
Software and Algorithms for Graph Queries on Multithreaded
Architectures

Jonathan W. Berry∗ Bruce Hendrickson† Simon Kahan‡ Petr Konecny§

January 20, 2007

Abstract

Search-based graph queries, such as finding short
paths and isomorphic subgraphs, are dominated
by memory latency. If input graphs can be par-
titioned appropriately, large cluster-based com-
puting platforms can run these queries. How-
ever, the lack of compute-bound processing at
each vertex of the input graph and the constant
need to retrieve neighbors implies low proces-
sor utilization. Furthermore, graph classes such
as scale-free social networks lack the locality to
make partitioning clearly effective.

Massive multithreading is an alternative ar-
chitectural paradigm, in which a large shared
memory is combined with processors that have
extra hardware to support many thread con-
texts. The processor speed is typically slower
than normal, and there is no data cache. Rather
than mitigating memory latency, multithreaded
machines tolerate it. This paradigm is well aligned
with the problem of graph search, as the high
ratio of memory requests to computation can be
tolerated via multithreading.

In this paper, we introduce the MultiThreaded
Graph Library (MTGL), generic graph query
software for processing semantic graphs on mul-
tithreaded computers. This library currently
runs on serial machines and the Cray MTA-2,
but Sandia is developing a run-time system that
will make it possible to run MTGL-based code
on Symmetric MultiProcessors. We also intro-
duce a multithreaded algorithm for connected

∗Sandia National Laboratories
†Sandia National Laboratories
‡Cray, Inc.
§Cray, Inc.

components and a new heuristic for inexact sub-
graph isomophism. We explore the performance
of these and other basic graph algorithms on
large scale-free graphs. We conclude with a per-
formance comparison between the Cray MTA-2
and Blue Gene/Light for s-t connectivity.

1 Introduction

Typical microprocessors combine several layers
of cache into a memory hierarchy, then rely on
the spacial and temporal locality inherent in
many applications. Graph algorithms, however,
might have neither. This is especially true when
they are applied to unstructured graphs such as
social networks.

A semantic graph (or attributed relational
graph) is a graph with types on the vertices
and/or edges. Vertices are typically “nouns”
and edges are typically “verbs.” Social net-
works, for example, are semantic graphs. The
world focus on counter-terrorism as a primary
challenge has made the processing of large, un-
structured semantic graphs an important research
area.

The shared-memory programming model of
the massively multithreaded Cray MTA and El-
dorado machines offer the mixed blessing of a
higher level of abstraction than message pass-
ing/MPI models, but relatively more subtle con-
currency and performance issues. The MTGL
is designed to encapsulate many of these sub-
tleties for standard graph kernel algorithms.

We present the MTGL in stages. In Sec-
tion 2, we describe the design goals and primary
design pattern of the MTGL. Then, in Section 4,

1
1-4244-0910-1/07/$20.00 ©2007 IEEE

we give high-level pseudocode descriptions of
the MTGL implementations of three kernel al-
gorithms: connected components, subgraph iso-
morphism, and s-t connectivity. These descrip-
tions will highlight the generic nature of the
graph search primitives within the MTGL, as
they are reused several times.

Note in advance that there is no graph or
matrix partitioning in the MTGL kernel algo-
rithms we describe. The MTA programmer does
not explicitly make assignments of tasks or data
to specific processors. This is handled by the
runtime system of the MTA. In fact, the mem-
ory of the MTA-2 is hashed at the word level in
order to intentionally destroy locality.

Synchronization in the MTA-2 is handled
with a full/empty bit associated with every word.
The architecture does support concurrent reads
and writes, but the programmer must be wary
of hot spots.

2 MTGL Design Methodology

The MTGL is a small prototype C++ library
that is inspired by the Boost Graph Library
(BoostGL) of Siek, Lee, and Lumsdaine [6]. How-
ever, our library is not an extension of BoostGL.
The MTA and Eldorado compilers are not fully
compliant with the C++ standard, and BoostGL
makes aggressive use of the language in order to
maximize its flexibility. The MTGL is not de-
signed to be as generic as BoostGL. Rather, our
primary design goals are to maximally expose
the performance of multithreaded machines and
to maximally encapsulate the threats to success-
ful development of applications: race conditions
and hotspotting. Whereas the BoostGL has nu-
merous graph representations, data structures,
and algorithms, our prototype MTGL has but
a few.

The primary design pattern of the MTGL
is the visitor pattern. Algorithms are defined
by library programmers as objects, and are cus-
tomized by user-defined “visitor” classes. We
show several examples of the use of visitors be-
low. Performance results are then presented in
Section 6. We omit actual code samples in this

paper. At the time of this writing, we are in the
process of obtaining an open-source license for
the MTGL.

3 Notation

In order to describe multithreaded graph algo-
rithms and their implementations in the MTGL,
it is convenient to define some notation. We
begin with the familiar definition of a graph:
G = (V,E), were V is the vertex set of G (also
denoted V (G)), E is the edge set of G (E(G)),
and E(v) is the set of edges incident on vertex
v. we define a type function t such that t(v)
is the type of v ∈ V , and t(v,w) is the type of
edge (v,w). In this paper and in the prototype
MTGL, all graphs are assumed to be directed.
Undirected graphs are constructed by enforcing
the property that whenever (v,w) exists, (w, v)
will exist as well. In social networks, reciprocal
relationships almost always exist. For example,
if v is the father of w, then w is the son of v.
In the rare cases in which there is a relationship
between v and w, but no relationship between
w and v, we define the edge type t(w, v) to be
null. Furthermore, we allow multiple edges be-
tween two vertices v and v′, and so the notation
for an edge varible (v, v′) allows for multiple in-
stances of edges between v and v′. It will not
be important to name these instances in this
paper.

