 MPI OpenMP F/CC GCC
MPI & OpenMP versions written in
Fortran and compiled by F77
UPC version compiled by GCC

SC2003 S09: Programming with the Partitioned Global Address Space Model 11611/16/03

UPC Outline

1. Background and
Philosophy

2. UPC Execution Model

3. UPC Memory Model

4. UPC: A Quick Intro

5. Data and Pointers

6. Dynamic Memory
Management

7. Programming Examples

8. Synchronization
9. Performance Tuning

and Early Results
10. Concluding

Remarks

SC2003 S09: Programming with the Partitioned Global Address Space Model 11711/16/03

UPCTime-To-Solution=
UPCProgramming Time + UPCExecution Time

Simple and Familiar View
0Domain decomposition

maintains global
application view

0No function calls

Concise Syntax
0Remote writes with

assignment to shared
0Remote reads with

expressions involving
shared

0Domain decomposition
(mainly) implied in
declarations (logical
place!)

Data locality exploitation
No calls
One-sided communications
Low overhead for short
accesses

Conclusions

SC2003 S09: Programming with the Partitioned Global Address Space Model 11811/16/03

Conclusions

UPC is easy to program in for C writers,
significantly easier than alternative paradigms at
times

UPC exhibits very little overhead when compared
with MPI for problems that are embarrassingly
parallel. No tuning is necessary.

For other problems compiler optimizations are
happening but not fully there

With hand-tuning, UPC performance compared
favorably with MPI

Hand tuned code, with block moves, is still
substantially simpler than message passing code

SC2003 S09: Programming with the Partitioned Global Address Space Model 11911/16/03

Conclusions

Automatic compiler optimizations should focus on
0Inexpensive address translation
0Space Privatization for local shared accesses
0Prefetching and aggregation of remote

accesses, prediction is easier under the UPC
model

More performance help is expected from optimized
standard library implementations, specially
collective and I/O

SC2003 S09: Programming with the Partitioned Global Address Space Model 12011/16/03

References
The official UPC website, http://upc.gwu.edu
T. A.El-Ghazawi, W.W.Carlson, J. M. Draper. UPC Language
Specifications V1.1 (http://upc.gwu.edu). May, 2003
François Cantonnet, Yiyi Yao, Smita Annareddy, Ahmed S. Mohamed,
Tarek A. El-Ghazawi Performance Monitoring and Evaluation of a UPC
Implementation on a NUMA Architecture, International Parallel and
Distributed Processing Symposium(IPDPS’03) Nice Acropolis
Convention Center, Nice, France, 2003.
Wei-Yu Chen, Dan Bonachea, Jason Duell, Parry Husbands, Costin
Iancu, Katherine Yelick, A performance analysis of the Berkeley UPC
compiler, International Conference on Supercomputing, Proceedings
of the 17th annual international conference on Supercomputing
2003,San Francisco, CA, USA
Tarek A. El-Ghazawi, François Cantonnet, UPC Performance and
Potential: A NPB Experimental Study, SuperComputing 2002 (SC2002).
IEEE, Baltimore MD, USA, 2002.
Tarek A.El-Ghazawi, Sébastien Chauvin, UPC Benchmarking Issues,
Proceedings of the International Conference on Parallel Processing
(ICPP’01). IEEE CS Press. Valencia, Spain, September 2001.

SC2003 S09: Programming with the Partitioned Global Address Space Model 12111/16/03

http://upc.gwu.edu

Co-Array Fortran
Tutorial
SC 2003

Co-Array Fortran
Tutorial
SC 2003

Robert W. Numrich
Minnesota Supercomputing Institute

University of Minnesota

rwn@msi.umn.edu

Robert W. Numrich
Minnesota Supercomputing Institute

University of Minnesota

rwn@msi.umn.edu

SC2003 S09: Programming with the Partitioned Global Address Space Model 12311/16/03

Abstract

Co-Array Fortran is a simple extension to Fortran 90 that allows programmers to
write efficient parallel applications using a Fortran-like syntax. It assumes the SPMD
programming model with replicated data objects called co-arrays. Co-Array objects
are visible to all processors and each processor can read or write data belonging to
any other processor by setting the index of the co-dimension to the appropriate value.
It can be thought of as the SHMEM model implemented as an extension to the
language. The combination of co-array syntax with the 'object-oriented' features of
Fortran 90 provides a powerful method of encapsulating parallel data structures and
parallel algorithms into Fortran 90 modules that resemble class libraries in an object-
oriented language.

SC2003 S09: Programming with the Partitioned Global Address Space Model 12411/16/03

Outline
1. Philosophy of Co-Array Fortran
2. Execution model
3. Co-arrays and co-dimensions
4. Memory model
5. Relative image indices
6. CAF intrinsic procedures
7. Dynamic memory management
8. CAF I/O
9. “Object-Oriented” Techniques
10. Summary
11. Examples

Examples from Linear Algebra
Example from UK Met Office

12. Exercises
Global reductions
PIC code fragment
CAF Class Library
Poisson Solver

1. Philosophy of Co-Array
Fortran

1. Philosophy of Co-Array
Fortran

SC2003 S09: Programming with the Partitioned Global Address Space Model 12611/16/03

The Guiding Principle behind
Co-Array Fortran

What is the smallest change required to make Fortran 90 an
effective parallel language?

How can this change be expressed so that it is intuitive and
natural for Fortran programmers?

How can it be expressed so that existing compiler
technology can implement it easily and efficiently?

SC2003 S09: Programming with the Partitioned Global Address Space Model 12711/16/03

What’s the Problem with SPMD?

One processor knows nothing about another’s memory
layout.
0Local variables live on the local heap.
0Addresses, sizes and shapes are different on different

program images.

How can we exchange data between such non-aligned
variables?

SC2003 S09: Programming with the Partitioned Global Address Space Model 12811/16/03

Some Solutions

MPI-1
0Elaborate system of buffers
0Two-sided send/receive protocol
0Programmer moves data between local buffers only.

SHMEM
0One-sided exchange between variables in COMMON
0Programmer manages non-aligned variables using an

awkward mechanism
MPI-2
0Mimic SHMEM by exposing some of the buffer system
0One-sided data exchange within predefined windows
0Programmer manages addresses and offsets within the

windows

SC2003 S09: Programming with the Partitioned Global Address Space Model 12911/16/03

Co-Array Fortran Extension

Incorporate the SPMD Model into Fortran 95
Multiple images of the same program
0Text and data are replicated in each image

Mark some variables with co-dimensions
0Co-dimensions behave like normal dimensions
0Co-dimensions express a logical problem decomposition
0One-sided data exchange between co-arrays using a Fortran-

like syntax

Require the underlying run-time system to map the logical
problem decomposition onto specific hardware.

2. Execution Model2. Execution Model

SC2003 S09: Programming with the Partitioned Global Address Space Model 13111/16/03

The CAF Execution Model

The number of images is fixed and each image has its own index, retrievable at
run-time:

1 ≤ num_images()
1 ≤ this_image() ≤ num_images()

Each image executes the same program independently of the others.

The programmer inserts explicit synchronization and branching as needed.

An “object” has the same name in each image.

Each image works on its own local data.

An image moves remote data to local data through, and only through, explicit
CAF syntax.

3. Co-Arrays and Co-
Dimensions

3. Co-Arrays and Co-
Dimensions

SC2003 S09: Programming with the Partitioned Global Address Space Model 13311/16/03

What is Co-Array Syntax?

Co-Array syntax is a simple parallel extension to normal
Fortran syntax.
0It uses normal rounded brackets () to point to data in

local memory.
0It uses square brackets [] to point to data in remote

memory.
0Syntactic and semantic rules apply separately but equally

to () and [].

SC2003 S09: Programming with the Partitioned Global Address Space Model 13411/16/03

Examples of Co-Array
Declarations

real :: a(n)[∗]
complex :: z[∗]
integer :: index(n)[∗]
real :: b(n)[p, ∗]
real :: c(n,m)[0:p, -7:q, +11:∗]
real,allocatable :: w(:)[:]
type(field) :: maxwell[p,∗]

4. CAF Memory Model4. CAF Memory Model

SC2003 S09: Programming with the Partitioned Global Address Space Model 13611/16/03

CAF Memory Model

x(1)

x(n)

x(1)

x(n)

x(1)[q]

p q

x(n)[p]

x(1)

x(n)

x(1)

x(n)

x(1)

x(n)

SC2003 S09: Programming with the Partitioned Global Address Space Model 13711/16/03

One-to-One Execution Model

x(1)

x(n)

x(1)

x(n)

x(1)[q]

p q

x(n)[p]

x(1)

x(n)

x(1)

x(n)

x(1)

x(n)

One
Physical
Processor

SC2003 S09: Programming with the Partitioned Global Address Space Model 13811/16/03

Many-to-One Execution Model

x(1)

x(n)

x(1)

x(n)

x(1)[q]

p q

x(n)[p]

x(1)

x(n)

x(1)

x(n)

x(1)

x(n)

Many
Physical

Processors

SC2003 S09: Programming with the Partitioned Global Address Space Model 13911/16/03

One-to-Many Execution Model

x(1)

x(n)

x(1)

x(n)

x(1)[q]

p q

x(n)[p]

x(1)

x(n)

x(1)

x(n)

x(1)

x(n)

One
Physical
Processor

SC2003 S09: Programming with the Partitioned Global Address Space Model 14011/16/03

Many-to-Many Execution Model

x(1)

x(n)

x(1)

x(n)

x(1)[q]

p q

x(n)[p]

x(1)

x(n)

x(1)

x(n)

x(1)

x(n)

Many
Physical

Processors

SC2003 S09: Programming with the Partitioned Global Address Space Model 14111/16/03

Communication Using CAF Syntax

y(:) = x(:)[p]
myIndex(:) = index(:)
yourIndex(:) = index(:)[you]
x(index(:)) = y[index(:)]

x(:)[q] = x(:) + x(:)[p]

Absent co-dimension defaults to the local object.

SC2003 S09: Programming with the Partitioned Global Address Space Model 14211/16/03

Non-Aligned Variables

real,allocatable,target :: field (:)

type(field) :: z[∗]

allocate(field(0:n+1))

me = this_image(z)

z%field => field

field(0) = z[me-1]%field(n)

field(n+1) = z[me+1]%field(1)

SC2003 S09: Programming with the Partitioned Global Address Space Model 14311/16/03

Co-Array Alias to a Remote Field

z%field z%field

field
field

z[p]%field

5. Relative Image Indices5. Relative Image Indices

SC2003 S09: Programming with the Partitioned Global Address Space Model 14511/16/03

What Do Co-Dimensions Mean?

real :: x(n)[p,q,∗]

1. Replicate an array of length n, one on each image.
2. Build a map so each image knows how to find the array

on any other image.
3. Organize images in a logical (not physical) three

dimensional grid.
4. The last co-dimension acts like an assumed size array: ∗

⇒ num_images()/(pxq)
5. A specific implementation could choose to represent

memory hierarchy through the co-dimensions.

SC2003 S09: Programming with the Partitioned Global Address Space Model 14611/16/03

Relative Image Indices

Runtime system builds a map among images.

CAF syntax is a logical expression of this map.

Current image index:
1 <= this_image() <= num_images()

Current image index relative to a co-array:
lowCoBnd(x) <= this_image(x) <= upCoBnd(x)

SC2003 S09: Programming with the Partitioned Global Address Space Model 14711/16/03

Relative Image Indices (1)

161284

151173

14106 2

13951
1

2

3

4

1 2 3 4

this_image() = 15 this_image(x) = (/3,4/)x[4,*]

SC2003 S09: Programming with the Partitioned Global Address Space Model 14811/16/03

Relative Image Indices (II)

161284

151173

14106 2

13951
0

1

2

3

0 1 2 3

this_image() = 15 this_image(x) = (/2,3/)x[0:3,0:*]

SC2003 S09: Programming with the Partitioned Global Address Space Model 14911/16/03

Relative Image Indices (III)

161284

151173

14106 2

13951
-5

-4

-3

-2

0 1 2 3

this_image() = 15 this_image(x) = (/-3, 3/)x[-5:-2,0:*]

SC2003 S09: Programming with the Partitioned Global Address Space Model 15011/16/03

Relative Image Indices (IV)

161412108642
151311975310

1

0 1 2 3 4 5 6 7

x[0:1,0:*] this_image() = 15 this_image(x) =(/0,7/)

6. CAF Intrinsic
Procedures

6. CAF Intrinsic
Procedures

SC2003 S09: Programming with the Partitioned Global Address Space Model 15211/16/03

Synchronization Intrinsic Procedures

sync_all()
Full barrier; wait for all images before continuing.

sync_all(wait(:))
Partial barrier; wait only for those images in the wait(:) list.

sync_team(list(:))
Team barrier; only images in list(:) are involved.

sync_team(list(:),wait(:))
Team barrier; wait only for those images in the wait(:) list.

sync_team(myPartner)
Synchronize with one other image.