We often refer to the quadruple of types as-
sociated with an undirected edge between two
vertices v and w. We use the shorthand nota-
tion t[v,w] to denote the quadruple (t(v), t(v,w),
t(w, v), t(w)). Since the semantic graphs that
motivated the MTGL may be multigraphs, and
hence any pair of vertices v and v′ may have
many edges of different types between them, it
is convenient for us to speak of walks in terms
of edges rather than vertices. We define a walk
of length l to be a sequence of l edges: W =
((w0, w1), (w1, w2), . . . , (wl−1, wl)). We say that
two walks W and W ′ are type-isomorphic if

t[wi, wi+1] = t[w′
i, w

′
i+1]

for all 0 ≤ i ≤ l − 1.

2

When multiple threads access a piece of shared
memory, the MTA’s word-level concurrency mech-
anisms, listed in Table 3, are used by the MTGL
infrastructure, and sometimes by user programs.
When we need to specify a concurrent access in
our pseudocode, we use the associated notation
shown in Table 3.

In addition to the notation defined in Ta-
ble 3, when we wish to specify that some high
level series of operations, such as an insertion of
element e into a hash table T , is done in a thread
safe manner, we use the notation T

ts← T ∪ e.
Visitor objects in MTGL algorithms have

fields (member data in C++ lingo), and we use
the standard C/C++ notation I.f to denote
field f of object instance I. Visitor objects will
also have associated methods, and these are de-
fined using a generic pseudocode format.

We encapsulate MTGL logic that determines
whether or not to parallelize a loop. The pseu-
docode

for (v,v’) in E(v):

indicates that the MTGL will instruct the un-
derlying machine to parallelize the loop if paral-
lelization is supported and E(v) is large enough.
Otherwise, the loop will run in serial. One hun-
dred iterations is the default threshold in the
MTGL. This explanation holds unless there is
a comment in the pseudocode indicating other-
wise.

In the pseudocode below, we assume that
all vertices and edges have id’s. However, in
our notation a vertex’s name as its id (v, as
opposed to v.id), while an edge’s id is called
out explicitly ((v, v′).id or e.id).

4 Algorithmic Kernels of the
MTGL

Using pseudocode and the notation defined above,
we will now give descriptions of three algorith-
mic kernels of many graph queries that might be
submitted to a semantic graph algorithm server.
These kernels are connected components, sub-
graph isomorphism, and s-t connectivity. A con-
nected component C is defined as a maximal

subset of the vertex set V such that any v and
w in C are connected by a path. Finding con-
nected components is an elementary problem
in graph theory, and linear-time solutions exist.
Efficient parallel algorithms exist as well [5].

PSearch<AND,Vis>(v)
{

Vis.d(v)
for (v,v’) in E(v):

if Vis.vt(v,v’):
if (v,v’) unvisited:

Vis.te(v,v’)
PSearch<Vis>(v’)

else:
Vis.oe(v,v’)

}

Figure 1: Pseudocode for the PSearch routine,
templated to treat the user’s visit test as a log-
ical “and.”

PSearch<OR,Vis>(v)
{

Vis.d(v)
for (v,v’) in E(v):

if (v,v’) unvisited OR Vis.vt(v,v’):
Vis.te(v,v’)
PSearch<Vis>(v’)

else:
Vis.oe(v,v’)

}

Figure 2: Pseudocode for the PSearch routine,
templated to treat the user’s visit test as a log-
ical “or.”

Subgraph isomorphism, however, is an NP-
complete problem, and hence computationally
intractable barring an epochal theoretical devel-
opment. Given a graph G and a smaller graph
H, is there a subgraph of G isomorphic to H?
A classical algorithm by Ullman [7] solves the
subgraph isomorphism problem, but its compu-
tational complexity makes this algorithm unus-
able for large inputs. We will give a new heuris-
tic for the subgraph isomorphism problem on
semantic graphs that demonstrates the flexibil-
ity of the MTGL and scales almost perfectly on
the MTA-2.

3

MTA primitive meaning notation MTGL

b = int fetch add(a,i) atomic read, then increment of a b
ifa← a, i mt incr

b = readfe(a) wait for a to be “full,” read a leave it “empty” b
fe← a mt readfe

b = readff(a) wait for a to be “full,” read a, leave it “full” b
ff← a mt readfe

writeef(a,v) wait for a to be “empty,” write a, leave it “full” a
ef← v mt writeef

Table 1: Some MTA primitives and their pseudocode and MTGL designations. The int fetch add
intrinsic is an atomic read and increment instruction. In this example, b gets the old value of a,
then a is incremented by i.

PSearch<REPLACE,Vis>(v)
{

Vis.d(v)
for (v,v’) in E(v):

if Vis.vt(v,v’):
Vis.te(v,v’)
PSearch<Vis>(v’)

else:
Vis.oe(v,v’)

}

Figure 3: Pseudocode for the PSearch routine,
templated to treat the user’s visit test as the
only criterion for proceeding.