SC2003 S09: Programming with the Partitioned Global Address Space Model 15311/16/03

Events

sync_team(list(:),list(me:me)) post event

sync_team(list(:),list(you:you)) wait event

SC2003 S09: Programming with the Partitioned Global Address Space Model 15411/16/03

Other CAF Intrinsic Procedures

sync_memory()
Make co-arrays visible to all images

sync_file(unit)
Make local I/O operations visible to the global file system.

start_critical()
end_critical()

Allow only one image at a time into a protected region.

SC2003 S09: Programming with the Partitioned Global Address Space Model 15511/16/03

Other CAF Intrinsic Procedures

log2_images()
Log base 2 of the greatest power of two less
than or equal to the value of num_images()

rem_images()
The difference between num_images() and
the nearest power-of-two.

7. Dynamic Memory
Management

7. Dynamic Memory
Management

SC2003 S09: Programming with the Partitioned Global Address Space Model 15711/16/03

Dynamic Memory Management

Co-Arrays can be (should be) declared as allocatable
real,allocatable,dimension(:,:)[:,:] :: x

Co-dimensions are set at run-time
allocate(x(n,n)[p,*])

implied sync after all images have allocated
deallocate(x)

implied sync before any image deallocates

Pointers are not allowed to be co-arrays

SC2003 S09: Programming with the Partitioned Global Address Space Model 15811/16/03

User Defined Derived Types

• F90 Derived types are similar to structures in C

type vector
real, pointer,dimension(:) :: elements
integer :: size

end type vector

Pointer components are allowed
Allocatable components will be allowed in F2000

SC2003 S09: Programming with the Partitioned Global Address Space Model 15911/16/03

Irregular and Changing Data
Structures

z%ptr z%ptr

x
x

z[p]%ptr

SC2003 S09: Programming with the Partitioned Global Address Space Model 16011/16/03

Irregular and Changing
Data Structures

Co-arrays of derived type vectors can be used
to create sparse matrix structures.

type(vector),allocatable,dimension(:)[:] :: rowMatrix
allocate(rowMatrix(n)[*])
do i=1,n

m = rowSize(i)
rowMatrix(i)%size = m
allocate(rowMatrix(i)%elements(m))

enddo

8. CAF I/O8. CAF I/O

SC2003 S09: Programming with the Partitioned Global Address Space Model 16211/16/03

CAF I/O (1)

There is one file system visible to all images.
An image can open a file alone or as part of a team.
The programmer controls access to the file using
direct access I/O and CAF intrinsic functions.

SC2003 S09: Programming with the Partitioned Global Address Space Model 16311/16/03

CAF I/O (2)

A new keyword , team= , has been added to the open
statement:

open(unit=,file=,team=list,access=direct)
Implied synchronization among team members.

A CAF intrinsic function is provided to control file
consistency across images:

call sync_file(unit)
Flush all local I/O operations to make them visible to the
global file system.

SC2003 S09: Programming with the Partitioned Global Address Space Model 16411/16/03

CAF I/O (3)

Read from unit 10 and place data in x(:) on image p.
read(10,*) x(:)[p]

Copy data from x(:) on image p to a local buffer and
then write it to unit 10.

write(10,*) x(:)[p]
Write to a specified record in a file:

write(unit,rec=myPart) x(:)[q]

SC2003 S09: Programming with the Partitioned Global Address Space Model 16511/16/03

9. Using “Object-Oriented”
Techniques with Co-Array Fortran

SC2003 S09: Programming with the Partitioned Global Address Space Model 16611/16/03

Using “Object-Oriented” Techniques with Co-
Array Fortran

Fortran 95 is not an object-oriented language.

But it contains some features that can be used to emulate object-
oriented programming methods.
0Allocate/deallocate for dynamic memory management
0Named derived types are similar to classes without methods.
0Modules can be used to associate methods loosely with

objects.
0Constructors and destructors can be defined to encapsulate

parallel data structures.
0Generic interfaces can be used to overload procedures based

on the named types of the actual arguments.

SC2003 S09: Programming with the Partitioned Global Address Space Model 16711/16/03

A Parallel “Class Library” for CAF

Combine the object-based features of Fortran 95 with co-array
syntax to obtain an efficient parallel numerical class library that
scales to large numbers of processors.
Encapsulate all the hard stuff in modules using named objects,
constructors,destructors, generic interfaces, dynamic memory
management.

SC2003 S09: Programming with the Partitioned Global Address Space Model 16811/16/03

CAF Parallel “Class Libraries”

use BlockMatrices
use BlockVectors

type(PivotVector) :: pivot[p,*]
type(BlockMatrix) :: a[p,*]
type(BlockVector) :: x[*]

call newBlockMatrix(a,n,p)
call newPivotVector(pivot,a)
call newBlockVector(x,n)
call luDecomp(a,pivot)
call solve(a,x,pivot)

SC2003 S09: Programming with the Partitioned Global Address Space Model 16911/16/03

LU Decomposition

SC2003 S09: Programming with the Partitioned Global Address Space Model 17011/16/03

CAF I/O for Named Objects

use BlockMatrices
use DiskFiles

type(PivotVector) :: pivot[p,*]
type(BlockMatrix) :: a[p,*]
type(DirectAccessDiskFile) :: file

call newBlockMatrix(a,n,p)
call newPivotVector(pivot,a)
call newDiskFile(file)
call readBlockMatrix(a,file)
call luDecomp(a,pivot)
call writeBlockMatrix(a,file)

10. Summary10. Summary

SC2003 S09: Programming with the Partitioned Global Address Space Model 17211/16/03

Why Language Extensions?

Programmer uses a familiar language.
Syntax gives the programmer control and flexibility.
Compiler concentrates on local code optimization.
Compiler evolves as the hardware evolves.
0Lowest latency and highest bandwidth allowed by the

hardware
0Data ends up in registers or cache not in memory
0Arbitrary communication patterns
0Communication along multiple channels

SC2003 S09: Programming with the Partitioned Global Address Space Model 17311/16/03

Summary

Co-dimensions match your problem decomposition
0Run-time system matches them to hardware

decomposition
0Local computation of neighbor relationships
0Flexible communication patterns

Code simplicity
0Non-intrusive code conversion
0Modernize code to Fortran 95 standard

Performance is comparable to or better than library based
models.