4.1 Preliminaries

In Figures 1,2, and 3, we give pseudocode for a
basic MTGL primitive: parallel graph search
PSearch. We do not specify “depth-first” or
“breadth-first” search since the primitive has el-
ements of both. A single instance of PSearch(v)
will initiate a single search from vertex v, and
each time the neighbors of a vertex are explored,
a decision is made whether to parallelize the
loop of recursive PSearch’es from the neighbors
of v. As no queue is used to enforce breadth-
first visitation of vertices, PSearch reduces to
depth-first search when MTGL code is run on a
serial machine.

Following the visitor pattern, PSearch is an
object, and it is customized by two template
parameters. One of these is a a visitor object
that will provide PSearch with five things:

1. User-defined fields, such a data structures
to hold results,

2. A sr(v) method, to be called upon the ini-

tial discovery of vertex v as a search tree
root (called once per psearch),

3. A d(v) method, to be called upon the dis-
covery of vertex v during search,

4. A vt(v, v′) (visit-test) method, to be called
before traversing edge (v, v′).

5. A te(v, v′) (tree-edge) method, to be called
upon visiting edge (v, v′) to first discover
v′.

6. An oe(v, v′) (other-edge) method, to be
called upon visiting edge (v, v′) to revisit
v′.

7. An optional copy(vis) method, to be called
in order to copy visitor objects. This is
used to create linked lists of visitors corre-
sponding to nodes in the search tree. Such
lists are constructed and used in the sub-
graph isomorphism heuristic introduced in
Section4.5.

In particular, the visit-test (vt) method gives
psearch significant flexibility. The MTGL pro-
grammer can use this method, for example, to
specify forward, backward, or undirected searches,
or to continue or halt searches based on cus-
tomized criteria.

The other template parameter is an opera-
tion type that will tell the search primitive how
to interpret the visitor’s vt (visit-test) method.
Acceptable operation types are:

• logical OR, which indicates that the search
should proceed via edge (v, v′) if v′ is un-

4

visited, or if the user’s visit-test returns
true;

• logical AND, which indicates that the search
should terminate if the user’s visit-test re-
turns false, regardless of whether v′ has
been visited;

• the symbol REPLACE, which indicates that
whether or not v′ has been visited is ir-
relevant. The user’s visit-test alone will
determine whether to continue the search.

SearchHighLow<OP, Vis>(G)
{

high-degree vertices
H ← {v h1, v h2, . . . , v hk}
low-degree vertices
L ← {v l1, v l2, . . . , v h(n − k)}
for v in H: # in serial

PSearch<OP,Vis>(v)
for v in L:

PSearch<OP,Vis>(v)
}

Figure 4: Pseudocode for the SearchHighLow
routine . H and L are found in parallel on a
multithreaded platform. Although the loop over
H is in serial, each iteration launches a parallel
PSearch.

For example, if the user wishes to search the
subgraph induced by type “green” edges only,
the AND operation would be used. Another ex-
ample of an AND visitor is given in Section 4.5
below. If, on the other hand, the user wishes
to take a random walk through the graph while
disregarding repeat visits, the REPLACE opera-
tion would be used. An example of a meaningful
use of the OR operation is given in Section 4.3.

The nested parallelism in the psearch pseu-
docode can be handled well by the MTA-2 if the
proper compiler directives are used. The MTGL
encapsulates the choice of these compiler direc-
tives, as well as several concurrency issues.

A common operation in multithreaded graph
algorithms is to run a large number of PSearch
instances concurrently in the same graph. In
order to avoid repetition of this operation, we
define and reuse a function that implements a
heuristic variety of this operation due to Jace

Mogill. Assuming that there are k vertices of
“high degree,” where the latter can be defined
by the MTGL programmer, initiate PSearches
from those, using a serial loop. Attempting to
initiate these searches in parallel overwhelms
even the MTA with threads. After searching
from the high-degree vertices, we initiate searches
from all remaining vertices in parallel. Note
that many of these searches will terminate im-
mediately, as they encounter previously visited
vertices. Mogill’s heuristic, and Kahan’s C im-
plementation of it, recursively segregates high-
degree neighbors from low-degree neighbors dur-
ing the search. However, our MTGL implemen-
tation uses the simpler logic given in Figure 4.

4.2 Kahan’s Algorithm for Connected
Components

Kahan’s algorithm labels the connected compo-
nents of G in a three-phase process:

1. SearchHighLow is called to cover the graph
with concurrent searches. The result is a
partial labelling of connected components
and a hash table containing pairs of com-
ponents that must be merged into one.

2. A standard concurrent-read, concurrent-
write parallel algorithm (Shiloach-Vishkin) [5],
is used to find the connected components
of the graph induced by the component
pairs in the hash table.

3. A set of PSearches is initiated from each
component leader identified by phase 2.
Each PSearch labels all vertices in a single
component.

The MTGL implementation of Kahan’s al-
gorithm illustrates the flexibility of the visitor
pattern. In order to implement phase 1, we
define a visitor object that will customize the
SearchHighLow operation. The pseudocode is
shown in Figure 5.