11. Examples11. Examples

Examples from Linear
Algebra

Examples from Linear
Algebra

SC2003 S09: Programming with the Partitioned Global Address Space Model 17611/16/03

Matrix Multiplication

= x
myP

myQ

myP

myQ

SC2003 S09: Programming with the Partitioned Global Address Space Model 17711/16/03

Matrix Multiplication

real,dimension(n,n)[p,*] :: a,b,c

do k=1,n
do q=1,p

c(i,j)[myP,myQ] = c(i,j)[myP,myQ]
+ a(i,k)[myP, q]*b(k,j)[q,myQ]

enddo
enddo

SC2003 S09: Programming with the Partitioned Global Address Space Model 17811/16/03

Matrix Multiplication

real,dimension(n,n)[p,*] :: a,b,c

do k=1,n
do q=1,p

c(i,j) = c(i,j) + a(i,k)[myP, q]*b(k,j)[q,myQ]
enddo

enddo

SC2003 S09: Programming with the Partitioned Global Address Space Model 17911/16/03

Block Matrix Multiplication

SC2003 S09: Programming with the Partitioned Global Address Space Model 18011/16/03

Distributed Transpose (1)

myQ myP

myQ

real matrixT(n,m)[p,*], matrix(m,n)[q,*]
matrixT[myP,myQ](i,j) = matrix(j,i)[myQ,myP]

(i,j)
(j,i)

myP

SC2003 S09: Programming with the Partitioned Global Address Space Model 18111/16/03

Blocked Matrices (1)

type matrix
real,pointer,dimension(:,:) :: elements
integer :: rowSize, colSize

end type matrix

type blockMatrix
type(matrix),pointer,dimension(:,:) :: block

end type blockMatrix

SC2003 S09: Programming with the Partitioned Global Address Space Model 18211/16/03

Blocked Matrices (2)

type(blockMatrix),allocatable :: a[:,:]
allocate(a[p,*])
allocate(a%block(nRowBlks,nColBlks))
a%block(j,k)%rowSize = nRows
a%block(j,k)%colSize = nCols

SC2003 S09: Programming with the Partitioned Global Address Space Model 18311/16/03

Distributed Transpose (2)

myQ myP

myQ

type(blockMatrix) :: a[p,*],aT[q,*]
aT%block(j,k)%element(i,j) = a[myQ,myP]%block(k,j)%element(j,i)

myP

block(j,k) block(k,j)

SC2003 S09: Programming with the Partitioned Global Address Space Model 18411/16/03

Block Matrix Transpose

SC2003 S09: Programming with the Partitioned Global Address Space Model 18511/16/03

Distributed Transpose (3)

you

me you

me

type(columnBlockMatrix) :: a[*],b[*]
a[me]%block(you)%element(i,j) = b[you]%block(me)%element(j,i)

(i,j)
(j,i)

Example from the UK Met
Office

Example from the UK Met
Office

SC2003 S09: Programming with the Partitioned Global Address Space Model 18711/16/03

Problem Decomposition and Co-
Dimensions

[p,q-1]

[p+1,q][p,q][p-1,q]

[p,q+1]

EW

S

N

SC2003 S09: Programming with the Partitioned Global Address Space Model 18811/16/03

Cyclic Boundary Conditions in
East-West Directions

real,dimension [p,*] :: z

myP = this_image(z,1) !East-West

West = myP - 1

if(West < 1) West = nProcX !Cyclic

East = myP + 1

if(East > nProcX) East = 1 !Cyclic

SC2003 S09: Programming with the Partitioned Global Address Space Model 18911/16/03

Incremental Update to Fortran 95

Field arrays are allocated on the local heap.
Define one supplemental F95 structure
type cafField
real,pointer,dimension(:,:,:) :: Field

end type cafField

Declare a co-array of this type
type(cafField),allocatable,dimension[:,:] :: z

SC2003 S09: Programming with the Partitioned Global Address Space Model 19011/16/03

Allocate Co-Array Structure

allocate (z [nP,*])

Implied synchronization
Structure is aligned across memory images.
0Every image knows how to find the pointer

component in any other image.

Set the co-dimensions to match your problem
decomposition.

SC2003 S09: Programming with the Partitioned Global Address Space Model 19111/16/03

East-West Communication

Move last row from west to my first halo

Field(0,1:n,:) = z [West, myQ]%Field(m,1:n,:)

Move first row from east to my last halo

Field(m+1,1:n,:) = z [East, myQ]%Field(1,1:n,:)

SC2003 S09: Programming with the Partitioned Global Address Space Model 19211/16/03

Total Time (s)

32.4

55.9

55.5

105

205

MPI

31.629.827.34x8

54.453.750.04x4

52.752.249.82x8

10099.095.02x4

2011981912x2

MPI

w/CAF
SWAP

SHMEM
w/CAF
SWAP

SHMEMPxQ

SC2003 S09: Programming with the Partitioned Global Address Space Model 19311/16/03

Other Kinds of Communication

Semi-Lagrangian on-demand lists
Field(i,list1(:),k) =z [myPal]% Field(i,list2(:),k)

Gather data from a list of neighbors
Field(i, j,k) = z [list(:)]%Field(i,j,k)

Combine arithmetic with communication
Field(i, j,k) = scale*z [myPal]%Field(i,j,k)

SC2003 S09: Programming with the Partitioned Global Address Space Model 19411/16/03

CRAY Co-Array Fortran

CAF has been a supported feature of Cray Fortran 90 since
release 3.1

CRAY T3E
0f90 -Z src.f90
0mpprun -n7 a.out

CRAY X1
0ftn -Z src.f90
0aprun -n7 a.out

SC2003 S09: Programming with the Partitioned Global Address Space Model 19511/16/03

Co-Array Fortran on Other Platforms

Rice University is developing a source-to-source preprocessor for
CAF.
0www.pmodels.org

DARPA High Productivity Computing Systems (HPCS) Project
wants CAF.
0 IBM, CRAY, SUN

Open source CAF compiler under consideration by DoE.

SC2003 S09: Programming with the Partitioned Global Address Space Model 19611/16/03

The Co-Array Fortran Standard

Co-Array Fortran is defined by:
0R.W. Numrich and J.K. Reid, “Co-Array Fortran for Parallel

Programming”, ACM Fortran Forum, 17(2):1-31, 1998

Additional information on the web:
0www.co-array.org
0www.pmodels.org

Titanium: A Java Dialect
for High Performance

Computing

Katherine Yelick

U.C. Berkeley and LBNL

SC2003 S09: Programming with the Partitioned Global Address Space Model 19811/16/03

Motivation: Target Problems

Many modeling problems in astrophysics, biology,
material science, and other areas require
0Enormous range of spatial and temporal scales

To solve interesting problems, one needs:
0Adaptive methods
0Large scale parallel machines

Titanium is designed for
0Structured grids
0Locally-structured grids (AMR)
0Unstructured grids (in progress)

Source: J. Bell, LBNL

SC2003 S09: Programming with the Partitioned Global Address Space Model 19911/16/03

Titanium Background

Based on Java, a cleaner C++
0Classes, automatic memory management, etc.
0Compiled to C and then machine code, no JVM

Same parallelism model at UPC and CAF
0SPMD parallelism
0Dynamic Java threads are not supported