Phase 2 of Kahan’s algorithm is a call to
the Shiloach-Vishkin algorithm to find the con-
nected components of the graph induced when
we treat each pair in T as an edge. We omit the

5

V 1 ← {
C ← array of |V(G)| ints
T ← hash table of (int, int) pairs

sr(v) { C[v] ← v }
vt(v,v’) { }
te(v,v’) { C[v′] ← C[v] }
oe(v,v’) { T

ts← T ∪ { (C[v], C[v′]) } }
}

Figure 5: The visitor object for Kahan’s algo-
rithm, phase 1 . The hash table insertion is
made only if C[v] is not equal to C[v′].

MTGL pseudocode for this phase, and simply
describe phase 2 with the following code:

L ← ShiloachVishkin(V1.T),

where L is the set of component leaders deter-
mined by the algorithm.

To implement phase 3, we define another
visitor class to customize another call to a search
primitive. This simpler visitor is shown in Fig-
ure 6.

V 2 ← {
C ← V 1.C

d(v) { }
vt(v,v’) { }
te(v,v’) ← V 1.te(v,v’)
oe(v) { }

}

Figure 6: The visitor object for Kahan’s algo-
rithm, phase 3

Kahan’s algorithm in its entirety is given in
Figure 7.

Kahan(G) {
define V 1
SearchHighLow<OR,V 1>(G)
L ← ShiloachVishkin(V 1.T),
define V 2
for v in L:
PSearch<OR,V 2>(v)

return V 2.C
}

Figure 7: Kahan’s algorithm for connected com-
ponents

4.3 The bully algorithm for connected
components

The running time of Kahan’s algorithm is dom-
inated by the construction of the hash table T
in phase 1. If we exploit multithreading and the
MTGL, we can remove the hash table entirely.
Rather than remembering which two concurrent
searches encounter one another, we arbitrate be-
tween them. Only one of the searches is allowed
to continue, and it overwrites the component
numbers written by the other search. In this
way, the algorithm completes in one phase with-
out building a data structure. The continuing
search is the “bully.”

The bully algorithm requires only one vis-
itor class. This is defined in Figure 8. The

V 3 ← {
C ← array of |V(G)| ints

sr(v) { C[v]
ts← v}

vt(v,v’) {
if (C[v] < C[v′]):

return true
else:

return false
}
te(v,v’) {

c
fe← C[v′]

if ((v’ unvisited) or (c > C[v])):

C[v′]
ef← C[v]

else:

C[v′]
ef← c

}
oe(v) { }

}

Bully(G) {
define V 3
SearchHighLow<OR,V 3>(G)
return V 3.C

}

Figure 8: The bully algorithm

non-empty visit-test method enables the bully
searches to continue even though their destina-
tion vertices were previously discovered. When
a “bullying” operation is occurring, we use full-
empty synchronization logic to ensure that the
marking of vertices is correct.

The bully algorithm is less general than Ka-

6

han’s three-phase algorithm since we expect no
speedup in the pathological cases in which the
entire graph a single chain or ladder. However,
for the power-law semantic graphs that we ex-
plore in Section 6, the performance of the bully
algorithm is good.

4.4 Compound type filtering

The MTGL is designed to process semantic graphs,
and our next example illustrates what we antic-
ipate to become a common operation: filtering
the edges of G by the quadruples of types as-
sociated with a small set of edges TE . We call
this operation compound type filterning. Recall
that for any (v, v′) ∈ TE , we have defined

t[v, v′] = (t(v), t(v, v′), t(v′, v), t(v′)).

Suppose that we wish to find in G an isomor-
phic or nearly-isomorphic instance of a smaller
graph. Some authors call the small graph a pat-
tern graph and the large graph a target graph.
However, we adopt the convention that both of
these terms apply only to the small graph (and
the large graph is simply “the graph”).

Letting TE denote the set of edges in a target
graph, we start by finding the size of the edge-
induced subgraph S of G such that for every
undirected edge (v,w) ∈ S, there exists an undi-
rected edge (v′, w′) ∈ TE with t[v,w] = t[v′, w′].
If subgraph S is found to have sufficiently few
edges, we may extract S and apply a subgraph
isomorphism heuristic to it.

The MTGL pseudocode to identify the edges
of S is shown in Figure 9. This is our fourth
example of a visitor class customizing the search
primitives.

Note that the intuitive way of accomplishing
this compound filtering operation would be sim-
ply to loop through an array of all of the edges
in the large graph, checking the types of each
one against each edge in the target graph. This
is logically correct, but a very poor alternative
in a multithreaded environment since, for exam-
ple, all edges of a given vertex would be trying
to retrieve its type at the same time. We use the
search primitives to accomplish the logical op-

V 4 ← {
T E ← the k edges of a target graph
s ← 0 # s used to store a vertex type
M ← an empty bitmap of size |E(G)|

#upon discovery, access t(v) only once
d(v) { s ← t(v) }

#called for each v′ ∈ E(v); avoid t(v)
te(v,v’) {

i ← (v, v′).id
for e in (i%k, (i + 1)%k, . . . , (i + k − 1)%k):

(w, w′) ← T E[e]
if ((s, t(v, v′), t(v′, v), t(v′))=t[w,w’]):

M[eid] = 1
}
oe(v,v’) ← te(v, v′)

}

CorrectlyTypedEdges(G, T E) {
define V 4
SearchHighLow<OR,V 4>(G)
return V 4.M

}

Figure 9: Compound type filtering. The % sym-
bol denotes modular arithmetic.

eration of examining each edge and to mitigate
the hot spots inherent in the naive approach.