Optimizing compiler
0Analyzes global synchronization
0Optimizes pointers, communication, memory

SC2003 S09: Programming with the Partitioned Global Address Space Model 20011/16/03

Summary of Features Added to Java
Multidimensional arrays: iterators, subarrays, copying
Immutable (“value”) classes
Templates
Operator overloading
Scalable SPMD parallelism replaces threads
Global address space with local/global reference
distinction
Checked global synchronization
Zone-based memory management (regions)
Libraries for collective communication, distributed
arrays, bulk I/O, performance profiling

SC2003 S09: Programming with the Partitioned Global Address Space Model 20111/16/03

Outline

Titanium Execution Model
0SPMD
0Global Synchronization
0Single

Titanium Memory Model

Support for Serial Programming

Performance and Applications

Compiler/Language Status

SC2003 S09: Programming with the Partitioned Global Address Space Model 20211/16/03

SPMD Execution Model

Titanium has the same execution model as UPC and CAF

Basic Java programs may be run as Titanium programs,
but all processors do all the work.

E.g., parallel hello world
class HelloWorld {

public static void main (String [] argv) {
System.out.println(“Hello from proc “

+ Ti.thisProc()
+ “ out of “
+ Ti.numProcs());

}
}

Global synchronization done using Ti.barrier()

SC2003 S09: Programming with the Partitioned Global Address Space Model 20311/16/03

Barriers and Single

Common source of bugs is barriers or other collective
operations inside branches or loops

barrier, broadcast, reduction, exchange

A “single” method is one called by all procs
public single static void allStep(...)

A “single” variable has same value on all procs
int single timestep = 0;

Single annotation on methods is optional, but useful in
understanding compiler messages

Compiler proves that all processors call barriers together

SC2003 S09: Programming with the Partitioned Global Address Space Model 20411/16/03

Explicit Communication: Broadcast
Broadcast is a one-to-all communication

broadcast <value> from <processor>

For example:
int count = 0;

int allCount = 0;

if (Ti.thisProc() == 0) count = computeCount();

allCount = broadcast count from 0;

The processor number in the broadcast must be single;
all constants are single.
0All processors must agree on the broadcast source.

The allCount variable could be declared single.
0All will have the same value after the broadcast.

SC2003 S09: Programming with the Partitioned Global Address Space Model 20511/16/03

More on Single
Global synchronization needs to be controlled
if (this processor owns some data) {

compute on it
barrier

}

Hence the use of “single” variables in Titanium

If a conditional or loop block contains a barrier, all
processors must execute it
0conditions must contain only single variables

Compiler analysis statically enforces freedom from
deadlocks due to barrier and other collectives being
called non-collectively "Barrier Inference" [Gay & Aiken]

SC2003 S09: Programming with the Partitioned Global Address Space Model 20611/16/03

Single Variable Example
Barriers and single in N-body Simulation
class ParticleSim {

public static void main (String [] argv) {
int single allTimestep = 0;
int single allEndTime = 100;
for (; allTimestep < allEndTime; allTimestep++){

read remote particles, compute forces on mine
Ti.barrier();
write to my particles using new forces
Ti.barrier();

}
}

}

Single methods inferred by the compiler

SC2003 S09: Programming with the Partitioned Global Address Space Model 20711/16/03

Outline

Titanium Execution Model

Titanium Memory Model
0Global and Local References
0Exchange: Building Distributed Data Structures
0Region-Based Memory Management

Support for Serial Programming

Performance and Applications

Compiler/Language Status

SC2003 S09: Programming with the Partitioned Global Address Space Model 20811/16/03

Global Address Space

Globally shared address space is partitioned

References (pointers) are either local or global
(meaning possibly remote)

Object heaps
are shared

G
lo

ba
l a

dd
re

ss
 s

pa
ce x: 1

y: 2

Program stacks
are private

l: l: l:

g: g: g:

x: 5
y: 6

x: 7
y: 8

p0 p1 pn

SC2003 S09: Programming with the Partitioned Global Address Space Model 20911/16/03

Use of Global / Local
As seen, global references (pointers) may point to
remote locations
0easy to port shared-memory programs

Global pointers are more expensive than local
0True even when data is on the same processor
0Costs of global:

space (processor number + memory address)
dereference time (check to see if local)

May declare references as local
0Compiler will automatically infer local when

possible

SC2003 S09: Programming with the Partitioned Global Address Space Model 21011/16/03

Global Address Space

Processes allocate locally

References can be passed to
other processes

class C { public int val;... }

Process 0

HEAP0

Process 1

HEAP1

val: 0

lv

gv

lv

gv

C gv; // global pointer
C local lv; // local pointer
if (Ti.thisProc() == 0) {

lv = new C();
}
gv = broadcast lv from 0;
//data race
gv.val = Ti.thisProc()+1;

int winner = gv.val

winner: 2 winner: 2

2

SC2003 S09: Programming with the Partitioned Global Address Space Model 21111/16/03

Aside on Titanium Arrays

Titanium adds its own multidimensional array
class for performance

Distributed data structures are built using a 1D
Titanium array

Slightly different syntax, since Java arrays still
exist in Titanium, e.g.:

int [1d] a;

a = new int [1:100];

a[1] = 2*a[1] - a[0] – a[2];

Will discuss these more later…

SC2003 S09: Programming with the Partitioned Global Address Space Model 21211/16/03

Explicit Communication: Exchange
To create shared data structures
0each processor builds its own piece
0pieces are exchanged (for objects, just exchange

pointers)

Exchange primitive in Titanium
int [1d] single allData;
allData = new int [0:Ti.numProcs()-1];
allData.exchange(Ti.thisProc()*2);

E.g., on 4 procs, each will have copy of allData:

0 2 4 6
allData

SC2003 S09: Programming with the Partitioned Global Address Space Model 21311/16/03

Distributed Data Structures
Building distributed arrays:
Particle [1d] single [1d] allParticle =

new Particle [0:Ti.numProcs-1][1d];

Particle [1d] myParticle =

new Particle [0:myParticleCount-1];

allParticle.exchange(myParticle);

Now each processor has array of pointers, one to
each processor’s chunk of particles

P0 P1 P2

All to all broadcast

SC2003 S09: Programming with the Partitioned Global Address Space Model 21411/16/03

Region-Based Memory Management
An advantage of Java over C/C++ is:
0Automatic memory management

But garbage collection:
0Has a reputation of slowing serial code
0Does not scale well in a parallel environment

Titanium approach:
0Preserves safety – cannot deallocate live data
0Garbage collection is the default (on most platforms)
0Higher performance is possible using region-based

explicit memory management
0Takes advantage of memory management phases

SC2003 S09: Programming with the Partitioned Global Address Space Model 21511/16/03