Note also that the for loop in the te(v,v’)
method is written so that different threads will
examine the edge set TE in different orders. This
would become unnecessary if the programmer
had the ability to allocate local memory. In the
latter case, s/he would allocate one copy of the
target graph for each processor.

As we will show in Section 6, the routine
CorrectlyTypedEdges has memory reference prop-
erties that make it the best candidate of our
graph kernels for near-perfect scaling as multi-
threaded machines increase in size.

4.5 Subgraph isomorphism for seman-
tic graphs

A fundamental problem in graph algorithms is
topological pattern matching. The famous graph
isomorphism problem still defies classification,
though some heuristic solutions work very well
in practice [3]. Furthermore, the problem of
testing isomorphisms between a relatively small

7

V 5 ← {
B ← sparse collection of triples
W ← a walk through the target graph
i ← the current stage

d(v) {}

te(v,v’) {
if (i = 0 or ∃ v̄ B[i − 1, v̄, v] = 1) and

(t[v, v′] = t[w i, w (i + 1)])
B[i,v,v’] = 1

}
oe(v,v’) ← te(v,v’)

}

AdvanceOneStage<V_5>(i) {
SearchHighLow<OR,V 5>(G)
return V 5.B

}

FindBipartiteEdges(G, T_E, W) {
B ← null
define V_5
for i = 0 to l(W):

V 5.B ← AdvanceOneStage<V_5>(i)
return V_5.B

}

Figure 10: A visitor class to help find the edges
of GB

“target” graph and all equivalently-sized sub-
graphs of a larger graph, i.e., subgraph isomor-
phism, is known to be NP-complete. Early at-
tempts at subgraph isomorphism heuristics in-
cluded branch and bound processes that exploit
matrix operations [7] and are not practical for
large instances. There is more recent literature
on heuristics, such as [4], [2], and others, but
we haven’t yet compared our heuristic with this
work.

We assume for this discussion that when-
ever edge (v,w) exists, (w, v) will exist as well.
If v is adjacent to w via some type of relation-
ship, then w is adjacent to v via the inverse of
that relationship. In semantic graphs, vertex
and edge types make the otherwise intractable
subgraph isomorphism problem more approach-
able. A simple heuristic would start many con-
current searches at appropriately typed nodes,
then employ branch & bound to explore the
space of matching choices between the neigh-

bors of a vertex in the large graph and those of
its analogue in the small graph. We considered
such an approach, but abandoned it in favor of
the method we describe next.

In undirected semantic graphs, we are as-
sured that there will be an Euler tour through
the target graph. Such a tour traverses each
edge exactly once, and ends up at its start-
ing point. Euler tours exist in undirected se-
mantic graphs as we have described them since
each undirected edge is really a pair of directed
edges, and a basic theorem states that Euler
tours must exist if, for each vertex, the in-degree
equals the out-degree.

V 6 ← {
lv ← levels of V (G B)
M ← map: V (G B) → V (G)
S ← an empty subgraph
found ← 0, next ← null

visitor objects are copied during the
search; keep linked list of ancestors
copy(V_6 parent) {

next ← parent
}

d(v) {}

vt(v,v’) {
if lv(v′) = lv(v) + 1:

return true
else:

return false
}
te(v,v’) {

if lv(v′) == l:

f
ifa← found, 1

if f == 0
return the first match
for (v̄, v̂) in (v, v′), ancestors:

S ← S ∪ (M(v̄), M(v̂))
}

}

Figure 11: Subgraph extraction visitor pseu-
docode. This code returns only the first match,
but a full branch and bound search could be
made, given a suitable metric.

Let us name our small, target graph TG.
Our subgraph isomorphism heuristic begins by
finding an Euler tour through TG, and construct-
ing a sequence of edges W (for “walk”). Sup-

8

SubgraphIsomorphism(G, T E, W) {
B ← FindBipartiteEdges(G, T E, W)
V B ← {(i, j) : ∃ k B[i, j, k] = 1}
E B ← {[(i, j), (i + 1, k)] :

(i, j), (i+1, k) ∈ V B ∧
B[i, j, k] = 1}

lv((i, j) ∈ V B) = i
s ← (0, j) ∈ V B : ∃ k B[0, j, k] = 1
define V_6
PSearch<AND,V_6>(s)
return V_6.S

}

Figure 12: Subgraph isomorphism pseudocode

posing that the walk traverses l edges,

W = ((w0, w1), (w1, w2) . . . , (wl−1, wl)).

We also denote the edge set E(TG) by TE . Our
heuristic will perform l SearchHighLow opera-
tions on the large graph G in order to construct
a data structure encapsulating all possible sub-
graphs of G that have a walk type-isomorphic to
W . If there is an exact topological match, it will
be among these possibilities. Furthermore, any
metric for comparing closeness of matches could
be used to inform a branch & bound search
through all possibilities.

The data structure we construct is a bipar-
tite graph GB . The vertices of GB are arranged
into rows r0, r1, . . . , rl, and all vertices in ri cor-
respond to vertices in G that are active after
traversing the first i − 1 edges of W . A vertex
v ∈ G is defined to be active at stage i if the
first i− 1 edges of W are type-isomorphic to at
least one walk in G that ends with v.

The edges of GB connect active vertices at
stage i with active vertices at stage i + 1, thus
documenting all ways that a given vertex can
become active. Figure 10 shows MTGL pseu-
docode that finds the edges of GB .

4.6 S-T Connectivity

Given a graph and two of its vertices, s and
t, a simple problem is to find a path of mini-
mum length connecting s to t. With unit-length
edges, this path can be found via breadth-first
search. This could be done by searching from s

until t is encountered, but a more efficient ap-
proach is to search from both ends in phases.
In one phase, we determine which of the two
searches has discovered fewer vertices, then ex-
pand one level of that search.

V 7 ← {
C ← array of |V(G)| ints

(initially empty)
done ← reference to int

d(v) { }
vt(v,v’) { }
te(v,v’) { C[v′] ← C[v] }
oe(v,v’) {

c
ff← C[v′]

if C[v] != c:
done = 1

}
}

Figure 13: The visitor object shared by two
breadth-first searches in the S-T connectivity
algorithm

When one search encounters a vertex dis-
covered by the other search, a shortest s-t path
has been found. This approach was used in the
Gordon Bell-finalist paper [9] to explore s-t con-
nectivity on BlueGene/Light. A distributed-
memory code applicable only to Erdös-Renýı
random graphs was run on an instance of or-
der 4 billion vertices and 20 billion edges. The
s-t search completed in about 1.5 seconds. In
Section 6, we will discuss the performance com-
parisons we were able to make.

5 Experiments with MTGL Ker-
nels

In order to evalute the performance of our MTGL
graph kernels, we compiled an MTGL applica-
tion with a power-law, semantic graph genera-
tor. The latter was written and tuned by Cray
for benchmarking purposes.

In order to generate a graph, the program-
mer specifies k levels, each of which determines
the number of vertices that will have a certain
degree. That is, level i specifies that ni vertices
will share the tails of mi directed edges, where

9

36

17

55

15

24

47

16

52 90
20

28

32

55

52

13

90/10

76/24

26/74

51/49

61/39
33/67

17/83

45/55

79/21

90/10

74/26

52/4822/78

85/15

85/15

86/14

54/46
21/79

55/45 80 46/54

18

95

25/75

67

70

75

51

36

17

55

15

2447

16

52

90

20
28

32

55

52

13
90/10

76/24

26/74

51/49

61/39

33/67 90/10

74/26

52/48

22/78

85/15

85/15

86/14 54/4621/79
55/45

18

95

95

25/75

25/75
80

79/21

51

Figure 18: Subgraph isomorphism results. The target graph is on the left, and the subgraph
found by the heuristic is on the right. Some vertex and edge types are shown for context. The large
vertices represent places where the type-isomorphic walks did not produce topological isomorphism.

BFS<OR,Vis>(v) # examine v’s out-edges
queue v’s neighbors

{
Vis.d(v)
for (v,v’) in E(v):

if v’ unvisited OR Vis.vt(v,v’):
Vis.te(v,v’)
Q.push(v’)

else:
Vis.oe(v,v’)

}

Figure 14: Pseudocode for the BFS routine,
which is a breadth-first analogue to PSearch.
However, a call to BFS expands one level, as
opposed to doing a complete search.

assignments are made randomly. The heads of
the mi edges are selected at random from V (G).
Our MTGL wrapper for this graph generator
has a parameter to generate the reciprocal edges
in order to make the graph undirected.

5.1 Data

For our experiments, the types of vertices and
edges are selected randomly from {0, 1, . . . , 99},
with the constraint that if an edge (v,w) has
type k, then its reciprocal (w, v) will have type
99 − k. The Cray graph generator allows mul-

STConnectivity(G,s,t)
{

define V 7
bfs1 ← BFS<OR,V 7>(s)
bfs2 ← BFS<OR,V 7>(t)
while not V 7.done:

if bfs1.nvisited < bfs2.nvisited:
for v’ in bfs1.topshell:

bfs1(v’)
else

for v’ in bfs2.topshell:
bfs2(v’)

}

Figure 15: Pseudocode for the S-T connectiv-
ity. Two concurrent breadth-first searches con-
verge, and each seach level of each search is ex-
plored in parallel. The nvisited variables store
the number of nodes visited by each search, and
the “topshell” notation indicates all vertices dis-
covered by the previous call to the search.

tiple edges and self-loops, but these occur spar-
ingly.

We experimented with graphs of sizes rang-
ing from 3 million edges to 500 million edges.
Our set of types, and the uniformly random dis-
tribution of these types may not reflect the re-
ality of current social networks. However, it is
plausible that some type ontologies would have

10

 10

 100

 1 10

T
im

e
in

 S
ec

on
ds

Number of Processors

Connected Components: 234M Edges

3Ghz, 64Gb Opteron Workstation: 5 minutes

C-K-Kahan: edge lists are K-ary trees

Kahan estimates 3x speedup with dynamic arrays

"C-K-Kahan"
"SandiaKahan"

"Bully"

Figure 16: Connected components kernel per-
formance

sufficient robustness that no large majority of
vertices or edges would have the same type.

For this paper, we report results on one graph
only. Therefore, we do not claim this to be a
thorough experimental study. Rather, this pa-
per serves as a case study for the applicabil-
ity of massive multithreading to unstructured
graph problems, and as an introduction to the
MTGL.