Region-Based Memory Management
Need to organize data structures

Allocate set of objects (safely)

Delete them with a single explicit call (fast)
PrivateRegion r = new PrivateRegion();
for (int j = 0; j < 10; j++) {

int[] x = new (r) int[j + 1];
work(j, x);

}
try { r.delete(); }
catch (RegionInUse oops) {

System.out.println(“failed to delete”);
}

}

SC2003 S09: Programming with the Partitioned Global Address Space Model 21611/16/03

Outline

Titanium Execution Model

Titanium Memory Model

Support for Serial Programming
0Immutables
0Operator overloading
0Multidimensional arrays
0Templates

Performance and Applications

Compiler/Language Status

SC2003 S09: Programming with the Partitioned Global Address Space Model 21711/16/03

Java Objects
Primitive scalar types: boolean, double, int, etc.
0implementations store these on the program stack
0access is fast -- comparable to other languages

Objects: user-defined and standard library
0always allocated dynamically in the heap
0passed by pointer value (object sharing)
0has implicit level of indirection
0simple model, but inefficient for small objects

2.6

3
true

real: 7.1

imag: 4.3

SC2003 S09: Programming with the Partitioned Global Address Space Model 21811/16/03

Java Object Example
class Complex {

private double real;

private double imag;

public Complex(double r, double i) {

real = r; imag = i; }

public Complex add(Complex c) {

return new Complex(c.real + real, c.imag + imag);

public double getReal { return real; }

public double getImag { return imag; }

}

Complex c = new Complex(7.1, 4.3);

c = c.add(c);

class VisComplex extends Complex { ... }

SC2003 S09: Programming with the Partitioned Global Address Space Model 21911/16/03

Immutable Classes in Titanium
For small objects, would sometimes prefer
0to avoid level of indirection and allocation overhead
0pass by value (copying of entire object)
0especially when immutable -- fields never modified

extends the idea of primitive values to user-defined types

Titanium introduces immutable classes
0all fields are implicitly final (constant)
0cannot inherit from or be inherited by other classes
0needs to have 0-argument constructor

Examples: Complex, xyz components of a force

Note: considering lang. extension to allow mutation

SC2003 S09: Programming with the Partitioned Global Address Space Model 22011/16/03

Example of Immutable Classes
The immutable complex class nearly the same

immutable class Complex {
Complex () {real=0; imag=0;}
...

}

Use of immutable complex values
Complex c1 = new Complex(7.1, 4.3);
Complex c2 = new Complex(2.5, 9.0);
c1 = c1.add(c2);

Addresses performance and programmability
0Similar to C structs in terms of performance
0Support for Complex with a general mechanism

Zero-argument
constructor
requirednew

keyword
Rest unchanged. No assignment
to fields outside of constructors.

SC2003 S09: Programming with the Partitioned Global Address Space Model 22111/16/03

Operator Overloading

Titanium provides operator overloading
0Convenient in scientific code
0Feature is similar to that in C++

class Complex {

...

public Complex op+(Complex c) {

return new Complex(c.real + real, c.imag + imag);

}

Complex c1 = new Complex(7.1, 4.3);

Complex c2 = new Complex(5.4, 3.9);

Complex c3 = c1 + c2;

SC2003 S09: Programming with the Partitioned Global Address Space Model 22211/16/03

Arrays in Java
Arrays in Java are objects

Only 1D arrays are directly
supported

Multidimensional arrays
are arrays of arrays

General, but slow

2d
array

Subarrays are important in AMR (e.g., interior of a grid)
0Even C and C++ don’t support these well
0Hand-coding (array libraries) can confuse optimizer

SC2003 S09: Programming with the Partitioned Global Address Space Model 22311/16/03

Multidimensional Arrays in Titanium
New multidimensional array added
0One array may be a subarray of another

e.g., a is interior of b, or a is all even elements of b
can easily refer to rows, columns, slabs or boundary
regions as sub-arrays of a larger array

0Indexed by Points (tuples of ints)
0Built on a rectangular set of Points, RectDomain
0Points, Domains and RectDomains are built-in

immutable classes, with useful literal syntax

Support for AMR and other grid computations
0domain operations: intersection, shrink, border
0bounds-checking can be disabled after debugging

SC2003 S09: Programming with the Partitioned Global Address Space Model 22411/16/03

Unordered Iteration
Motivation:
0Memory hierarchy optimizations are essential
0Compilers sometimes do these, but hard in general

Titanium has explicitly unordered iteration
0Helps the compiler with analysis
0Helps programmer avoid indexing details

foreach (p in r) { … A[p] … }

p is a Point (tuple of ints), can be used as array index
r is a RectDomain or Domain

Additional operations on domains to transform

Note: foreach is not a parallelism construct

SC2003 S09: Programming with the Partitioned Global Address Space Model 22511/16/03

Point, RectDomain, Arrays in General

Points specified by a tuple of ints

RectDomains given by 3 points:
0lower bound, upper bound (and optional stride)

Array declared by num dimensions and type

Array created by passing RectDomain

double [2d] a;

Point<2> lb = [1, 1];
Point<2> ub = [10, 20];

RectDomain<2> r = [lb : ub];

a = new double [r];

SC2003 S09: Programming with the Partitioned Global Address Space Model 22611/16/03

Simple Array Example
Matrix sum in Titanium

Point<2> lb = [1,1];
Point<2> ub = [10,20];
RectDomain<2> r = [lb:ub];

double [2d] a = new double [r];
double [2d] b = new double [1:10,1:20];
double [2d] c = new double [lb:ub:[1,1]];

for (int i = 1; i <= 10; i++)
for (int j = 1; j <= 20; j++)

c[i,j] = a[i,j] + b[i,j];

foreach(p in c.domain()) { c[p] = a[p] + b[p]; }

No array allocation here

Syntactic sugar

Optional stride

Equivalent loops

SC2003 S09: Programming with the Partitioned Global Address Space Model 22711/16/03

MatMul with Titanium Arrays

public static void matMul(double [2d] a,

double [2d] b,

double [2d] c) {

foreach (ij in c.domain()) {

double [1d] aRowi = a.slice(1, ij[1]);

double [1d] bColj = b.slice(2, ij[2]);

foreach (k in aRowi.domain()) {

c[ij] += aRowi[k] * bColj[k];

}

}

}

Current performance: comparable to 3 nested loops in C

SC2003 S09: Programming with the Partitioned Global Address Space Model 22811/16/03

Example: Setting Boundary Conditions

foreach (l in local_grids.domain()) {

foreach (a in all_grids.domain()) {

local_grids[l].copy(all_grids[a]);

}

}

"ghost" cells

Proc 0 Proc 1
local_grids

all_grids

SC2003 S09: Programming with the Partitioned Global Address Space Model 22911/16/03

Templates
Many applications use containers:
0Parameterized by dimensions, element types,…
0Java supports parameterization through inheritance

Can only put Object types into containers
Inefficient when used extensively

Titanium provides a template mechanism closer to C++
0Can be instantiated with non-object types (double,

Complex) as well as objects

Example: Used to build a distributed array package
0Hides the details of exchange, indirection within the

data structure, etc.

SC2003 S09: Programming with the Partitioned Global Address Space Model 23011/16/03

Example of Templates

template <class Element> class Stack {
. . .
public Element pop() {...}
public void push(Element arrival) {...}

}

template Stack<int> list = new template Stack<int>();
list.push(1);
int x = list.pop();

Addresses programmability and performance

Not an object
Strongly typed,

No dynamic cast

SC2003 S09: Programming with the Partitioned Global Address Space Model 23111/16/03

Outline

Titanium Execution Model

Titanium Memory Model

Support for Serial Programming

Performance and Applications
0Serial Performance on pure Java (SciMark)
0Parallel Applications
0Compiler status & usability results

Compiler/Language Status

SC2003 S09: Programming with the Partitioned Global Address Space Model 23211/16/03

SciMark Large - Linux, 1.8GHz Athlon, 256 KB L2, 1GB RAM

0

50

100

150

200

250

300

350

Composite
Score

FFT SOR Monte Carlo Sparse matmul LU

sunjdk

ibmjdk

tc2.87

gcc

– Sun JDK 1.4.1_01 (HotSpot(TM) Client VM) for Linux
– IBM J2SE 1.4.0 (Classic VM cxia32140-20020917a, jitc JIT) for 32-bit Linux
– Titaniumc v2.87 for Linux, gcc 3.2 as backend compiler -O3. no bounds check
– gcc 3.2, -O3 (ANSI-C version of the SciMark2 benchmark)

Java Compiled by Titanium Compiler

SC2003 S09: Programming with the Partitioned Global Address Space Model 23311/16/03

Applications in Titanium
Benchmarks and Kernels
0Scalable Poisson solver for infinite domains
0NAS PB: MG, FT, IS, CG
0Unstructured mesh kernel: EM3D
0Dense linear algebra: LU, MatMul
0Tree-structured n-body code
0Finite element benchmark

Larger applications
0Gas Dynamics with AMR
0Heart and Cochlea simulation (ongoing)
0Genetics: micro-array selection
0Ocean modeling with AMR (in progress)

SC2003 S09: Programming with the Partitioned Global Address Space Model 23411/16/03

Heart Simulation: Immersed Boundary Method

Problem: compute blood flow in the heart
0Modeled as an elastic structure in an

incompressible fluid.
The “immersed boundary method” [Peskin and McQueen].
20 years of development in model

0Many other applications: blood clotting, inner ear,
paper making, embryo growth, and more

Can be used for design
of prosthetics
0Artificial heart valves
0Cochlear implants

SC2003 S09: Programming with the Partitioned Global Address Space Model 23511/16/03

MOOSE Application
Problem: Genome Microarray construction
0Used for genetic experiments
0Possible medical applications long-term

Microarray Optimal Oligo Selection Engine (MOOSE)
0A parallel engine for selecting the best

oligonucleotide sequences for genetic microarray
testing from a sequenced genome (based on
uniqueness and various structural and chemical
properties)
0First parallel implementation for solving this

problem
0Uses dynamic load balancing within Titanium
0Significant memory and I/O demands for larger

genomes

SC2003 S09: Programming with the Partitioned Global Address Space Model 23611/16/03

Scalable Parallel Poisson Solver
MLC for Finite-Differences by Balls and Colella

Poisson equation with infinite boundaries
0arise in astrophysics, some biological systems, etc.

Method is scalable
0Low communication (<5%)

Performance on
0SP2 (shown) and T3E
0scaled speedups
0nearly ideal (flat)

Currently 2D and
non-adaptive

SC2003 S09: Programming with the Partitioned Global Address Space Model 23711/16/03

Error on High-Wavenumber Problem

Charge is
01 charge of

concentric waves
02 star-shaped

charges.

Largest error is where
the charge is changing
rapidly. Note:
0discretization error
0faint decomposition

error

Run on 16 procs

-6
.4

7x
10

-9
0

 1

.3
1x

10
-9

SC2003 S09: Programming with the Partitioned Global Address Space Model 23811/16/03

AMR Gas Dynamics
Hyperbolic Solver [McCorquodale and Colella]
0Implementation of Berger-Colella algorithm
0Mesh generation algorithm included

2D Example (3D supported)
0Mach-10 shock on solid surface

at oblique angle

Future: Self-gravitating gas dynamics package

SC2003 S09: Programming with the Partitioned Global Address Space Model 23911/16/03

Outline

Titanium Execution Model

Titanium Memory Model

Support for Serial Programming

Performance and Applications

Compiler/Language Status

SC2003 S09: Programming with the Partitioned Global Address Space Model 24011/16/03

Titanium Compiler Status

Titanium runs on almost any machine
0Requires a C compiler and C++ for the translator
0Pthreads for shared memory
0GASNet for distributed memory, which exists on

Quadrics, IBM/SP (LAPI), Myrinet (GM), Infiniband, and MPI
Shared with Berkeley UPC compiler

Recent language and compiler work
0Indexed (scatter/gather) array copy
0Non-blocking array copy underway
0Loop level cache optimizations
0Inspector/Executor underway

SC2003 S09: Programming with the Partitioned Global Address Space Model 24111/16/03

Programmability

Heart simulation developed in ~1 year
0Extended to support 2D structures for Cochlea model in

~1 month

Preliminary code length measures
0Simple torus model

Serial Fortran torus code is 17045 lines long (2/3 comments)
Parallel Titanium torus version is 3057 lines long.

0Full heart model
Shared memory Fortran heart code is 8187 lines long
Parallel Titanium version is 4249 lines long.