Our instance of concern is a power-law graph
with 32 million vertices and 234 million edges.
The degree distribution is approximately:

• 25 vertices of degree 220

• 215 vertices of degree 210

• 225 vertices of degree 5

5.2 Experimental Setup

We explored the performance of connected com-
ponents and subgraph isomorphism MTGL ker-
nels. The reason we limited ourselves to few
graph instances is that our analyses of the re-
sults involved time-consuming efforts to profile
and simulate each run in order to predict its
performance on Eldorado. We will report in

 100

 1000

 1 10

T
im

e
in

 S
ec

on
ds

Number of Processors

Subgraph Isomorphism Heuristic: 234M Edges (Target of 20 Edges)

3Ghz, 64Gb Opteron Workstation: ~15 minutes

"SubgraphIsomorphism"

Figure 17: Subgraph isomorphism kernel per-
formance

detail on this process in another paper. Here,
we will present only MTA-2 performance results
and abstract Eldorado predictions.

MTGL implementations of Kahan’s and the
bully algorithm for connected components were
compared to Kahan’s original C implementation
of his algorithm on the MTA-2. The canoni-
cal representation for an adjacency list in the
MTGL is a dynamic array. Kahan’s C code,
on the other hand, uses k-ary trees to repre-
sent these lists. That choice of data structure
was imposed by other benchmarking pressures,
and Kahan conjectures that his C version can
be made to run roughly three times faster, given
a dynamic array representation.

The prototype MTGL has no Euler tour rou-
tine at the moment. In order to implement
our subgraph isomorphism heuristic in the face
of this deficiency, we generated random walks
through the target graph via another customiz-
ing visitor to the PSearch MTGL primitive. In
general, the heuristic described in Section 4.5
can be given any walk. For example, many dif-
ferent Euler tours may be concatenated in order
to increase the likelihood of an exact topological
match. We approximated this input by taking
long random walks. We report results for walks

11

 0.1

 1

 100 1000 10000 100000

T
im

e
in

 S
ec

on
ds

Number of Edges (millions)

MTA (10 proc) vs. BG/L (32,000 proc.): S-T Connectivity

"S-T-MTA-MTGL-10"
"S-T-MTA-C-10"

"BGL-32k"

Figure 19: S-T connectivity comparison with
BlueGene/L

of length 120.
In order to generate our target graphs, we

defined another visitor to customize PSearch.
This one starts a single search and cuts it off
when enough edges have been gathered. The
power law nature of our large graph implies that
the resulting target graphs were usually star
graphs (see Figure 17). For our experiments,
we generated target graphs of size 20.

To ground the absolute performance in terms
of modern workstations, we also ran our exper-
iments on a 3Ghz, 68GB linux workstation.

6 Graph kernel performance

All of our experiments with the connected com-
ponents and subgraph isomorphism heuristic demon-
strate near-perfect scaling on the MTA-2. The
single processor performance was in the same
order of magnitude as that obtained on the 3Ghz
workstation.

6.1 MTA-2 performance

Figure 16 shows the results of our MTA-2 per-
formace test on the connected components al-
gorithms. Without considering the issue of dif-

fering edge set representations, our MTGL im-
plementation of Kahan’s connected components
algorithm is competitive with the original C im-
plementation, scales almost perfectly, and achieves
70+% utilization of the MTA-2. The bully al-
gorithm, with its lack of a requirement to build
a type-safe hash table, is roughly twice as fast as
the MTGL Kahan implementation, and achieves
95+% utilization of the MTA-2.

Perhaps most interesting are the performance
results for the s-t connectivity kernel. The pseu-
docode in Figure 15 is imperfect since each breadth-
first search relies on a global queue. The tail of
this queue becomes a hot spot when the number
of MTA-2 processors exceeds 10. This problem
can be addressed via a distributed queue, but
we have not yet implemented this fix. However,
10 MTA-2 processors is enough to bring the av-
erage running time for s-t connectivity on a 32
million vertex Erdös-Renýı graph with average
degree 8 down to 0.09s. In this computation,
roughly 23,000 vertices (combined) were visited
by the s and t searches.

The 4 billion vertex Erdös-Renýı graph that
was processed in 1.5 seconds using 32,000 pro-
cessors of BlueGene/L in [9] had average degree
10. The expected shortest path length for this
graph is between 9 and 10, so each breadth-first
search will expand roughly 5 levels on average
before the searches meet. After expanding shell
k, each of the two searches will have discovered
roughly 10k vertices. Thus, about 200,000 ver-
tices must be discovered in this large instance.
This is fewer than ten times as many vertices as
our 32 million vertex instance had to process.
Thus, 10 MTA processors should be able to pro-
ceess 200,000 vertices in well under a second. So
for this problem, a single digit number of MTA-
2 processors is faster than a 32,000 BlueGene/L
machine.

Exploring further, in Figure 19, we note the
performance trends of 10 processor MTA runs
of MTGL and C versions of the s-t connectivity
algorithm corroborate our counting argument.
The two lines in the figure show the scaling tra-
jectories of the respective codes as graph size
increases, holding average degree constant. The
MTGL trajectory is slightly worse than the C

12

implementation, but we have not yet explored
the reason why.

An MTA-2 with enough memory to verify
this performance prediction will never exist. How-
ever, Eldorado machines of sufficient size will.
Eldorados will not scale as well as MTA-2’s would
have scaled, but as discussed below, we expect
them to perform very well.

6.2 Eldorado performance

The Cray Eldorado system is being developed
as a follow-on to the MTA-2. It can be thought
of as a larger MTA with faster processors and
a slower network. In this paper, we intend only
to give an idea of the expected performance of
our codes on a 512 processor Eldorado. For a
detailed architectural description of Eldorado,
see [1], and for details of our performance pre-
dictions, see [8]. Working with Keith Under-
wood of Sandia National Laboratories, Megan
Vance of Notre Dame, and Wayne Wong of Cray,
Inc. we went through the following process for
each graph kernel:

1. We used MTA hardware counters to find
the memory reference rate of each kernel.

2. We used Cray’s zebra MTA simulator to
generate the actual memory address trace.
This information was used to distinguish
stack references from non-stack references.
The former will be local references on El-
dorado.

3. We simulated the memory system of El-
dorado and predicted the hit rate in the
DRAM buffer accounting for network traf-
fic.

4. Using these numbers, we predicted the ex-
pected slow down in the graph kernels on
a 512 processor Eldorado system.

The high-level results were that the expected
slow down when scaling the connected compo-
nents kernels to 512 processors is 2-3. Since
Eldorado processors are more than twice as fast
as MTA-2 processors, we thus expect our con-
nected components kernels to run on a 512 pro-
cessor Eldorado as if it were a 512 processor

MTA-2. The results for subgraph isomorphism
were even more optimistic since the memory ref-
erence pattern of the CompoundTypeFilter rou-
tine, which dominates the running time, is much
less demanding of the network than that of the
connected components kernels.

We also simulated the network to explore
the implications of hot spots. We found these
to be of much greater consequence on Eldo-
rado than they are on the MTA-2. However,
with the exception of the end-of-queue hotspot
in our current breadth-first search implementa-
tion, our kernels do not exhibit hot spotting on
the MTA-2.

7 Conclusions

Growing awareness of the applicability of mas-
sive multithreading to unstructured graph prob-
lems has encouraged a number of researchers
to take an interest in the multithreaded ma-
chines. Our main contribution is a demonstra-
tion that this excellent performance can be pre-
served when programs are written using a generic
software framework that abstracts away poten-
tially troublesome details. A common criticism
of shared memory programming, as opposed to
message passing, is that correctness is more prob-
lematic. The shared-memory programmer has
less explicit control and must better appreci-
ate concurrency subtleties. Further, MTA pro-
gramming is delicate since hot spots must be
avoided. The prototype MTGL that we have in-
troduced via pseudocode handles many of these
correctness and concurrency issues for the ap-
plication programmer.

We have also introduced two new multithreaded
algorithms that leverage the flexibility of the
MTGL: the bully algorithm for connected com-
ponents and a heuristic for subgraph isomor-
phism on semantic graphs. We anticipate that
as multithreaded programming matures, more
algorithms will be developed that use similar
techniques.

Our prototype MTGL is under active devel-
opment, and we plan to release the software in
an open-source form in the coming year. Cur-

13

rent repository versions of the software are avail-
able by contacting jberry@sandia.gov.

8 Acknowledgements

We thank Cynthia Phillips for helpful conversa-
tions and for a thorough proof-reading. Sandia
is a multipurpose laboratory operated by Sandia
Corporation, a Lockheed-Martin Company, for
the United States Department of Energy under
contract DE-AC04-94AL85000.

References

[1] J. Feo, D. Harper, S. Kahan, and
P. Konecny. Eldorado. In Proceedings of
the 2nd Conference on Computing Frontiers,
pages 28–34, 2005.

[2] R. Levinson. Pattern associativity and the
retrieval of semantic networks. Computers
and Mathematics with Applications, 23:573–
600, 1992.

[3] Brendan McKay. Practical graph isomor-
phism. Congressus Numerantium, 30:45–87,
1980.

[4] V. Nicholson, C.-C. Tsai, M. Johnson, and
M. Naim. A subgraph isomorphism theorem
for molecular graphs. In Graph Theory and
Topology in Chemistry, number 51 in Stud.
Phys. Theoret. Chem., pages 226–230. Else-
vier, 1987.

[5] Y. Shiloach and U. Vishkin. An o(n log
n) parallel connectivity algorithm. J. Algo-
rithms, 3(7):57–67, 1982.

[6] J. Siek, L-Q. Lee, and A. Lumsdaine. The
Boost Graph Library. Addison-Wesley, 2002.

[7] J. R. Ullmann. An algorithm for subgraph
isomorphism. J. Assoc. Comput. Mach.,
23:31–42, 1976.

[8] K. Underwood, M. Vance, J. Berry, and
B. Hendrickson. Analyzing the scalability
of graph algorithms on eldorado. In 21st

IEEE International Parallel & Distributed
Processing Symposium, submitted, 2007.

[9] A. Yoo, E. Chow, K. Henderson, W. McLen-
don III, B. Hendrickson, and U. Çatalyürek.
A scalable distributed parallel breadth–first
search algorithm on BlueGene/L. In Proc.
SC’05, November 2005. Finalist for the Gor-
don Bell Prize.

14