0Need to be analyzed more carefully, but not a significant
overhead for distributed memory parallelism

SC2003 S09: Programming with the Partitioned Global Address Space Model 24211/16/03

Current Work & Future Plans

Unified communication layer with UPC: GASNet

Exploring communication overlap optimizations
0Explicit (programmer-controlled) and automated

Analysis and refinement of cache optimizations

Additional language support for unstructured grids
0Arrays over general domains
0Arrays with multiple values per grid point

Continued work on new and existing applications

http://titanium.cs.berkeley.edu

SC2003 S09: Programming with the Partitioned Global Address Space Model 24311/16/03

Titanium Group (Past and Present)
Susan Graham
Katherine Yelick
Paul Hilfinger
Phillip Colella (LBNL)
Alex Aiken

Greg Balls
Andrew Begel
Dan Bonachea
Kaushik Datta
David Gay
Ed Givelberg
Arvind Krishnamurthy

Ben Liblit
Peter McQuorquodale (LBNL)
Sabrina Merchant
Carleton Miyamoto
Chang Sun Lin
Geoff Pike
Luigi Semenzato (LBNL)
Armando Solar-Lezama
Jimmy Su
Tong Wen (LBNL)
Siu Man Yau
and many undergraduate
researchers

http://titanium.cs.berkeley.edu

SC2003 S09: Programming with the Partitioned Global Address Space Model 24411/16/03

Example of Data Input
Reading from keyboard, uses Java exceptions
int myCount = 0;

int single allCount = 0;

if (Ti.thisProc() == 0)

try {

DataInputStream kb =

new DataInputStream(System.in);

myCount =

Integer.valueOf(kb.readLine()).intValue();

} catch (Exception e) {

System.err.println("Illegal Input");

}

allCount = broadcast myCount from 0;

SC2003 S09: Programming with the Partitioned Global Address Space Model 24511/16/03

Shared/Private vs Global/Local
Titanium’s global address space is based on pointers rather
than shared variables

There is no distinction between a private and shared heap
for storing objects
0Although recent compiler analysis infers this distinction

and uses it for performing optimizations

Any object may be referenced by global or local pointers

There is no direct support for distributed arrays
0Irregular problems do not map easily to distributed

arrays, since each processor will own a set of objects
(sub-grids)

0For regular problems, Titanium uses pointer dereference
instead of index calculation

0Important to have local “views” of data structures

SC2003 S09: Programming with the Partitioned Global Address Space Model 24611/16/03

Domain Example

Point<2> lb = [0, 0];
Point<2> ub = [6, 4];
RectDomain<2> r = [lb : ub : [2, 2]];
...
Domain<2> red = r + (r + [1, 1]);
foreach (p in red) {

...
}

(0, 0)

(6, 4)
r

(1, 1)

(7, 5)
r + [1, 1]

(0, 0)

(7, 5)
red

Domains in general are not rectangular
Built using set operations
0union, +
0intersection, *
0difference, -

Example is red-black SOR

SC2003 S09: Programming with the Partitioned Global Address Space Model 24711/16/03

Example using Domains and foreach

Gauss-Seidel red-black computation in multigrid
void gsrb() {

for (Domain<2> d = red; d != null;

d = (d == red ? black : null)) {

foreach (q in d)

res[q] = ((phi[n(q)] + phi[s(q)]

+ phi[e(q)] + phi[w(q)])*4

+ phi[ne(q) + phi[nw(q)]

+ phi[se(q)] + phi[sw(q)]

+ 20.0*phi[q] - k*rhs[q]) * 0.05;

foreach (q in d) phi[q] += res[q];

}

}

unordered iteration

SC2003 S09: Programming with the Partitioned Global Address Space Model 24811/16/03

SciMark Benchmark

Numerical benchmark for Java, with C versions
0purely sequential, no Titanium extensions

Five kernels:
0FFT (complex, 1D)
0Successive Over-Relaxation (SOR)
0Monte Carlo integration (MC)
0Sparse matrix multiply
0dense LU factorization

Results are reported in Mflops

From Roldan Pozo at NIST
0http://math.nist.gov/scimark2

Roldan Pozo, NIST, http://math.nist.gov/~Rpozo

SC2003 S09: Programming with the Partitioned Global Address Space Model 24911/16/03

• Immersed Boundary Method
• Material (e.g., heart muscles,

cochlea structure) modeled by
grid of material points

• Fluid space modeled by a regular
lattice

• Irregular material points need to
interact with regular fluid lattice
• Trade-off between load balancing

of fibers and minimizing
communication

• Memory and communication
intensive

• Includes a Navier-Stokes solver
and a 3-D FFT solver

Fluid Flow in Biological Systems

• Heart simulation is complete, Cochlea simulation is close to done
• First time that immersed boundary simulation has been done on

distributed-memory machines
• Working on a Ti library for doing other immersed boundary simulations

SC2003 S09: Programming with the Partitioned Global Address Space Model 25011/16/03

SciMark Small - Linux, 1.8GHz Athlon, 256 KB L2, 1GB RAM

0

100

200

300

400

500

600

700

800

900

Composite
Score

FFT SOR Monte Carlo Sparse matmul LU

sunjdk

ibmjdk

tc2.87

gcc

Java Compiled by Titanium Compiler

– Sun JDK 1.4.1_01 (HotSpot(TM) Client VM) for Linux
– IBM J2SE 1.4.0 (Classic VM cxia32140-20020917a, jitc JIT) for 32-bit Linux
– Titaniumc v2.87 for Linux, gcc 3.2 as backend compiler -O3. no bounds check
– gcc 3.2, -O3 (ANSI-C version of the SciMark2 benchmark)

SC2003 S09: Programming with the Partitioned Global Address Space Model 25111/16/03

Implementation Portability Status
Titanium has been tested on:
0POSIX-compliant workstations & SMPs
0Clusters of uniprocessors or SMPs
0Cray T3E
0IBM SP
0SGI Origin 2000
0Compaq AlphaServer
0MS Windows/GNU Cygwin
0and others…

Supports many communication layers
0High performance networking layers:

IBM/LAPI, Myrinet/GM, Quadrics/Elan, Cray/shmem, Infiniband (soon)
0Portable communication layers:

MPI-1.1, TCP/IP (UDP)

http://titanium.cs.berkeley.edu

Automatic portability:
Titanium applications run
on all of these!
Very important productivity
feature for debugging &
development

Parallel Programming with
the Partitioned Global
Address Space Model

Parallel Programming with
the Partitioned Global
Address Space Model

Summary

Bill Carlson

Summary

Bill Carlson

SC2003 S09: Programming with the Partitioned Global Address Space Model 25311/16/03

One Model

Distributed Shared Memory
0Coding simplicity
0Recognizes system capabilities

SC2003 S09: Programming with the Partitioned Global Address Space Model 25411/16/03

Three Languages

Small changes to existing languages
0ANSI C ⇒ UPC
0F90 ⇒ Co-Array Fortran
0Java ⇒ Titanium

Many implementations on the way

SC2003 S09: Programming with the Partitioned Global Address Space Model 25511/16/03

For More Info

UPC
0http://upc.gwu.edu

Co-Array Fortran
0http://www.co-array.org

Titanium
0http://titanium.cs.berkeley.edu

